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Abstract: All the time, differential dynamical models with delay has witness a tremendous applica-
tion value in characterizing the internal law among diverse biological populations in biology. In the
current article, on the basis of the previous publications, we formulate a new Lotka–Volterra commen-
sal symbiosis system accompanying delay. Utilizing fixed point theorem, inequality tactics and an
appropriate function, we gain the sufficient criteria on existence and uniqueness, non-negativeness
and boundedness of the solution to the formulated delayed Lotka–Volterra commensal symbiosis
system. Making use of stability and bifurcation theory of delayed differential equation, we focus on
the emergence of bifurcation behavior and stability nature of the formulated delayed Lotka–Volterra
commensal symbiosis system. A new delay-independent stability and bifurcation conditions on the
model are presented. By constructing a positive definite function, we explore the global stability. By
constructing two diverse hybrid delayed feedback controllers, we can adjusted the domain of stability
and time of appearance of Hopf bifurcation of the delayed Lotka–Volterra commensal symbiosis sys-
tem. The effect of time delay on the domain of stability and time of appearance of Hopf bifurcation of
the model is given. Matlab experiment diagrams are provided to sustain the acquired key outcomes.

Keywords: Lotka–Volterra commensal symbiosis system; peculiarity of solution; Hopf bifurcation;
stability; hybrid controller

MSC: 34C23; 34K18; 37GK15; 39A11; 92B20

1. Introduction

It is well known that the delayed dynamical model is a vital tool to solve many
biological questions. In order to describe the interrelation and internal law of biological
populations, many scholars pay great attention to the construction of various predator-prey
models. By exploring the various dynamical behaviors of predator-prey models, we can
effectively control the densities of predators and prey in the natural world. Recently, many
works on predator-prey models have been published and a great deal of excellent works
have been presented. For instance, Xiang and Wang [1] focused on the stabilization and
boundedness of a prey-predator system involving disease in predator and prey-taxis. Peng
and Yu [2] discussed the Turing pattern in a diffusive prey-predator system involving herd
behavior and nonlocal delay. Khan et al. [3] investigated the bifurcations and chaos of a 2D
discrete prey-predator system. Yan et al. [4] analyzed the bifurcation and stationary pattern
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in a Leslie–Gower prey-predator system involving prey-taxis. For more detailed studies,
one can see [5–10].

In 2020, Zhu et al. [11] proposed the following Lotka–Volterra commensal symbiosis
system:





du1(t)
dt

= r1u1(t)
(

1− u1(t)
l1

+ a
u2(t)

l1

)
− q1Eu1(t)

m1E + m2u1(t)
,

du2(t)
dt

= r2u2(t)
(

1− u2(t)
l2

)
− q2Eu2(t)

m3E + m4u2(t)
.

(1)

where u1(t) represents the density of the first species and u2(t) represents the density
of the second species, r1, r2 stand for the intrinsic growth of u1, u2, respectively, l1, l2
are the carrying capacities of u1, u2, a is the relationship coefficient between u1 and u2,
q1, q2 are catchability parameters, E stands for a fishing business that is used for harvest,
mi(i = 1, 2, 3, 4) is the proper real constant. All the parameters r1, r2, l1, l2, q1, q2, E, m1, m2,
m3, m4 are positive constants. For a more concrete meaning of model (1) one can see [11].
Zhu et al. [11] explored the partial survival extinction and global stability of the equilibrium
point of model (1). Here we would like to point out that in many cases, the development of
species relies on not only the current time but also the history time, based on this viewpoint,
it is necessary to introduce delay into the biological models. According to this idea, we
assume that there exists a self-feedback time from the first species u1 to the first species u1
and a self-feedback time from the first species u2 to the first species u2. Then we can lightly
formulate the following delayed Lotka–Volterra commensal symbiosis system:





du1(t)
dt

= r1u1(t)
(

1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1Eu1(t)

m1E + m2u1(t)
,

du2(t)
dt

= r2u2(t)
(

1− u2(t− θ)

l2

)
− q2Eu2(t)

m3E + m4u2(t)
.

