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Abstract: The Lagrangian formalism based on the standard Lagrangians, which are characterized
by the presence of the kinetic and potential energy-like terms, is established for selected population
dynamics models. A general method that allows for constructing such Lagrangians is developed,
and its specific applications are presented and discussed. The obtained results are compared with the
previously found Lagrangians, whose forms were different as they did not allow for identifying the
energy-like terms. It is shown that the derived standard Lagrangians for the population dynamics
models can be used to study the oscillatory behavior of the models and the period of their oscillations,
which may have ecological and environmental implications. Moreover, other physical and biological
insights that can be gained from the constructed standard Lagrangians are also discussed.
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1. Introduction

In modern theoretical physics, all fundamental equations describing inorganic mat-
ter are derived by using the Lagrangian formalism [1–3], which requires prior knowl-
edge of functions called Lagrangians [4,5]. A number of different methods have been
proposed [6–11] to obtain the Lagrangians for the most basic equations of modern classi-
cal [12] and quantum [13] physics.

There have been attempts to formulate mathematical models of some biological sys-
tems, thereby establishing mathematically oriented theoretical biology [14]. Different
areas of mathematics have become increasingly important in biology in recent decades,
specifically, statistics in experimental design, pattern recognition in bioinformatics, and
mathematical modeling in evolution, ecology, and epidemiology [15]. However, as pointed
out in [15], some of these attempts can be classified as ‘uses’, but others must be con-
sidered as ‘abuses’ because most biological systems are complex many-body dynamical
systems [16].

Among a large variety of biological systems, the population dynamics play a special
role since they are the key to understanding the relative importance of competition for
resources and predation in complex communities and for preserving biodiversity [16,17].
Population dynamics models that describe interacting species are typically expressed
by ordinary differential equations (ODEs), which are first order, coupled, damped, and
nonlinear [16]. Despite the presence of damping and nonlinearities in such models, no
clear demonstration of the onset of chaos has yet been shown [18]. However, some studies
suggested that insect population dynamics can undergo transitions between stable and
chaotic phases for models near a transition point between order and chaos [19].

In theoretical biology, Kerner [20] was the first to apply the Lagrangian formalism to
biology and obtain Lagrangians for several selected biological systems described by first-
order ordinary differential equations (ODEs). Later, Paine [21] investigated the existence
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and construction of Lagrangians for similar sets of ODEs following the original work
of Helmholtz [5]. First, specific applications of the Lagrangian formalism to population
dynamics were performed by Trubatch and Franco [22], who obtained in an ad hoc manner
Lagrangians for the Lotka–Volterra [23–27], Verhulst [28,29], Gompertz [30,31], and host–
parasite [32] population dynamics models. However, the Lagrangians found by these
authors were guessed, without formally deriving them, which was formally performed by
Nucci and Tamizhmani [33], who used the method based on the Jacobi last multiplier that
they originally developed [7].

The previously found Lagrangians [22,33] must be considered as the generating func-
tions, whose specific forms allow for deriving the equations of motion for the population
dynamics models by substituting these Lagrangians into the Euler–Lagrange (E–L) equa-
tion. The obtained Lagrangians do not represent the difference between the kinetic and
potential energies [22]; therefore, they must be classified as non-natural [5] or nonstandard
Lagrangians [8–10] to make distinctions between them and the standard Lagrangians (SLs),
in which the kinetic and potential energy-like terms are easily identified [1–4,12]. Thus,
all previously obtained Lagrangians were nonstandard; however, this paper presents first
standard Lagrangians for several selected population dynamics models.

The main goal of this paper is to develop the Lagrangian formalism for six population
dynamics models, which include the above five models and the SIR model [34]. The
formalism is based on standard Lagrangians, and a method to derive these Lagrangians
is developed and presented. The emphasis on the SLs makes our approach and obtained
results different from those previously found [22,33]. The SLs derived in this paper allow us
to identify the kinetic and potential energy-like terms in the population dynamics models
and discuss novel roles of these terms in the models. New and interesting ecological and
environmental implications of the derived SLs on the considered population dynamics
models are also presented and discussed. The developed method to derive SLs can be used
to find SLs for other physical and natural science systems described by second-order ODEs.

The paper is organized as follows: Section 2 presents a brief overview of the La-
grangian formalism and standard Lagrangians; in Section 3, the models of the population
dynamics are described, and the obtained results are reported and discussed; in Section 4,
new ecological and environmental implications are presented and discussed; and Section 5
concludes the paper.

2. Lagrangian Formalism and Its Basic Concepts and Methods
2.1. Concept of Action and Its Lagrangian

A one-dimensional dynamical system is described by the independent variable t,
which represents time; the dependent variable x(t), which describes a characteristic phys-
ical property of the system; and the derivative ẋ(t) = dx/dt, which accounts for the
system’s evolution in time. The equation of motion for this system can be obtained by
using the principle of least action. To formulate the principle, the concept of action must be
introduced. Action is the functional S [x(t)], which is defined as an integral over a scalar
function L, called Lagrangian, that depends on both x(t) and ẋ(t) and, in some special
cases, may also depend explicitly on t. Thus, in general, the Lagrangian can be represented
as L(ẋ, x, t), and this notation is used throughout this paper.

