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Abstract: Semipositone Lane–Emden type equations are considered on the half-axis. Such equations
have been used in modelling several phenomena in astrophysics and mathematical physics and
are often difficult to solve analytically. We provide sufficient conditions for the existence of a
positive continuous solution and we describe its global behavior. Our approach is based on a
perturbed operator technique and fixed point theorems. Some examples are presented to illustrate
the main results.
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1. Introduction

In this paper, we consider the semipositone Lane–Emden type equation on the half-axis

Lqu := − 1
A
(Au′)′ + qu = φ(z) + λ f (z, u), z ∈ (0, ∞), (1)

subject to boundary conditions

lim
z→0

(Au′)(z) = 0 and lim
z→∞

u(z) = 0, (2)

where λ ≥ 0, f ∈ C((0, ∞)×R,R), which is allowed taking negative value. In particular,
we may have f (z, 0) < 0, for z > 0 (i.e., semipositone). The function A satisfies

(H0) A ∈ C([0, ∞)) ∩ C1((0, ∞)) with A > 0 on (0, ∞) and
∫ ∞

1
1

A(r)dr < ∞.
We always assume that q and φ are in JA where

JA := {ψ ∈ C+((0, ∞)), aψ :=
∫ ∞

0
A(r)ρ(r)ψ(r)dr < ∞}, (3)

and
ρ(z) :=

∫ ∞

z

1
A(r)

dr, for z > 0. (4)

Such problems have been used in modelling many physical and chemical processes such as
in chemical reactor theory, astrophysics, mathematical physics and design of suspension
bridges (see [1–7]).

For instance, if A(z) ≡ zγ(γ > 1), λ = 1 and q(z) ≡ 0, Equation (1) takes the form

u′′(z) +
γ

z
u′(z) + f (z, u) = −φ(z). (5)

Then, Equation (5) with f (z, u) = eu, φ(z) = 0 and γ = 2 is known as the Poisson–
Boltzmann differential equation. It was used to model the isothermal gas spheres (see [8]).
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If f (z, u) = − θu
u + k

(where θ, k are some convenient constants), φ(z) = 0 and γ = 2, then

Equation (5) is used in the study of steady-state oxygen diffusion in a spherical cell with
Michaelis–Menten uptake kinetics (see [9]). On the other hand, from [10], we learned
that the heat conduction in human head can be modeled by equation of the form (5) with
f (z, u) = e−u, φ(z) = 0 and γ = 2. Further, Equation (5) with f (z, u) = (u2 − c)

3
2 , φ(z) = 0

and γ = 2 was used to model the gravitational potential of a degenerate white-dwarf star
(see [11]).

It is also important to observe that equation of the form (1) arises naturally in the study
of radially symmetric solutions (ground states) of semi-linear equations, and many works
have been conducted in this area; see [12–28].

In [15], Dalmasso, by using the sub-supersolutions method, established an existence
result for the semilinear elliptic equation

∆u + h(z)u−γ = 0, in Rn, (6)

where n ≥ 3, γ > 0, h ∈ Cν
loc(R

n), 0 < ν < 1, and h > 0 on Rn\{0} such that

cp0(|z|) ≤ h(z) ≤ p0(|z|), z ∈ Rn,

where c ∈ (0, 1], p0(r) := sup
|z|=r

h(z), for r ≥ 0 and
∫ ∞

1 rn−1+γ(n−2)p0(r)dr < ∞.

It is worth mentioning that the construction of sub-supersolution to (6) was based on the
study of the following radial problem:

1
zn−1 (z

n−1y′(z))′ + p0(z)y−γ(z) = 0, z > 0, (7)

where n ≥ 3 and γ > 0.
In [26], by means of a sub-supersolutions argument and a perturbed argument, the

author showed the existence of entire solutions to the semilinear elliptic problem
∆u + b(z)g(u) = 0, in Rn(n ≥ 3),
u > 0, in Rn,
lim
|z|→∞

u(z) = 0,
(8)

where b ∈ Cν
loc(R

n) for some ν ∈ (0, 1) and b(z) > 0, in Rn such that
∫ ∞

0 rsup
|z|=r

b(z)dr < ∞.

Function g ∈ C1((0, ∞), (0, ∞)) is required to be sublinear at both 0 and ∞.
In [14], the authors studied to the following problem:

1
A (Au′)′ = uh(z, u), in (0, ∞),
lim
z→0

(Au′)(z) = 0,

lim
z→∞

u(z) = c > 0,
(9)

where A satisfies (H0), function z→ zh(., z) ∈ C([0, ∞)), and the following:
For each a > 0, there exists qa ∈ JA such that

zh(r, z)− sh(r, s) ≤ qa(z− s), for 0 ≤ s ≤ z ≤ a and r > 0.