(2)

where θ > 0 is a time delay that stands for self-feedback time.
From the viewpoint of mathematics, delay is a vital factor that affects the dynamical

traits of various differential systems. In various cases, a delay will result in an alteration
of stability, the emergence of bifurcation and the onset of chaos and so on [12]. One can
also see [13–19]. In particular, delay-caused Hopf bifurcation is an important dynamical
phenomenon. Biologically, delay-caused Hopf bifurcation can give a good description of
the balanced relationship among the density of various biological populations. In order
to reveal the interaction relationship of various biological populations, we argue that it
is of great importance to explore the delay-caused Hopf bifurcation for many biological
models. Inspired by this idea above, we are to focus on the delay-caused Hopf bifurcation
and control aspect of bifurcation for system (2). To be specific, we are going to deal with the
following key questions: (1) Analysis of the peculiarity of solution (e.g., non-negativeness,
existence and uniqueness and boundedness) of solution to system (2). (2) Study the
emergence of Hopf bifurcation phenomenon and stability issue of system (2). (3) Construct
both distinct controllers to adjust the domain of stability and the time that Hopf bifurcation
of system (2) generates.

The main contributions of this study are introduced as follows: (i) On the basis of
the previous publications, a new delay-independent bifurcation and stability criterion for
system (2) is set up. (ii) Making use of distinct controllers, the domain of stability and
the time that Hopf bifurcation of system (2) generates are controlled with effect. (iii) The
influence of delay on commanding Hopf bifurcation and stabilizing the densities of the first
species and the density of the second species of system (2) are offered. (iv) By constructing
a suitable positive definite function, we obtain the sufficient condition ensuring the global
stability of system (2).
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The structure of this article is stated as follows. The peculiarity of the solution (e.g.,
boundedness, non-negativeness, existence and uniqueness) of system (2) is discussed in
Section 2. Section 3 deals with the bifurcation phenomenon and stability of system (2).
Section 4 explores the global stability of system (2). Section 5 focuses on the control
problem of the bifurcation phenomenon for system (2) by formulating a reasonable hybrid
delayed feedback controller involving parameter perturbation accompanying delay and
state feedback. Section 6 handles the the control problem of bifurcation phenomenon
for system (2) via formulating a reasonable extended hybrid delayed feedback controller
including parameter perturbation accompanying delay and state feedback. Section 7
displays Matlab software (latest veresion 2023b) simulation outcomes to test the validity of
the acquired key results. A laconic conclusion is drawn to complete this work in Section 8.

Remark 1. Model (1) is an ordinary differential system, model (2) is a delayed differential system
that is more reasonable than model (1) and can better describe the objective reality in biology. Thus,
model (2) is new.

2. Peculiarity of Solution

In this part, we are going to explore the non-negativeness, existence and uniqueness,
and boundedness of the solution for system (2) by virtue of fixed point theorem, inequality
skills and a reasonable function.

Theorem 1. Let ∆ = {u1, u2} ∈ R2 : max{|u1|, |u2|} ≤ U}, where U > 0 denotes a constant.
For every (u10, u20) ∈ ∆, system (2) under the initial value (u10, u20) owns a unique solution
U = (u1, u2) ∈ ∆.

Proof. Set
f (U) = ( f1(U), f2(U)), (3)

where 



f1(U) = r1u1(t)
(

1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1Eu1(t)

m1E + m2u1(t)
,

f2(U) = r2u2(t)
(

1− u2(t− θ)

l2

)
− q2Eu2(t)

m3E + m4u2(t)
.

(4)

For arbitrary U, Ũ ∈ ∆, one gains
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|| f (U)− f (Ũ)||

=

∣∣∣∣
[

r1u1(t)
(

1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1Eu1(t)

m1E + m2u1(t)

]

−
[

r1ũ1(t)
(

1− ũ1(t− θ)

l1
+ a

ũ2(t)
l1

)
− q1Eũ1(t)

m1E + m2ũ1(t)

]∣∣∣∣

+

∣∣∣∣
[

r2u2(t)
(

1− u2(t− θ)

l2

)
− q2Eu2(t)

m3E + m4u2(t)

]

−
[

r2ũ2(t)
(

1− ũ2(t− θ)

l2

)
− q2Eũ2(t)

m3E + m4ũ2(t)

]∣∣∣∣

=

∣∣∣∣
[

r1u1(t)− r1
u1(t)u1(t− θ)

l1
+ ar1

u1(t)u2(t)
l1

− q1Eu1(t)
m1E + m2u1(t)

]

−
[

r1ũ1(t)− r1
ũ1(t)ũ1(t− θ)

l1
+ ar1

ũ1(t)ũ2(t)
l1

− q1Eũ1(t)
m1E + m2ũ1(t)

]∣∣∣∣

+

∣∣∣∣
[

r2u2(t)− r2
u2(t)u2(t− θ)

l2
− q2Eu2(t)

m3E + m4u2(t)

]