According to the principle of least action, or Hamilton’s principle [2,3,5,12], the action
S [x(t)] must obey the following requirement δS = 0, which guarantees that the action
is stationary, or has either a minimum, maximum, or saddle point. The necessary condi-
tion that δS = 0 is known as the Euler–Lagrange (E–L) equation, whose operator ÊL is
defined as

ÊL ≡ d
dt

(
∂

∂ẋ

)
− ∂

∂x
. (1)

If this operator is acting on the Lagrangian, ÊL[L(ẋ, x, t)] = 0, then a second-order
ODE is obtained, and this ODE is identified as an equation of motion for a dynamical
system whose L(ẋ, x, t) is known. This process of finding the equation of motion is called
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the Lagrangian formalism [2,3,12], and all fundamental equations of modern physics have
been derived using it [2,3,13].

For dynamical systems whose total energy is conserved, the existence of Lagrangians is
guaranteed by the Helmholtz conditions [4], which can also be used to obtain Lagrangians.
The procedure for finding Lagrangians is called the inverse (or Helmholtz) problem of the
calculus of variations [12], and it shows that there are three separate classes of Lagrangians,
namely, standard [2,3,12], nonstandard [5,7–10], and null [6,35–37] Lagrangians. Both
standard and nonstandard Lagrangians give the same equations of motion after they are
substituted into the E–L equation, or ÊL[L(ẋ, x, t)] = 0. However, null Lagrangians satisfy
the E–L equation identically, and therefore, they do not give any equation of motion.

In this paper, we establish the Lagrangian formalism for ODEs that describe the
time evolution of different models of the population dynamics and derive their standard
Lagrangians. We also discuss new biological insights of these Lagrangians into the popula-
tion dynamics.

2.2. Standard Lagrangians

The Lagrangian formalism requires prior knowledge of a Lagrangian. In general, there
are no first principle methods to obtain Lagrangians, which are typically presented without
explaining their origin. In physics, most dynamical equations were established first, and
only then their Lagrangians were found, often by guessing. Once the Lagrangians are
known, the process of finding the resulting dynamical equations is straightforward, and it
requires the substitution of these Lagrangians into the E–L equation. There has been some
progress in deriving standard and nonstandard Lagrangians for physical systems described
by different ODEs (e.g., [7–11]). However, the ODEs considered in this paper are more
general than those previously studied; therefore, our paper presents a new approach to
solve this problem and to develop a method that can be used to find standard Lagrangians
for the considered population dynamics models. The developed method can also be used to
obtain SLs for other physical and natural science systems described by second-order ODEs.

As originally shown by Lagrange [1], Lagrangians for one-dimensional dynamical
systems represent the difference between the kinetic and potential energy of these systems,
and they can be written as L(ẋ, x) = ẋ2/2−V(x), with V(x) being the potential energy [2,3].
It is common to call such Lagrangians standard, and this paper is mainly devoted to SLs,
which are derived for the population dynamics models by modifying and extending the
previously developed method [33].

The Lagrangian formalism based on standard Lagrangians has been well established
in most fields of modern physics [2,3,12,13]. There have also been several attempts to
establish the Lagrangian formalism in biology and ecology, specifically in population
dynamics [20–22,38]. However, all previously obtained Lagrangians were nonstandard.
Hence, in this paper, we derive standard Lagrangians and use them to gain new biological
insights into the considered population models.

2.3. Method to Derive Standard Lagrangians

The main objective of this paper is to solve the inverse (Helmholtz) problem of calculus
of variations [3,4,12] and derive the standard Lagrangian for a given second-order ODE.
Let us consider the following general ODE:

ẍ + α(x)ẋ2 + β(x)ẋ + γ(x)x = C0 , (2)

where α(x), β(x), and γ(x) are at least twice differentiable functions of the dependent
variable only, and C0 is a constant driving force. The presence of both linear and quadratic
damping terms; the term γ(x)x, which can make the ODE nonlinear; and the driving force
makes this ODE general enough to represent all population dynamics models considered
in this paper (see Section 3). In a special case of α(x) = β(x) = C0 = 0, the equation
represents a harmonic oscillator [2,3].
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Based on the definition of null Lagrangians [6,35–37], the term β(x)ẋ is by itself
a null Lagrangian that identically satisfies the E–L equation [21–23], regardless of the
form of the function β(x). This implies that the derivation of the equation of motion
with this term present is not possible [4,12,36,37] or is only restricted to very special
Lagrangians [38–40]. Therefore, we follow [2,3] and account for this linear damping term
by writing Equation (2) as

ẍ + α(x)ẋ2 + γ(x)x = F(x, ẋ), (3)

where the force-like term is given by

F(x, ẋ) = C0 − β(x)ẋ. (4)

Note that in case F(x, ẋ) = 0, the above equation reduces to that considered in [36]. In
the following, the originally developed method to find SLs [36] is now generalized to the
above form of the nonhomogeneous ODEs.