They proved, by means of the monotone convergence theorem, the existence of positive
bounded solution u ∈ C([0, ∞)) ∩ C1((0, ∞)) satisfying

c1 ≤ u(z) ≤ c2, for all z ∈ (0, ∞),

where c1, c2 are positive constants.
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Our goal in this paper is to take up the existence and uniqueness of a positive con-
tinuous solution to (1) and (2) with global behavior. This problem is more challenging
with previous works due to the fact that f may change sign (i.e., semipositone). In fact, the
study of positive solutions to (1) subject to (2) turns into a nontrivial question as the zero
function is not a subsolution, making the method of sub-supersolutions difficult to apply.
Our approach is based on a perturbed operator technique and fixed point theorems.
Notations:

(i) B+((0, ∞)) = {ψ : (0, ∞)→ [0, ∞), Borel measurable functions}.
(ii) C0([0, ∞)) := {ψ ∈ C([0, ∞)) : lim

z→∞
ψ(z) = 0}.

Clearly, (C0([0, ∞)), ‖u‖∞) is a Banach space with the norm

‖ψ‖∞ := sup
z≥0
|ψ(z)|.

In particular, (C0([0, ∞)), d) is a complete metric space, with

d(ψ1, ψ2) := ‖ψ1 − ψ2‖∞.

(iii) For ψ1, ψ2 ∈ B+((0, ∞)), we say ψ1 � ψ2, if there is c > 0 such that

1
c

ψ2(z) ≤ ψ1(z) ≤ cψ2(z), for all z > 0.

(iv) For p ∈ C+((0, ∞)), we let Gp(z, s)) be the Green’s function of u→ Lpu subjected to
lim
z→0

(Au′)(z) = 0 and lim
z→∞

u(z) = 0. We recall (see [19]) that for all (z, s) ∈ [0, ∞)×
(0, ∞),

Gp(z, s) = A(s)ϕ(z)ϕ(s)
∫ ∞

z∨s

1
A(r)ϕ2(r)

dr, (10)

where z ∨ s := max(z, s) and ϕ is the unique solution of Lpu = 0 satisfying ϕ(0) = 1
and (Aϕ′)(0) = 0.
In particular, if p ≡ 0, then ϕ ≡ 1 and

G(z, s) := G0(z, s) = A(s)ρ(z ∨ s). (11)

(v) For p ∈ C+((0, ∞)) and ψ ∈ B+((0, ∞)), we let

Vpψ(z) :=
∫ ∞

0
Gp(z, r)ψ(r)dr and Vψ(z) :=

∫ ∞

0
G(z, r)ψ(r)dr, for z ≥ 0. (12)

We note that if ψ ∈ JA, then Vψ ∈ C0([0, ∞)) and

Vψ(0) = aψ = ‖Vψ‖∞. (13)

From [19] Theorem 2, we learned that if ψ ∈ JA, then Vpψ ∈ C0([0, ∞)) is the unique
solution of problem

(Hψ)


Lpu = ψ in (0, ∞),
lim
z→0

(Au′)(z) = 0,

lim
z→∞

u(z) = 0.
(14)

(vi) For ψ ∈ B+((0, ∞)), we let

σψ := sup
z,s∈(0,∞)

∫ ∞

0

G(z, r)G(r, s)
G(z, s)

ψ(r)dr. (15)
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It can be seen that if ψ ∈ JA, then

σψ = aψ < ∞. (16)

2. Preliminaries

Lemma 1. The Green’s function G(z, s) (see (11)) satisfies

(i) G is continuous on [0, ∞)× (0, ∞), with

0 ≤ G(z, s) = A(s)min(ρ(z), ρ(s)), for all z, s > 0. (17)

In particular, lim
z→∞

G(z, s) = 0, for all s ≥ 0.

(ii) For all z, s, ς ∈ (0, ∞),
G(z, ς)G(ς, s)

G(z, s)
≤ A(ς)ρ(ς). (18)

Proof. Clearly, (i) holds.
(ii) From (17), we have, for all z, s, ς ∈ (0, ∞),

G(z, ς)G(ς, s)
G(z, s)

= A(ς)
min(ρ(z), ρ(ς))min(ρ(ς), ρ(s))

min(ρ(z), ρ(s))
.