−
[

r2ũ2(t)− r2
ũ2(t)ũ2(t− θ)

l2
− q2Eũ2(t)

m3E + m4ũ2(t)

]∣∣∣∣

≤ r1|u1(t)− ũ1(t)|+
r1U
l1
|u1(t)− ũ1(t)|+

r1U
l1
|u1(t− θ)− ũ1(t− θ)|

+ r2|u2(t)− ũ2(t)|+
r2U
l2
|u2(t)− ũ2(t)|+

r2U
l2
|u2(t− θ)− ũ2(t− θ)|

+
r1a
l1
|u1(t)− ũ1(t)|+

r1a
l1
|u2(t)− ũ2(t)|+

q1

m1
|u1(t)− ũ1(t)|

+
q2

m3
|u2(t)− ũ2(t)|

≤ r1|u1(t)− ũ1(t)|+
r1U
l1
|u1(t)− ũ1(t)|+

r1U
l1
|u1(t)− ũ1(t)|

+ r2|u2(t)− ũ2(t)|+
r2U
l2
|u2(t)− ũ2(t)|+

r2U
l2
|u2(t)− ũ2(t)|

+
r1a
l1
|u1(t)− ũ1(t)|+

r1a
l1
|u2(t)− ũ2(t)|+

q1

m1
|u1(t)− ũ1(t)|

+
q2

m3
|u2(t)− ũ2(t)|

≤ ϑ1|u1(t)− ũ1(t)|+ ϑ2|u2(t)− ũ2(t)|, (5)

where 



ϑ1 = r1 +
2r1U

l1
+

r1a
l1

+
q1

m1
,

ϑ2 = r2 +
2r2U

l2
+

r2a
l2

+
q2

m3
.

(6)

Let
ϑ = max{ϑ1, ϑ2}. (7)

Then it follows from Equation (5) that

|| f (U)− f (Ũ)|| ≤ ϑ||U − Ũ||. (8)

Thus f (U) conforms to Lipschitz condition for U (see [17]). Using fixed point theorem,
we can easily conclude that Theorem 1 is true.

Theorem 2. All solutions of system (2) starting with R2
+ are non-negative.
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Proof. Assume that U(0) = (u1(0), u2(0)) is the initial value of system (2). By the first
equation of system (2), we obtain

du1(t)
u1(t)

=

[
r1

(
1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1E

m1E + m2u1(t)

]
dt, (9)

which leads to
∫ t

0

du1(t)
u1(t)

=
∫ t

0

[
r1

(
1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1E

m1E + m2u1(t)

]
dt. (10)

Hence,

ln u1(t)− ln u1(0) =
∫ t

0

[
r1

(
1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1E

m1E + m2u1(t)

]
dt. (11)

Then,

u1(t) = u1(0) exp
[∫ t

0

(
r1

(
1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1E

m1E + m2u1(t)

)
dt
]
> 0. (12)

By the second equation of system (2), we obtain

du2(t)
u2(t)

=

[
r2

(
1− u2(t− θ)

l2

)
− q2E

m3E + m4u2(t)

]
dt, (13)

which leads to
∫ t

0

du2(t)
u2(t)

=
∫ t

0

[
r2

(
1− u2(t− θ)

l2

)
− q2E

m3E + m4u2(t)

]
dt. (14)

Hence,

ln u2(t)− ln u2(0) =
∫ t

0

[
r2

(
1− u2(t− θ)

l2

)
− q2E

m3E + m4u2(t)

]
dt. (15)

Then,

u2(t) = u2(0) exp
[∫ t

0

(
r2

(
1− u2(t)

l2

)
− q2E

m3E + m4u2(t)

)
dt
]
> 0. (16)

The proof of Theorem 2 ends.

Theorem 3. If θ = 0 and r1
l1
> ar1

2l1
, r2

l2
> ar1

2l1
, then all solutions of system (2) starting with R2

+ are
uniformly bounded.

Proof. Let,
W(t) = u1(t) + u2(t). (17)
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Then,

dW(t)
dt

=
du1(t)

dt
+

du2(t)
dt

=

[
r1u1(t)

(
1− u1(t)

l1
+ a

u2(t)
l1

)
− q1Eu1(t)

m1E + m2u1(t)

]

+

[
r2u2(t)

(
1− u2(t)

l2

)
− q2Eu2(t)

m3E + m4u2(t)

]

=

[(
r1u1(t)− r1

u2
1(t)
l1

+ ar1
u1(t)u2(t)

l1

)
− q1Eu1(t)

m1E + m2u1(t)

]