Let us consider the following integral transform:

x(t) = x1(t)eIφ(x1) , (5)

where x1(t) is a transformed variable, and

Iφ(x1) =
∫ x1

φ(x2)dx2 , (6)

with φ being an arbitrary function to be determined, and x2 is a dummy variable to perform
the integration. Then, we calculate

ẋ =
(
1 + x1 φ

)
ẋ1 eIφ(x1), (7)

ẋ2 =
(
1 + x1 φ

)2 ẋ2
1 e2Iφ(x1). (8)

We now substitute these transformed variables into Equation (3) and obtain

ẍ1 +
1

1 + x1φ

[
2φ + x1φ2 + x1

(
dφ

dx1

)
+ b
(
x1eIφ(x1)

)(
1 + x1φ

)2eIφ(x1)
]

ẋ2
1

+
1

1 + x1φ
γ
(
x1eIφ(x1)

)
x1 =

e−Iφ(x1)

1 + x1φ
F
((

1 + x1φ
)

ẋ1eIφ(x1), x1eIφ(x1)
)

.

In order to remove the term with ẋ2
1, the function φ must obey the following nonlin-

ear ODE:

2φ + x1φ2 + x1

(
dφ

dx1

)
+b(x1, eIφ(x1))(1 + x1φ)2eIφ(x1) = 0 , (9)

whose solutions φ(x1) were previously found [37]. The fact that the solutions to this
nonlinear equation are found simply means that there is a function φ(x1) that allows for
removing the nonlinear damping term ẋ1

2(t) from the resulting equation of motion for
the transformed variable x1(t). This is an important result since the standard Lagrangian
for a linear ODE of this form is already known [40]. Thus, the known Lagrangian for the
transformed equation of motion can be now transformed back to the original variable x(t),
as it is shown below.
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The inverse integral transformation can be performed, and the transformed standard
Lagrangian for the variable x1(t) and the Euler–Lagrange equation can now be expressed
in terms of the original variable x(t). This gives

L(ẋ, x) =
1
2

ẋ2e2Iα(x) −
x∫

x̃γ(x̃)e2Iα(x̃)dx̃ , (10)

where x̃ is a dummy variable to perform the integration, and

Iα(x) =
x∫

α(x̃)dx̃ , (11)

and ÊL[L(ẋ, x)] = F(ẋ, x)e2Iα(x) or, more explicitly,

d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
= F(ẋ, x)e2Iα(x) . (12)

It must be noted that the presence of the term F(ẋ, x)e2Iα(x) is justified by the fact that
this term does not arise from any potential [2].

The presented method to derive standard Lagrangians will now be used to obtain
such Lagrangians for several selected population dynamics models, which means that all
SLs presented in the following were derived using this method.

3. Applications to the Population Dynamics Models
3.1. Selected Models

Among many known population dynamics models, for this paper, we selected the
models studied in the previous work by Trubatch and Franco [22] and Nucci and Tamizh-
mani [33]. The main reason is that the authors considered the well-known population
models that involve two interacting species, namely, the Lotka–Volterra, Gompertz, Ver-
hulst, and host–parasite models, as shown in Table 1. The mathematical description of
these models requires coupled nonlinear ODEs, for which the authors found their La-
grangians. The methods to find the Lagrangians were different, and in [22], the forms
of the Lagrangians were guessed; however, in [33], the Lagrangians were formally de-
rived by using the method of Jacobi last multiplier introduced in earlier papers [7]. The
Lagrangians obtained by these authors did not explicitly show the kinetic and potential
energy-like terms.

The fact that Lagrangians can be of different forms and yet give the same equation
of motion is commonly known [8,9,12]. Standard Lagrangians, with their kinetic and
potential energy-like terms being easily identified [7–11], play special roles in natural
sciences. There are also the so-called nonstandard Lagrangians, which do not have terms
that clearly discern the energy-like expressions, and for the population dynamics models,
such Lagrangians were found in [22,33,38]. Therefore, the main objective of this paper
is to derive the SLs and compare them with those previous non-standard Lagrangians
obtained for the population dynamics models. The SLs derived in this paper have the
specific physical meaning, which enables us to demonstrate the novel roles of these SLs in
the population dynamics.

To select models of the population dynamics, we adopted the four models mentioned
above, which were used in previous studies [22,33], and we also selected the SIR model
(see Table 1).
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Table 1. Population models and their corresponding set of ODEs.