We claim that

H(z, ς, s) :=
min(ρ(z), ρ(ς))min(ρ(ς), ρ(s))

min(ρ(z), ρ(s))
≤ ρ(ς).

By symmetry, we may assume that z ≤ s. Hence, ρ(z) ≥ ρ(s).
Therefore, we discuss the following cases:
Case 1. If z ≤ s ≤ ς; then,

H(z, ς, s) =
ρ(ς)ρ(ς)

ρ(s)
≤ ρ(ς).

Case 2. If z ≤ ς ≤ s, then

H(z, ς, s) =
ρ(ς)ρ(s)

ρ(s)
= ρ(ς).

Case 3. If ς ≤ z ≤ s, then

H(z, ς, s) =
ρ(z)ρ(s)

ρ(s)
= ρ(z) ≤ ρ(ς).

The proof is completed.

The next Lemma is crucial in the rest of the paper.

Lemma 2 ((See [19])). Let p ∈ JA, then

(i)
Vψ = Vpψ + Vp(pV)(ψ) = Vpψ + V(pVp)(ψ), for ψ ∈ B+((0, ∞)). (19)

(ii) for z, ς ∈ [0, ∞),
e−Vp(0)G(z, ς) ≤ Gp(z, ς) ≤ G(z, ς). (20)

In particular,
e−Vp(0)Vψ ≤ Vpψ ≤ Vψ, for ψ ∈ B+((0, ∞)). (21)

Remark 1. Let p ∈ C+((0, ∞)); then,

(i) Gp is continuous on [0, ∞))× (0, ∞) with lim
z→∞

Gp(z, ς) = 0, for all ς ≥ 0.
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(ii) For all z, s, ς ∈ (0, ∞),
Gp(z, ς)Gp(ς, s)

Gp(z, s)
≤ eap A(ς)ρ(ς).

Lemma 3. Let p, h ∈ JA and ψ ∈ B+((0, ∞)); then, σh < ∞ and

Vp(hVpψ)(z) ≤ σheap Vpψ(z), for z > 0. (22)

Proof. Let h ∈ JA and ψ ∈ B+((0, ∞)); then, from (18), for all z, s ∈ (0, ∞),∫ ∞

0

G(z, ς)G(ς, s)
G(z, s)

h(ς)dς ≤
∫ ∞

0
A(ς)ρ(ς)h(ς)dς := ah < ∞.

Therefore,
σh ≤ ah < ∞. (23)

On the other hand, from Lemma 2, the Fubini–Tonelli theorem and (15), obtain, for z > 0,

Vp(hVpψ)(z) ≤ V(hVψ)(z)

=
∫ ∞

0
G(z, s)h(s)(

∫ ∞

0
G(s, ς)ψ(ς)dς)ds

=
∫ ∞

0
ψ(ς)(

∫ ∞

0
G(z, s)G(s, ς)h(s)ds)dς

≤ σh

∫ ∞

0
G(z, ς)ψ(ς)dς

= σheap Vpψ(z).

Remark 2. Let h ∈ JA; then, σh = ah.
Indeed, from (23), it remains to be proven that ah ≤ σh.
To this end, observe that

lim
z→0

ρ(z ∨ ς)ρ(ς ∨ s)
ρ(z ∨ s)

=
ρ(ς)ρ(ς ∨ s)

ρ(s)
and lim

s→∞

ρ(ς)ρ(ς ∨ s)
ρ(s)

= ρ(ς).

Therefore, by Fatou’s lemma, obtain

ah =
∫ ∞

0
A(ς)ρ(ς)h(ς)dς ≤ lim inf

s→∞

∫ ∞

0
A(ς)

ρ(ς)ρ(ς ∨ s)
ρ(s)

h(ς)dς

and ∫ ∞

0
A(ς)

ρ(ς)ρ(ς ∨ s)
ρ(s)

h(ς)dς ≤ lim inf
z→0

∫ ∞

0
A(ς)

ρ(z ∨ ς)ρ(ς ∨ s)
ρ(z ∨ s)

h(ς)dς

= lim inf
z→0

∫ ∞

0

G(z, ς)G(ς, s)
G(z, s)

h(ς)dς

≤ σh.

Hence, ah ≤ σh.