+

[(
r2u2(t)− r2

u2
2(t)
l2

)
− q2Eu2(t)

m3E + m4u2(t)

]

≤ r1u1(t) + r2u2(t)−
(

r1

l1
− qr1

2l1

)
u2

1(t)−
(

r2

l2
− qr1

2l1

)
u2

2(t)

= r1u1(t) + r2u2(t)− (
r1

l1
− ar1

2l1
)u2

1(t) + (
r2

l2
− ar1

2l1
)u2

2(t)

= −r1(u1(t) + u2(t)) + 2r1u1(t) + (r1 + r2)u2(t)

−
(

r1

l1
− qr1

2l1

)
u2

1(t)−
(

r2

l2
− qr1

2l1

)
u2

2(t)

≤ −r1W(t) + M, (18)

where

M =
r2

1
r1

l1
− qr1

2l1

+
r2

2
r2

l2
− qr1

2l1

. (19)

By Equation (18), we obtain

W(t)→ M
r1

, as t→ +∞. (20)

Therefore, all the solutions of the system (2) are uniformly bounded.

3. Bifurcation Research

Assume that system (2) has the equilibrium point: E(u1?, u2?), where u1?, u2? obey




r1u1?

(
1− u1?

l1
+ a

u2?

l1

)
− q1Eu1?

m1E + m2u1?
= 0,

r2u2?

(
1− u2?

l2

)
− q2Eu2?

m3E + m4u2?
= 0.

(21)

Let {
u1? = u1(t)− ū1(t),
u2? = u2(t)− ū2(t).

(22)

The linear system of system (2) around E(u1?, u2?) takes the following expression:





du1(t)
dt

=

[
r1

(
1− u1?

l1
+ a

u2?

l1

)
− q1E(m1E + m2u1?)− q1Em2u1?

(m1E + m2u1?)2

]
u1(t)

+ a
u1?

l1
u2(t)−

u1?

l1
u1(t− θ).

du2(t)
dt

=

[
r2(1−

u2?

l2
)− q2E(m3E + m4u2?)− q1Em4u2?

(m3E + m4u2?)2

]
u2(t)

− u2?

l2
u2(t− θ).
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Let,




b1 = r1(1−
u1?

l1
+ a

u2?

l1
)− q1E(m1E + m2u1?)− q1Em2u1?

(m1E + m2u1?)2 ,

b2 = a
u1?

l1
,

b3 =
u1?

l1
,

b4 = r2(1−
u2?

l2
)− q2E(m3E + m4u2?)− q1Em4u2?

(m3E + m4u2?)2 ,

b5 =
u2?

l2
.

(23)

Equation (23) becomes




du1(t)
dt

= b1u1(t) + b2u2(t)− b3u1(t− θ),
du2(t)

dt
= b4u2(t)− b5u2(t− θ).

(24)

The characteristic of Equation (25) owns the following expression:

det
[

λ− b1 + b3e−λθ −b2
0 λ− b4 + b5e−λθ

]
= 0, (25)

which leads to
(λ2 − c1λ + c5)eλθ + c4e−λθ + c2λ− c3 = 0, (26)

where 



c1 = b1 + b4,
c2 = b3 + b5,
c3 = b1b5 + b3b4,
c4 = b3b5,
c5 = b1b4.

(27)

If θ = 0, then Equation (26) reads as:

λ2 − (c1 − c2)λ− c3 + c4 + c5 = 0. (28)

If
(G1) c2 − c1 > 0, c4 + c5 − c3 > 0

is fulfilled, then the two roots λ1, λ2 of Equation (28) have negative real parts. Thus the
equilibrium point E(u1?, u2?) of the model (2) under θ = 0 holds a locally asymptotically
stable state.

Suppose that λ = iφ is the root of Equation (26). Then Equation (26) takes

((iφ)2 − c1iφ + c5)eiφθ + c4e−iφθ + (c2iφ− c3) = 0, (29)

which generates

(−φ2 − c1iφ + c5)(cos φθ + i sin φθ) + c4(cos φθ − i sin φθ) + (c2iφ− c3) = 0, (30)

It follows from Equation (31) that

{
(−φ2 + c5) cos φθ + c1φ sin φθ + c4 cos φθ − c3 = 0,
(−φ2 + c5) sin φθ − c1φ cos φθ − c4 sin φθ + c2φ = 0.

(31)
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Namely, {
(−φ2 + c5 + c4) cos φθ + c1φ sin φθ = c3,
−c1φ cos φθ + (−φ2 + c5 − c4) sin φθ = −c2φ.