Population Models Equations of Motion

Lotka–Volterra model ẇ1 = w1(a + bw2 )
ẇ2 = w2(A + Bw1)

Verhulst model ẇ1 = w1(A + Bw1 + f1w2)
ẇ2 = w2( a + bw2 + f2w1)

Gompertz model ẇ1 = w1(A log
( w1

m1

)
+ Bw2)

ẇ2 = w2( a log
( w2

m2

)
+ bw1)

Host–parasite model ẇ1 = w1(a − bw2)
ẇ2 = w2(A− B w2

w1
)

SIR model ẇ1 = −bw1w2
ẇ2 = bw1w2 − aw2

The first four models of the population dynamics presented in Table 1 describe two
interacting species (preys and predators) of the respective populations w1(t) and w2(t) that
evolve in time t, which is denoted by the time derivatives ẇ1(t) and ẇ2(t). The coefficients
a, A, b, B f1, f2, m1, and m2 are real and constant parameters that describe the interaction
of the two species. The Lotka–Volterra, Verhulst, and Gompertz models are symmetric,
which means that the dependent variables can be swapped if, and only if, the constants
are replaced, a→ A, b→ B, f1 → f2, and m1 → m2. However, the host–parasite model is
asymmetric in the dependent variables.

The SIR (susceptible–infected–recovered) model presented in Table 1 describes the
spread of a disease in a population, and the dependent variables w1(t) and w2(t) represent
susceptible and infectious populations, with a and b being the recovery and infection rates,
respectively. The name of this model implies that three dependent variables are needed,
and the fact that there are only two variables is explained in Section 3.2.5, where a more
detailed description of the model is given. Similar to the host–parasite model, the SIR
model is also asymmetric, but the origin and nature of this asymmetry in both models are
significantly different.

3.2. Standard Lagrangians for Selected Models

Our method to derive standard Lagrangians for the models presented in Table 1
requires that the systems of coupled nonlinear first-order ODEs are cast into one second-
order ODE for a selected variable. Since the considered models of the population dynamics
are either symmetric or asymmetric, we decided to derive the equations of motion for both
variables, so we may see the effects caused by symmetry and asymmetry on the equations
of motion for both variables.

All derived second-order ODEs can be expressed in the same form as Equation (3),
which can be written as

ẅi + αi(wi)ẇ2
i + γi(wi)wi = Fi(ẇi, wi), (13)

where i = 1 and 2. Since wi(t) represents the population of species, its derivative with
respect to time ẇi(t) describes the rate with which the population changes, and ẅi(t) its
acceleration. Despite the presence of the damping-like term αi(wi)ẇ2

i , the LHS of the above
equation is conservative [8,37], and it describes oscillations of the population of species
with respect to its equilibrium. These oscillations are modified by the force-like term on the
RHS of the equation. Let us now describe this term.

Typically, the presence of any term with ẇi(t) corresponds to friction forces in classical
mechanics [39,41–45]. In the approach presented in this paper, all friction-like terms that
explicitly depend on ẇi(t) are collected on the RHS of the equation as Fi(ẇi, wi), which
becomes the force-like term. Since Fi(ẇi, wi) arises directly from the friction-like terms, its
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origin is not potential, and therefore, this force-like term may appear on the RHS of the E–L
equation (see Equation (12)), as it is shown in [2].

In our derivations of the standard Lagrangians for the models of the population
dynamics presented in Table 1, we follow the procedure described in Section 2.3.

3.2.1. Lotka–Volterra Model

The Lotka–Volterra model was developed by Lotka [23,24] and Volterra [25–27], and
this model describes the interaction of two populations (predator–prey) based on the
assumption that the prey increases exponentially in time without the predator, and the
predator decreases exponentially without the prey. The model is symmetric, and it is
represented mathematically by a system of coupled nonlinear first-order ODEs given in
Table 1.

We cast the first-order ODEs into the second-order ODEs of the form given by
Equation (3), and obtain

ẅ1 −
1

w1
ẇ2

1 + (Bw1 + A)aw1 = F1(ẇ1, w1) , (14a)

and
ẅ2 −

1
w2

ẇ2
2 + (bw2 + a)Aw2 = F2(ẇ2, w2) , (14b)

where the forcing terms are F1(ẇ1, w1) = (Bw1 + A)ẇ1 and F2(ẇ2, w2) = (bw2 + a)ẇ2. The
coefficients in these equations represent the (a) reproduction rate of prey, (b) mortality rate
of predator per prey, (A) mortality rate of predator, and (B) reproduction rate of predator
per prey.

Our method gives the following standard Lagrangians for these equations:

L1(ẇ1, w1) =
1
2

(
ẇ1

w1

)2

−a
(

Bw1 + A ln |w1|
)

, (15a)

and

L2(ẇ2, w2) =
1
2

(
ẇ2

w2

)2

−A
(
bw2 + a ln |w2|

)
. (15b)

The kinetic and potential energy-like terms are easy to recognize in these Lagrangians.
Substituting the derived SLs and F(ẇi, wi) into the Euler–Lagrange equations

d
dt

(
∂L
∂ẇi

)
− ∂L

∂wi
= F(ẇi, wi)e2Iα(wi), (16)

where i = 1 and 2, we obtain Equations (14a) and (14b). This verifies that the presented
method to derive the SLs is valid.

3.2.2. Verhulst Model

This logistic (or Verhulst) equation was first introduced by Verhulst [28]. The Verhulst
model describes the organisms’ growth dynamics in a habitat of finite resources, which
means that the population is limited by a carrying capacity. This model is valuable for the
optimization of culture media by developing strategies and the selection of cell lines. In this
paper, the Verhulst model describes the population of interacting species by considering
self-interacting terms that prevent the exponential increase or decrease in the size of the
populations observed in the Lotka–Volterra model [22]. The system of coupled nonlinear
ODEs given in Table 1 shows that the model is symmetric.