Proposition 1. Let A(r) = rγ with γ > 1 and ξ < 2 < ζ.
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Consider φ(r) =
1

rξ(1 + r)ζ−ξ
, for r > 0. Then, φ ∈ JA and

Vφ(z) �



1
(1 + z)ζ−2 if 2 < ζ < γ + 1,

log(z + 2)
(1 + z)γ−1 if ζ = γ + 1,

1
(1 + z)γ−1 if ζ > γ + 1.

(24)

Proof. Since A(r) = rγ, then

ρ(z) :=
∫ ∞

z

1
A(r)

dr =
1

γ− 1
z1−γ.

Therefore,

aφ =
1

γ− 1

∫ ∞

0
rφ(r)dr =

1
γ− 1

∫ ∞

0

1
rξ−1(1 + r)ζ−ξ

dr < ∞.

That is, φ ∈ JA.
To prove (24), we proceed as follows:

Case 1. z ∈ [0, 1].

Since z→ Vφ(z) ∈ C([0, 1]) with Vφ > 0 on [0, 1], we deduce that

Vφ(z) � 1, on [0, 1].

Case 2. z ∈ [1, ∞).
On [1, ∞), we have

Vφ(z) �
∫ ∞

z
s−γ(

∫ 1

0

rγ−ξ

(1 + z)ζ−ξ
dr +

∫ s

1
rγ−ζ dr)ds

�
∫ ∞

z
s−γ(1 +

∫ s

1
rγ−ζdr)ds.

(i) If 2 < ζ < γ + 1, then∫ s

1
rγ−ζ dr =

1
γ + 1− ζ

(sγ+1−ζ − 1) � (sγ+1−ζ − 1).

Therefore,

Vφ(z) �
∫ ∞

z
s1−ζ ds � z2−ζ � (1 + z)2−ζ .

(ii) If ζ = γ + 1, then

(1 +
∫ s

1
rγ−ζ dr) � log(es).

Hence,

Vφ(z) �
∫ ∞

z
r−γ log(er)dr

�
∫ ∞

ez
r−γ log(r)dr

� z1−γ log(z + 1)

� (1 + z)1−γ log(z + 2).

(iii) If ζ > γ + 1, then

1 +
∫ s

1
rγ−ζ dr � 1.
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Therefore,

Vφ(z) �
∫ ∞

z
s−γds � z1−γ � (1 + z)1−γ.

The estimates in (24) follow by combining the two cases.

3. Main Results

To study Problems (1) and (2), we make the following assumptions on f :

(H1) f ∈ C((0, ∞)×R,R) and for some k ≥ 0,

| f (z, 0)| ≤ kφ(z), for all z > 0,

where φ ∈ JA with φ 6= 0.

(H2) there exists function g ∈ JA such that

| f (z, t)− f (z, r)| ≤ g(z)|t− r|, for all z > 0 and t, r ∈ R.

The next Lemma is used for existence and uniqueness.

Lemma 4. Suppose that (H0)–(H2) hold and let u ∈ C0([0, ∞)). Then, u is a solution of Problems
(1) and (2) if and only if

u(z) = Vqφ(z) + λ
∫ ∞

0
Gq(z, ς) f (ς, u(ς))dς, for z ≥ 0. (25)

Proof. Assume that u satisfies (25).
Since A satisfies (H0) and φ ∈ JA, then, from (14), we already know that Vqφ ∈ C0([0, ∞))
and it is a solution of

(Hφ)


Lqv = φ in (0, ∞),
lim
z→0

(Av′)(z) = 0,

lim
z→∞

v(z) = 0.
(26)

Now, by using (H1) and (H2), obtain

| f (ς, u(ς))| ≤ | f (ς, u(ς))− f (ς, 0)|+ | f (ς, 0)|
≤ g(ς)|u(ς)|+ kφ(ς))

≤ β‖u‖∞g(ς) + kφ(ς).

Since g, φ ∈ JA, deduce that ς → | f (ς, u(ς))| ∈ JA and therefore, by [19] Theorem 2,
conclude that ω := Vq f (., u) belongs to C0([0, ∞)) and satisfies{

Lqω = f (., u) in (0, ∞),
lim
z→0

(Aω′)(z) = 0 and lim
z→∞

ω(z) = 0. (27)

Hence, from (26) and (27), u is a solution of Problems (1) and (2).
Conversely, assume that u satisfies (1) and (2); then, w(z) := u(z)−Vqφ(z)− λVq f (., u)(z),
verifies

(H0)


Lqw = 0 in (0, ∞),
lim
z→0

(Aw′)(z) = 0,

lim
z→∞

w(z) = 0.