(32)

It follows from Equation (33) that
{

E1 cos φθ + F1 sin φθ = D1,
E2 cos φθ + F2 sin φθ = D2.

(33)

where 



E1 = (−φ2 + c5 + c4),
E2 = −c1φ,
F1 = c1φ,
F2 = (−φ2 + c5 − c4),
D1 = c3,
D2 = −c2φ.

(34)

It follows from Equations (34) and (35) that




cos φθ =
c3(−φ2 + c5 − c4) + c1c2φ2

(−φ2 + c5 + c4)(−φ2 + c5 − c4) + c2
1φ2

,

sin φθ =
−c1c3φ− c2φ(φ2 + c5 + c4)

(−φ2 + c5 + c4)(−φ2 + c5 − c4) + c2
1φ2

.
(35)

By Equation (36), one obtains





cos2 φθ =
A1

B1
,

sin2 φθ =
A2

B2
,

(36)

where




A1 = (2c1c2 + c2
1c2

2 + c2
3)φ

4 − (2(c5 − c4)(c2
3 + c1c2c3))φ

2 + c2
3(c5 − c4)

2,
B1 = φ8 − 4c5φ6 + (6c2

5 − 2c2
4)φ

4 + (4c4c5 − 4c3
5)φ

2 + c4
4 + c4

5 − 2c2
4c2

5,
A2 = c2

2φ6 − 2(c1c2c3 + c2
2(c5 + c4))φ

4 + (c2
1c2

3 + 2c1c2c3(c5 + c4) + c2
2(c5 + c4)

2,
B2 = φ8 − 4c5φ6 + (6c2

5 − 2c2
4)φ

4 + (4c4c5 − 4c3
5)φ

2 + c4
4 + c4

5 − 2c2
4c2

5.

(37)

In view of cos2 φθ + sin2 φθ = 1, we gain

φ8 + H1φ6 + H2φ4 + H3φ2 + H4 = 0, (38)

where 



H1 = −(c2
2 + 4c4c5),

H2 = 6c2
5 − 2c2

4 − 2c1c2 − c2
1c2

2 − c2
3 + 2(c1c2c3 + c2

2(c5 + c4)),
H3 = 4c4c5 − 4c3

5 + ((2(c5 − c4)(c2
3 + c1c2c3)

− (c2
1c2

3 + 2c1c2c3(c5 + c4) + c2
2(c5 + c4)

2),
H4 = c4

4 + c4
5 − 2c2

4c2
5 − c2

3(c5 − c4)
2.

(39)

Let,
∆1(φ) = φ8 + H1φ6 + H2φ4 + H3φ2 + H4. (40)

Suppose that
(G2) c4

4 + c4
5 − 2c2

4c2
5 − c2

3(c5 − c4)
2 < 0

holds, noticing that limφ→+∞ ∆1(φ) = +∞ > 0, then we know that Equation (38) admits
at least one positive real root. Thus Equation (26) owns at least one pair of purely roots.
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Without loss of generality, here we suppose that Equation (38) admits eight positive real
roots (say φi, i = 1, 2, 3, · · · , 8). In view of (36), one gains

θ
(k)
i =

1
φi

[
arccos

(
c3(−φ2

i + c5 − c4) + c1c2φ2
i

(−φ2
i + c5 + c4)(−φ2

i + c5 − c4) + c2
1φ2

i

)
+ 2kπ

]
, (41)

where i = 1, 2, 3, · · · , 8; k = 0, 1, 2 · · · . Denote θ0 = min{i=1,2,3,··· ,8;k=0,1,2,··· }{θ(k)i } and
suppose that when θ = θ0, Equation (27) admits a pair of imaginary roots ±iθ0.

In the sequel, the following condition is given:

(G3) H1RH2R +H1IH2I > 0,

where 



H1R = c2 − 2φ0θ0 sin φ0θ0 − c1 cos φ0θ0,
H1I = 2φ0θ0 cos φ0θ0 − c1 sin φ0θ0,
H2R = (φ0c5 − c4φ0 − φ3

0) sin φ0θ0 − c1φ2
0 cos φ0θ0,

H2I = (φ3
0 − φ0c5 − c4φ0) cos φ0θ0 − c1φ2

0 sin φ0θ0.

(42)

Lemma 1. Let λ(θ) = ε1(θ) + iε2(θ) be the root of Equation (26) at θ = θ0 satisfying ε1(θ0) =

0, ε2(θ0) = φ0, then Re
(

dλ
dθ

)∣∣∣
θ=θ0,φ=φ0

> 0.