The second-order equations for the dynamical variables of this model are

ẅ1 − (1 + b) 1
w1

ẇ2
1 + [

(
f2 − b

)
Bw2

1+
(

A f2 − 2Ab− a)w1 + A
(
a− Ab

)
]w1

= F1(ẇ1, w1) ,
(17a)
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and

ẅ2 − (1 + B) 1
w2

ẇ2
2 + [

(
f1 − B

)
bw2

2+
(

a f1 − 2aB− A)w2 + a
(

A− aB
)
]w2

= F2(ẇ2, w2) ,
(17b)

where the forcing terms are F1(ẇ1, w1) = −ẇ1
[
(2b− 1)Bw1 − f2w2

1 + (2Ab− a) + ( f2 −
b)B
]

and F2(ẇ2, w2) = −ẇ2
[
(2B− 1)bw2 − f1w2

2 + (2aB− A) + ( f1 − B)b
]
.

Then, the resulting standard Lagrangians are given as

L1(ẇ1, w1)

= 1
2

[(
ẇ1
w1

)2
− ( f2−b)B

(1−b) w2
1 −

2(A f2−2Ab−a)
(1−2b) w1 +

A(a−Ab)
b

]
w−2b

1
(18a)

and
L2(ẇ2, w2)

= 1
2

[(
ẇ2
w2

)2
− ( f1−B)b

(1−B) w2
2 −

2(a f1−2aB−A)
(1−2B) w2 +

a(A−aB)
B

]
w−2B

2
(18b)

The kinetic and potential energy-like terms are easy to identify, and the functions
F1(ẇ1, w1) and F2(ẇ2, w2) are given above. The substitution of these Lagrangians into the
E–L equations (see Equation (16)) validates the method.

3.2.3. Gompertz Model

Gompertz [30] proposed a model to describe the relationship between increasing death
rate and age. The model is also useful in describing the rapid growth of a certain population
of organisms, such as the growth of tumors [31], and modeling the amount of medicine
in the bloodstream [29]. Here, we follow [22,33] and consider the Gompertz model for
the population dynamics. This model generalizes the Lotka–Volterra model by including
self-interaction terms that prevent an unbounded increase of any isolated population [22];
the self-interacting terms in the Gompertz model are different from those in the Verhulst
model. The mathematical representation of this model given by the coupled and nonlinear
ODEs in Table 1 shows that the model is symmetric.

The equation describing the time evolution of each model variable is given as

ẅ1 −
1

w1
ẇ2

1+
[
A log

(w1

m1

)]
w2

1 = F1(ẇ1, w1) , (19a)

and
ẅ2 −

1
w2

ẇ2
2+
[
a log

(w2

m2

)]
w2

2 = F2(ẇ2, w2) , (19b)

where the forcing terms are F1(ẇ1, w1) = [Am1 + bw1 + g1(ẇ1, w1)]ẇ1 − g1(ẇ1, w1)Aw1
and F2(ẇ2, w2) = [ am2 + Bw2 + g2(ẇ2, w2)]ẇ2 − g2(ẇ2, w2)aw2, with

g1(ẇ1, w1) = a log
[

1
m2B

(
ẇ1

w1
− A log

(
w1

m1

))]
, (20a)

and

g2(ẇ2, w2) = A log
[

1
m1b

(
ẇ2

w2
− a log

(
w2

m2

))]
. (20b)

Then, the following standard Lagrangians for this model are obtained:

L1(ẇ1, w1) =
1
2

(
ẇ1

w1

)2

− A
[

log
(

w1

m1

)
− 1
]

w1, (21a)

and

L2(ẇ2, w2) =
1
2

(
ẇ2

w2

)2

− a
[

log
(

w2

m2

)
− 1
]

w2. (21b)
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In both Lagrangians, the kinetic and potential energy-like terms are seen, and the forc-
ing functions F1(ẇ1, w1) and F2(ẇ2, w2) are given above. If we substitute these Lagrangians
into Equation (16), the second-order ODEs for the variables w1 and w2 are obtained.

3.2.4. Host–Parasite Model

This model describes the interaction between a host and its parasite [32]. The model
takes into account the nonlinear effects of the host population size on the growth rate of the
parasite population [22]. The system of coupled nonlinear ODEs (see Table 1) is asymmetric
in the dependent variables w1 and w2. The time evolution equations for these variables are