From the uniqueness in [19] Theorem 2, conclude that w ≡ 0. Namely u satisfies (25).
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Theorem 1. Under conditions (H0), (H1) and (H2), there exists λ∗ > 0 such that for λ ∈ [0, λ∗)
Equation (1) subjected to (2) admit a unique solution u ∈ C0([0, ∞)) with

αVqφ(z) ≤ u(z) ≤ βVqφ(z), for z ≥ 0, (28)

where α =
2(λ∗ − λ(kλ∗ + eaq))

(2λ∗ − λeaq)
and β =

2(1 + λk)λ∗

(2λ∗ − λeaq)
.

Proof. Suppose that (H1) and (H2) hold and put λ∗ = 1
2ag

> 0. For λ ∈ [0, λ∗); let

α :=
1− λ(k + 2ageaq)

1− λageaq
and β =:

1 + λk
1− λageaq

.

Consider set

Λ = {v ∈ C0([0, ∞)), αVqφ(z) ≤ v(z) ≤ βVqφ(z), for z ≥ 0}.

Since φ ∈ JA, then, from [19] Theorem 2, Vqφ belongs to C0([0, ∞)) and therefore Vqφ ∈ Λ.
Due to the fact that Λ is a closed subset of (C0([0, ∞)), d), (Λ, d) becomes a complete metric
space.
Consider T defined on Λ by

Tv(z) = Vqφ(z) + λ
∫ ∞

0
Gq(z, ς) f (ς, v(ς))dς, z ≥ 0. (29)

We prove that T(Λ) ⊂ Λ. Therefore, let v be an element of Λ.
By using (H1) and (H2), obtain

| f (ς, v(ς))| ≤ | f (ς, v(ς))− f (ς, 0)|+ | f (ς, 0)|
≤ βg(ς)Vqφ(ς) + kφ(ς))

≤ β
∥∥Vqφ

∥∥
∞g(ς) + kφ(ς).

Since g, φ ∈ JA, we deduce that ς → | f (ς, v(ς))| ∈ JA and again by [19] Theorem 2, the
function Vq f (., v) becomes in C0([0, ∞)).
Hence, Tv ∈ C0([0, ∞)).
On the other hand, by using, again, (H1), (H2), Lemma 3 and Remark 2, we deduce that∣∣∣∣∫ ∞

0
Gq(z, ς) f (ς, v(ς))dς

∣∣∣∣ ≤ ∫ ∞

0
Gq(z, ς)(| f (ς, v(ς))− f (ς, 0)|+ | f (ς, 0)|)dς

≤ βVq(gVqφ)(z) + kVqφ(z)

≤ (βageaq + k)Vqφ(z)

≤ (
k + ageaq

1− λageaq
)Vqφ(z).

Hence, T(Λ) ⊂ Λ.
Next, we aim at proving that T is a contraction operator from (Λ, d) into itself.
To this end, take v1, v2 ∈ Λ; then, by using (H1), (H2), (20) and (17), obtain for z ≥ 0

|Tv1(z)− Tv2(z)| ≤ λ
∫ ∞

0
G(z, ς)| f (ς, v1(ς))− f (ς, v2(ς))|dς

≤ λ
∫ ∞

0
A(ς)ρ(ς)g(ς)|v1(ς)− v2(ς)|dς

≤ λd(v1, v2)
∫ ∞

0
A(ς)ρ(ς)g(ς)dς

= λagd(v1, v2).
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Hence,
d(Tv1, Tv2) ≤ λagd(v1, v2).

Since λag < 1
2 , then, by the Banach’s contraction principle, there exists a unique u ∈ Λ,

satisfying

u(z) = Vqφ(z) + λ
∫ ∞

0
Gq(z, ς) f (ς, u(ς))dς. (30)

From Lemma 4, we conclude that u is the unique solution of Problems (1) and (2) verify-
ing (28).

Remark 3. Under the same assumptions as in Theorem 1, we know from the Banach’s contraction
principle that for any u0 ∈ C0([0, ∞)) satisfying (28), the iterative sequence uj(z) := Vqφ(z) +

λ
∫ ∞

0
Gq(z, ς) f (ς, uj−1(ς))dς converges uniformly to u, the unique solution of Problems (1)

and (2), and we have ∥∥uj − u
∥∥

∞ ≤
λ∗

(2λ∗ − λ)2j−1 ‖u1 − u0‖∞. (31)

4. Examples

Example 1. Let 2 < ζ < 3 and consider

φ(z) :=
1

z(1 + z)ζ−1 , for z > 0.