Proof. By Equation (26), one gains

(2λ− c1)
dλ

dθ
eλθ + (λ2 − c1λ + c5)eλθ

(
dλ

dθ
θ + λ

)
− c4e−λθ

(
dλ

dθ
θ + λ

)
+ c2

dλ

dθ
= 0, (43)

which results in (
dλ

dθ

)−1
=
H1(λ)

H2(λ)
− θ

λ
, (44)

where {
H1(λ) = (2λ− c1)eλθ + c2,
H2(λ) = (c4e−λθ − (λ2 − c1λ + c5)eλθ)λ.

(45)

Hence

Re

[(
dλ

dθ

)−1
]

θ=θ0,φ=φ0

= Re
[H1(λ)

H2(λ)

]

θ=θ0,φ=φ0

=
H1RH2R +H1IH2I

H2
2R +H2

2I
. (46)

In view of (G3), one gains

Re

[(
dλ

dθ

)−1
]

θ=θ0,φ=φ0

> 0, (47)

which completes the proof.

Based on the study above, the following results are easily acquired.

Theorem 4. Assume that (G1)-(G3) hold, then the equilibrium point E(u1?, u2?) of model (2) is
locally asymptotically stable if θ ∈ [0, θ0) and model (2) is to produce a cluster of Hopf bifurcation
near the equilibrium point E(u1?, u2?) when θ = θ0.
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4. Global Asymptotically Stability of System (2)

In this section, we explore the global asymptotic stability of the system (2). Assume
that

(G4)
r1

l1
>

q1m2

m2
1E

,

(
r1

l1
− q1m2

m2
1E

)(
r2

l2
− q2m4

m2
3E

)
− a2

4l2
1
< 0.

Theorem 5. If (G4) holds, then the equilibrium point E(u1?, u2?) of the model (2) is global
asymptotically stable.

Proof. Define

V(t) =
2

∑
j=1

(
uj(t)− uj? − uj? ln

uj(t)
uj?

)
. (48)

Then

dV(t)
dt

=
u1(t)− u1?

u1(t)
du1(t)

dt
+

u2(t)− u2?

u2(t)
du2(t)

dt

≤ (u1(t)− u1?)

[
r1 −

r1u1(t− θ)

l1
− a

r1u2(t)
l1

− q1E
m1E + m2u1(t)

]

+(u2(t)− u2?)

[
r2 −

r2u2(t− θ)

l2
− q2E

m3E + m4u2(t)

]

= (u1(t)− u1?)

[
− r1u1(t− θ)

l1
+

r1u1?

l1
− a

r1u2(t)
l1

+ a
r1u2?

l1

− q1E
m1E + m2u1(t)

+
q1E

m1E + m2u1?

]
+ (u2(t)− u2?)

×
[
− r2u2(t− θ)

l2
+

r2u2∗
l2
− q2E

m3E + m4u2(t)
+

q2E
m3E + m4u2?

]

≤ − r1

l1
(u1(t)− u1?)

2 +
a
l1
(u1(t)− u1?)(u2(t)− u2?)

+
q1m2

m2
1E

(u1(t)− u1?)
2 − r2

l2
(u2(t)− u2?)

2

+
q2m4

m2
3E

(u2(t)− u2?)
2

= −
(

r1

l1
− q1m2

m2
1E

)
(u1(t)− u1?)

2 −
(

r2

l2
− q2m4

m2
3E

)
(u2(t)− u2?)

2

+
a
l1
(u1(t)− u1?)(u2(t)− u2?). (49)

If (G4) is fulfilled, then dV(t)
dt ≤ 0, which implies that Theorem 5 is true.

5. Bifurcation Domination via Hybrid Controller I

In this section, we are to investigate the Hopf bifurcation control issue of the system (2)
via a suitable hybrid controller consisting of state feedback and parameter perturbation
with delay. Taking advantage of the idea in [20,21], we obtain the following controlled 2D
Lotka–Volterra commensal symbiosis system:





du1(t)
dt

= r1u1(t)
(

1− u1(t− θ)

l1
+ a

u2(t)
l1

)
− q1Eu1(t)

m1E + m2u1(t)
,

du2(t)
dt

= α1

[
r2u2(t)

(
1− u2(t− θ)

l2

)
− q2Eu2(t)

m3E + m4u2(t)

]

+ α2(u2(t− θ)− u2(t)),

(50)
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where α1, α2 stands for feedback gain parameters. System (50) and system (2) own the same
equilibrium points E(u1?, u2?). The linear system of system (50) around E(u1?, u2?) takes
the following expression:





du1(t)
dt

=

[
r1(1−

u1?

l1
+ a

u2?

l1
)− q1E(m1E + m2u1?)− q1Em2u1?