ẅ1 −
1

w1

(
1 +

B
bw1

)
ẇ2

1 + aAw1 = F1(ẇ1, w1) , (22a)

and
ẅ2 −

2
w2

ẇ2
2 + A(bw2 − a)w2 = F2(ẇ2, w2) , (22b)

where the forcing terms are F1(ẇ1, w1) = B a2

b +
(

A− 2aB
bw1

)
ẇ1 and F2(ẇ2, w2) = (bw2 −

a− A)ẇ2.
The standard Lagrangians for the variables w1 and w2 are given by

L1(ẇ1, w1) =
1
2

(
ẇ1

w1

)2

e2B/bw1 + aAEi

(
2B
bw1

)
, (23a)

and

L2(ẇ2, w2) =
1
2

(
ẇ2

w2

)2
1

w2
2
− A

[
1
2

a
w2
− b

]
1

w2
, (23b)

where the exponential integral Ei(2B/bw1) is a special function defined as

Ei(z) =
∫ z

∞

ez̃

z̃
dz̃, (24)

with z = 2B/bw1. It must be noted that Ei(z) is not an elementary mathematical function,
and that it represents the potential energy-like term in the Lagrangian. The dependence
of this Lagrangian on the exponential integral Ei(2B/bw1) is a new phenomenon in the
Lagrangian formalism. It is suggested that the SLs with such terms may form a new family
of SLs, whose members may play dominant roles in finding SLs for a certain class of
asymmetric population dynamics models, such as the host–parasite model.

A comparison of Equations (23a) and (23b) shows that there are significant differences
between the Lagrangian for w1 and that for w2 in both their kinetic and potential energy-
like terms. The differences are caused by the asymmetry between the dependent variables
in the original equations (see Table 1), which makes this model different from the fully
symmetric Lotka–Volterra, Verhulst, and Gompertz models, whose standard Lagrangians
are also fully symmetric. Among the models considered in this paper, the SIR model is also
asymmetric; we now study this model and compare the results with those obtained for the
host–parasite model.

3.2.5. SIR Model

Kermack and McKendrick [34] derived the system of the first-order ODEs (see Table 1)
describing the spread of a disease in a population. It is one of the simplest models, dividing
the population into three distinct subpopulations: a susceptible population denoted by
w1(t), the infectious population represented by w2(t), and a recovered population we
denote as w3(t). It is seen that the dependent variable w3(t) does not appear explicitly
in the set of ODEs given in Table 1 because it is related to w1(t) and w2(t) through the
following population conservation law: d/dt(w1 + w2 + w3) = 0, which means that the
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sum of the three populations must remain constant in time. There are many examples in
the literature (e.g., [35,46]), where the SIR model has been applied for settings where the
total population size remains fixed in time, which guarantees that the conservation law is
satisfied. In studies of diseases in a population, one commonly used model restriction is a
limited capacity of hospitals. In addition, a > 0 is the recovery rate and b > 0 is the rate
of infection, which means that the terms −bw1w2 and −aw2 represent newly infected and
recovered individuals, respectively.

The time evolution equations for the variables w1(t) and w2(t) can be written as

ẅ1 −
1

w1
ẇ2

1 = F1(ẇ1, w1) , (25a)

and
ẅ2 −

1
w2

ẇ2
2 + abw2

2 = F2(ẇ2, w2) , (25b)

where the forcing terms are given by F1(ẇ1, w1) = (bw1 − a)ẇ1 and F2(ẇ2, w2) = −bw2ẇ2.
The method described in Section 2.3 gives the following standard Lagrangians:

L1(ẇ1, w1) =
1
2

(
ẇ1

w1

)2

, (26a)

and

L2(ẇ2, w2) =
1
2

(
ẇ2

w2

)2

− abw2. (26b)

The fact that the SIR model is asymmetric is shown by the lack of the potential energy-
like term in L1(ẇ1, w1) and its presence in L2(ẇ2, w2). However, the kinetic energy-like
terms are the same for the SLs for both variables, and they are also similar to such terms in
the SLs obtained for the other population dynamics models.

Having obtained the SLs for the SIR and host–parasite models, we may now compare
the resulting Lagrangians and conclude that in these two asymmetric models, the potential
energy-like terms are very different. The differences are significant for such terms in
L1(ẇ1, w1); as for the SIR model, this term is zero, while for the host–parasite model,
the term contains Ei(2B/bw1), which does not represent any commonly known potential
function. Thus, our results demonstrate that the potential energy-like terms in the SLs may
be drastically different for different asymmetric models.

3.3. Discussion

The models considered in this paper can be divided into two families, namely, sym-
metric (Lotka–Volterra, Verhulst, and Gompertz) and asymmetric (host–parasite and SIR)
models. The SLs derived for these models are different from the Lagrangians previously
obtained [22,33,38]. The main difference is the explicit time dependence of those previously
found Lagrangians as compared with the SLs derived in this paper.

Let us point out that the derived standard Lagrangians for the population dynamics
models are the most basic as there are also alternative Lagrangians, which may have much
more complicated forms, and yet they give the same equations of motion [2,3,12]. Typically,
the alternative Lagrangians are obtained when a null Lagrangian (see [35,36] or Section 2.1)
is added to a standard Lagrangian. The functions Fi(ẇi, wi) are null Lagrangians, and
therefore, their contributions to the equations of motion cannot be described directly by the
SLs. Instead, the E–L equation must be modified as it is shown by Equation (12).