For λ ∈ [0, ζ−2
2 ), problem −

1
z2 (z2v′)′ + e−zv = φ(z) + λφ(z)(cos v− 2), z ∈ (0, ∞),

lim
z→0

(z2v′)(z) = 0 and lim
z→∞

v(z) = 0,
(32)

admits a unique solution v in C0([0, ∞)) satisfying

v(z) � 1
(1 + z)ζ−2 . (33)

We may apply Theorem 1, with A(z) := z2, q(z) := e−z and f (z, v) = φ(z)(cos v− 2).
Indeed, clearly, A(z) satisfies (H0) and functions q, φ belong to JA.
On the other hand, f satisfies (H1) with k = 1 and (H2) with g(z) = φ(z) ∈ JA.
By simple computation, we obtain λ∗ := 1

2ag
= 1

2Vg(0) =
ζ−2

2 .
Estimates in (33) follow from (28), (21) and Proposition 1.

Example 2. Let a < 2 and b < 2. Put

φ(z) :=
1

z(1 + z)3 , for z > 0.

For λ ∈ [0, 1
Γ(2−b) ), problem −

1
z3 (z3v′)′ + z−ae−zv = φ(z) + λz−be−z tan−1 v, z ∈ (0, ∞),

lim
z→0

(z3v′)(z) = 0 and lim
z→∞

v(z) = 0
(34)

admits a unique solution v in C0([0, ∞)) satisfying

v(z) � log(z + 2)
(1 + z)2 . (35)
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Indeed, in this case we have A(z) := z3, q(z) := z−ae−z and f (z, v) := z−be−z tan−1 v.
It is clear that A(z) satisfies (H0) and the functions q and φ belongs to JA.
Since f (z, 0) = 0, then (H1) is valid with k = 0 and hypothesis (H2) is satisfied with g(z) :=
z−be−z ∈ JA.
By simple computation we obtain λ∗ := 1

2ag
= 1

2Vg(0) =
1

Γ(2−b) .
So the conclusion follows from Theorem 1. Estimates in (35) can be obtained from (28), (21) and
Proposition 1.

Example 3. Let b < 3 and consider

φ(z) :=
1

z2(1 + z)4 , for z > 0.

For λ ∈ [0, 3
2Γ(3−b) ), the problem −

1
z4 (z4v′)′ = φ(z) + λz−be−z sin(zv), z ∈ (0, ∞),

lim
z→0

(z4v′)(z) = 0 and lim
z→∞

v(z) = 0,
(36)

admits a unique solution v in C0([0, ∞)) satisfying

v(z) � 1
(1 + z)3 . (37)

Indeed, as in the previous examples, we may apply Theorem 1 with A(z) := z3, q(z) ≡ 0 and
f (z, v) := z−be−z sin(zv). In this case, (H0) and (H1) are obviously verified and (H2) is satisfied
with g(z) := z1−be−z. By simple computation we obtain λ∗ := 1

2ag
= 1

2Vg(0) =
3

2Γ(3−b) . Estimates
in (37) follow as above from (28), (21) and Proposition 1.

Example 4. Let A(t) = etand q ∈ C+((0, ∞)) ∩ L1((0, ∞)) ⊂ JA. For λ ∈ [0, 1
4 ), the problem −

1
A (Av′)′ + qv = φ(z) + λφ(z)

√
1 + v2, z ∈ (0, ∞),

lim
z→0

(Av′)(z) = 0 and lim
z→∞

v(z) = 0,
(38)

admits a unique solution v in C0([0, ∞)) satisfying

v(z) � Vqφ(z) � Vφ(z), (39)

where φ(z) := e−
√

z
√

z ∈ JA and the graph of Vφ(z) is given in Figure 1.
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Figure 1. Graph of Vφ.

Indeed, it is clear that (H0) is satisfied and (H1) is valid with k = 1. Hypotheses (H2) hold with
g(z) := φ(z) and by computation we obtain λ∗ := 1

2ag
= 1

2Vg(0) =
1
4 .
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So the conlusion follows from Theorem 1 and (21).

5. Conclusions

A semipositone Lane-Emden type equations on the half-axis have been studied. Such
problems are more interesting and challenging due to the fact that the nonlinearity can take
negative value. We have proved the existence and uniqueness of a positive continuous
solution and described its global behavior.The approach is based on a combination of
properties of the perturbed operator and some fixed point theorems. It will be interesting
to investigate similar problems for others operators.
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