(m1E + m2u1?)2

]
u1(t)

+ a
u1?

l1
u2(t)−

u1?

l1
u1(t− θ),

du2(t)
dt

=

[
α1r2(1−

u2?

l2
)− q2E(m3E + m4u2?)− q1Em4u2?

(m3E + m4u2?)2 + α2

]
u2(t)

− (α1
u2?

l2
+ α2)u2(t− θ),

(51)

which generates 



du1(t)
dt

= d1u1(t) + d2u2(t)− d3u1(t− θ),
du2(t)

dt
= d4u2(t)− d5u2(t− θ),

(52)

where 



d1 = r1(1−
u1?

l1
+ a

u2?

l1
)− q1E(m1E + m2u1?)− q1Em2u1?

(m1E + m2u1?)2 ,

d2 = a
u1?

l1
,

d3 =
u1?

l1
,

d4 = α1r2(1−
u2?

l2
)− q2E(m3E + m4u2?)− q1Em4u2?

(m3E + m4u2?)2 + α2,

d5 = α1
u2?

l2
+ α2.

(53)

Assume that u1(t) = κ1eλt, u2(t) = κ2eλt(κ1κ2 6= 0) are the solution of system (52),
then it follows from (52) that

{
κ1λeλt = d1κ1eλt + d2κ2eλt − d3κ1eλ(t−θ),
κ2λeλt = d4κ2eλt − d5κ2eλ(t−θ),

(54)

which leads to {
κ1λ = d1κ1 + d2κ2 − d3κ1e−λθ ,
κ2λ = d4κ2 − d5κ2e−λθ .

(55)

That is {
(λ− d1 + d3e−λθ)κ1 − d2κ2 = 0,
(λ− d4 + d5e−λθ)κ2 = 0.

(56)

This is a equations with respect to κ1, κ2, notice that κ1κ2 6= 0, we obtain that the
characteristic equation of (52) owns the following expression:

det
[

λ− d1 + d3e−λθ −d2
0 λ− d4 + d5e−λθ

]
= 0, (57)

which leads to
(λ2 − e1λ + e5)eλθ + e4e−λθ + e2λ− e3 = 0, (58)

where 



e1 = d1 + d4,
e2 = d3 + d5,
e3 = d1d5 + d3d4,
e4 = d3d5,
e5 = d1d4.

(59)
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If θ = 0, then Equation (58) reads as:

λ2 − (e1 − e2)λ− e3 + e4 + e5 = 0, (60)

If
(G5) e2 − e1 > 0, e4 + e5 − e3 > 0

holds, then the two roots λ1, λ2 of Equation (60) owns negative real parts. Thus the
equilibrium point E(u1?, u2?) of model (50) under θ = 0 keeps locally asymptotically
stable state.

Suppose that λ = iζ is the root of Equation (58). Then Equation (58) takes

((iζ)2 − e1iζ + e5)eiζθ + e4e−iζθ + (e2iζ − e3) = 0, (61)

which results in

(−ζ2 − e1iζ + e5)(cos ζθ + i sin ζθ) + e4(cos ζθ − i sin ζθ) + (e2iζ − e3) = 0. (62)

It follows from (62) that
{

(−ζ2 + e5) cos ζθ + e1ζ sin ζθ + e4 cos ζθ − e3 = 0,
(−ζ2 + e5) sin ζθ − e1ζ cos ζθ − e4 sin ζθ + e2ζ = 0.

(63)

Namely, {
(−ζ2 + e5 + e4) cos ζθ + e1ζ sin ζθ = e3,
−e1ζ cos ζθ + (−ζ2 + e5 − e4) sin ζθ = −e2ζ.

(64)

It follows from (64) that
{

G1 cos ζθ + J1 sin ζθ = I1,
G2 cos ζθ + J2 sin ζθ = I2,

(65)

where 



G1 = −ζ2 + c5 + c4,
G2 = −c1ζ,
J1 = c1ζ,
J2 = −ζ2 + c5 − c4,
I1 = c3,
I2 = −c2ζ.