For each considered population dynamics model, its two standard Lagrangians can be
written in the following form:

Li(ẇi, wi) = Ekin,i(ẇi, wi)− Epot,i(wi) , (27)
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where i = 1 and 2, and Ekin,i(ẇi, wi), Epot,i(wi) are the kinetic and potential energy terms,
respectively. These terms are easy to identify in the derived SLs (see Equations (15a),
(15b), (18a), (18b), (21a), (21b), (23a), (23b), (26a), and (26b)), and they can be used to make
comparisons between the Lagrangians and models they represent.

The Ekin,i(ẇi, wi) terms in all four models have the same factor (ẇi/wi)
2/2, where

i = 1 and 2, which represents the ratio at which the population changes with respect to its
value at a given time. However, for the Verhulst and host–parasite models, this ratio is
modified by the other factors that depend on the concentration of species at a given time. It
is interesting that the Ekin,i(ẇi, wi) terms in the Lotka–Volterra, Gompertz, and SIR models
are independent from any constant parameters, but for the other two models, they are; in
the case of the host–parasite models, only the variable w1 shows such a dependence.

The Epot,i(wi) terms of the Lotka–Volterra model depends linearly on the concentration
of species; however, the Verhulst, Gompertz, and host–parasite models also have nonlinear
(second-order) terms in the concentration of species. The SIR model is exceptional as its
SL for the variable w1 does not depend on any potential energy-like term; it is the only
considered population dynamics model that shows this property, and the main reason is a
very specific asymmetry of this model (see Section 3.2.5). On the other hand, the SL for the
variable w2 does depend on the potential energy-like term that is linear in this variable.

In all models, the Epot,i(wi) terms depend on the constant parameters that appear in
the derived second-order ODEs for these models. An interesting result is the presence of
logarithmic terms in the Lotka–Volterra and Gompertz models and the exponential integral
Ei for the variable w1 for the host–parasite model. It must be also noted that the form of
the Epot,i(wi) term for the SIR model is the simplest among all the models considered here.

Now, the functions Fi(ẇi, wi) may depend only on ẇi(t), or on ẇi(t)wi(t), and the
constant parameters, or may depend on higher powers of these variables, and be even the
arguments of logarithmic functions. As the presented results demonstrate, the form of
Fi(ẇi, wi) significantly differs for different models, with the simplest being for the SIR and
Lotka–Volterra models, and then with the increasing complexity for the host–parasite and
Verhulst models. The most complex form of Fi(ẇi, wi) is found for the Gompertz model.

4. New Ecological and Environmental Implications
4.1. Conserved and Non-Conserved Quantities

The derived standard Lagrangians can be used to gain new insights into the population
dynamics models. One of the most important tasks in studying any time-evolving models
is to find quantities that remain unchanged during the evolution; we refer to such quantities
as conserved. Since the derived SLs do not depend explicitly on time, one may expect
that the total energy Etot = Ekin + Epot is conserved. To demonstrate this, we calculate the
energy function E f un,i for the Lagrangian given by Equation (27) and obtain

E f un,i(ẇi, wi) = ẇi
∂Li
∂ẋ
− Li(ẇi, wi) , (28)

which gives E f un,i(ẇi, wi) = Etot,i(ẇi, wi) = Ekin,i(ẇi, wi) + Epot,i(wi) = constant for all
considered models. The energy function can be used to derive equations of motion by
using [2]

dE f un,i

dt
= −∂Li

∂t
, (29)

which also gives E f un,i(ẇi, wi) = Etot,i(ẇi, wi) = constant because the derived SLs do
not depend explicitly on time. This makes our results significantly different from those
previously obtained [22,33].

The existence of the conserved quantity Etot,i is easy to understand because the derived
SLs describe only the homogeneous parts of the ODEs that represent the models; namely,
the SLs give

ẅi + αi(wi)ẇ2
i + γi(wi)wi = 0 , (30)
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which describes oscillatory systems. From an ecological point of view, this means that the
populations of interacting species oscillate in time, and despite the presence of the quadratic
damping (w2

i ) term, the system is conservative [8,37], and the resulting oscillations are
periodic in time.

However, we must keep in mind that in our approach, the linear damping terms
are separated in the force-like functions denoted by Fi(ẇi, wi), which significantly vary
for different models. The separation was natural because these functions represent null
Lagrangians [6,30–32], which means that no standard Lagrangian can properly account for
them [10,11] because the presented Lagrangian formalism is valid only for conservative
systems [4,12].

Let us now investigate the effects of Fi(ẇi, wi) on the oscillatory parts of the models
described by Equation (30). The force-like function will modify this oscillatory behavior by
causing the systems to reach equilibrium faster (damping) or diverge from it (driven). We
begin by pointing out that Fi(ẇi, wi) for all models, except the Gompertz model, is linear
in ẋ, which means that we may write Fi(ẇi, wi) = fi(wi)ẋ, where fi(wi) accounts for all
terms that depend exclusively on wi. This allows us to define the Rayleigh dissipative
function [2] as

Ri(ẇi, wi) =
1
2

fe,i(wi)ẇ2
i , (31)

where fe,i(wi) = fi(wi)e2Iα(wi), and write the E–L equation in the following form:

d
dt

(
∂Li
∂ẇi

)
− ∂Li

∂wi
=

∂Ri
∂ẇi

. (32)

It must be noted that the sign of the term on the RHS of this equation is determined
by the sign of the function Fi(ẇi, wi) or fi(wi), and that this sign is typically different for
different population dynamics models (see Section 3; the minus sign means a ‘damping
force’, and the plus sign means a ‘driving force’). For the Gompertz model, Rayleigh’s force
cannot be defined because the dependence on ẇi is nonlinear and logarithmic, which does
not allow for the separation of ẇi from the remaining expressions.

For the four models for which the Rayleigh function can be defined, we follow [2] and
find that the energy function is given by

dE f un,i

dt
= −∂Li

∂t
+ Ri(ẇi, wi) , (33)

or simply as
dE f un,i

dt
= Ri(ẇi, wi) , (34)

because Li(ẇi, wi) 6= Li(t). Ecologically, this is an important result as integrating
Equation (34) in time allows for finding changes of E f un,i(ẇi, wi) and their effects of damp-
ing or driving on an otherwise oscillatory behavior of the population dynamics models.
Obviously, in order to perform the integration, the solutions for wi(t) must be known.

4.2. Period of Oscillations

The above results show that the derived standard Lagrangians give equations that
describe the oscillatory behavior of the considered population dynamics models. Moreover,
our approach demonstrates that the oscillatory behavior and the driving or damping
functions can be separated. From an ecological point of view, this means that they can be
studied independently of each other, and then Equation (34) can be used to determine the
effects of damping or driving on the model oscillations.

Our approach can also be used to find the period of oscillations that the popula-
tion dynamics models undergo and how this period of oscillations would change due
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to the presence of the damping or driving function. We follow [22,45] and consider the
minimization of the following quantity:

Zi[wi(t)] =
∫ P

0
[Li(ẇi, wi) + Etot,i(ẇi, wi)]dt , (35)

where P is the period of the oscillations, which is unknown, and it is required that
Etot,i(ẇi, wi)] is conserved. After the integration is performed, for which knowledge of
wi(t) is necessary, the value of P can be determined, and its theoretically predicted value
can be tested by comparing it with experimental data.

The presented approach and obtained standard Lagrangians allow us to gain new
biological insights into population dynamics models. The following three main insights
have been identified: first, the oscillatory and damping or driving functions of the models
can be treated separately and studied independently; second, the period of oscillations is
theoretically predicted and to be verified by a comparison with experimental data; and
third, our approach shows how to account for the damping or driving effects on the
oscillatory behavior of the model.

4.3. Applications to Real-World Ecological Scenarios

There have been many studies in which the population dynamics models considered in
this paper were applied to real-world ecological scenarios. For example, the Lotka–Volterra
model was used to study the marine phage population dynamics (e.g., [47]) or the stability
of the model with time-varying delays (e.g., [48]) or changes in the density of a population
in community ecology resulting from this model (e.g., [49]). There are applications of other
models considered in this paper, with the applications of the SIR model to the COVID-
19 pandemic being both interesting and relevant (e.g., [50,51]). Additional insights in
these studies can be gained by constructing their standard Lagrangians using the method
presented in Section 2.3. The reason is that the constructed SLs would allow for identifying
their kinetic and potential energy-like terms, and then use the above results to find the
conserved and non-conserved quantities in those case studies and gained information
about periods of oscillations in the systems.

Finally, we want to point out that the developed method to find the SLs for the
population dynamics models can be used to obtain SLs for other population dynamics
models and also for a certain range of different ecological and biological systems, where the
conservation law can be applied. The only requirement is that such systems are represented
mathematically by second-order ordinary differential equations that are nonlinear and
have a quadratic damping term and a linear damping term that can be identified with its
dissipative force.

5. Conclusions

We developed the Lagrangian formalism for the following population dynamics
models: Lotka–Volterra, Verhulst, Gompertz, host–parasite, and SIR models. For ODEs that
represent these models, we solved the inverse (Helmholtz) variational calculus problem
and derived standard Lagrangians for both dependent variables for each model. The main
characteristic of these Lagrangians is that their kinetic and potential energy-like terms are
easy to be identified and that they can be used to find conserved quantities in these models.

The derived standard Lagrangians are used to demonstrate that the oscillatory behav-
ior described by these Lagrangians can be treated separately and studied independently
of the damping or driving functions of the models, and that the period of the oscillations
can be predicted theoretically and verified by experimental data. The presented approach
also shows how to account for the effects caused by the presence of the damping or driving
functions in the models.

Our method of solving the inverse calculus of a variation problem and deriving stan-
dard Lagrangians is applied to the models of population dynamics. However, the presented
results show that the method can be easily extended to other population dynamics models
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or different ecological and biological systems if their mathematical descriptions given in
terms of differential equations studied in the paper are available. Moreover, if the latter
condition is satisfied, then the developed method may be applied to any natural science
system, whose equation of motion is known.
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