(66)

It follows from (65) and (66) that




cos ζθ =
e3(−ζ2 + e5 − e4) + e1e2ζ2

(−ζ2 + e5 + e4)(−ζ2 + e5 − e4) + e2
1ζ2

,

sin ζθ =
−e1e3ζ − e2ζ(ζ2 + e5 + e4)

(−ζ2 + e5 + e4)(−ζ2 + e5 − e4) + e2
1ζ2

.
(67)

It follows from (67) that 



cos2 ζθ =
D1

C1
,

sin2 ζθ =
D2

C2
,

(68)

where




D1 = (2e1e2 + e2
1e2

2 + e2
3)ζ

4 − (2(e5 − e4)(e2
3 + e1e2e3))ζ

2 + e2
3(e5 − e4)

2,
C1 = ζ8 − 4e5ζ6 + (6e2

5 − 2e2
4)ζ

4 + (4e4e5 − 4e3
5)ζ

2 + e4
4 + e4

5 − 2e2
4e2

5,
D2 = e2

2ζ6 − 2(e1e2e3 + e2
2(e5 + e4))ζ

4 + (e2
1e2

3 + 2e1e2e3(e5 + e4) + e2
2(e5 + e4)

2,
C2 = ζ8 − 4e5ζ6 + (6e2

5 − 2e2
4)ζ

4 + (4e4e5 − 4e3
5)ζ

2 + e4
4 + e4

5 − 2e2
4e2

5.

(69)
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In view of cos2 ζθ + sin2 ζθ = 1, we obtain

ζ8 + K1ζ6 + K2ζ4 + K3ζ2 + K4 = 0, (70)

where 



K1 = −(e2
2 + 4e4e5),

K2 = (6e2
5 − 2e2

4 − 2e1e2 − e2
1e2

2 − e2
3 + 2(e1e2e3 + e2

2(e5 + e4))),
K3 = 4e4e5 − 4e3

5 + (2(e5 − e4)(e2
3 + e1e2e3))

− (e2
1e2

3 + 2e1e2e3(e5 + e4) + e2
2(e5 + e4)

2),
K4 = e4

4 + e4
5 − 2e2

4e2
5 − e2

3(e5 − e4)
2,

(71)

Let
∆2(ζ) = ζ8 + K1ζ6 + K2ζ4 + K3ζ2 + K4. (72)

Suppose that
(G6) e4

4 + e4
5 − 2e2

4e2
5 − e2

3(e5 − e4)
2 < 0

holds, noticing that limζ→+∞ ∆2(ζ) = +∞ > 0, then we find that Equation (70) owns
at least one positive real root. Thus Equation (58) owns at least one pair of purely roots.
Without loss of generality, here we assume that Equation (70) admits eight positive real
roots (say ζι, ι = 1, 2, 3, · · · , 8). According to (67), one obtains

θ
(k)
ι =

1
ζι

[
arccos

(
e3(−ζ2

ι + e5 − e4) + e1e2ζ2
ι

(−ζ2
ι + e5 + e4)(−ζ2

ι + e5 − e4) + e2
1ζ2

ι

)
+ 2kπ

]
, (73)

where ι = 1, 2, 3, · · · 8; k = 0, 1, 2 · · · . Denote θ∗ = min{ι=1,2,3,··· ,8;k=0,1,2,··· }{θ(k)ι } and
suppose that when θ = θ∗, (58) owns a pair of imaginary roots ±iζ0.

Now, the following condition is presented:

(G7) W1RW2R +W1IW2I > 0,

where 



W1R = e2 − 2ζ0θ∗ sin ζ0θ∗ − e1 cos ζ0θ∗,
W1I = 2ζ0θ∗ cos ζ0θ∗ − e1 sin ζ0θ∗,
W2R = (ζ0e5 − e4ζ0 − ζ3

0) sin ζ0θ∗ − e1ζ2
0 cos ζ0θ∗,

W2I = (ζ3
0 − ζ0e5 − e4ζ0) cos ζ0θ∗ − e1ζ2

0 sin ζ0θ∗.

(74)

Lemma 2. Let λ(θ) = γ1(θ) + iγ2(θ) be the root of Equation (58) at θ = θ∗ obeying

γ1(θ∗) = 0, γ2(θ∗) = ζ0, then Re
(

dλ
dθ

)∣∣∣
θ=θ∗ ,ζ=ζ0

> 0.

Proof. Using Equation (58), one acquires

(2λ− e1)
dλ

dθ
eλθ + (λ2 − e1λ + e5)eλθ

(
dλ

dθ
θ + λ

)
− e4e−λθ

(
dλ

dθ
θ + λ

)
+ e2

dλ

dθ
= 0, (75)

which leads to (
dλ

dθ

)−1
=
W1(λ)

W2(λ)
− θ

λ
, (76)

where {
W1(λ) = (2λ− e1)eλθ + e2,
W2(λ) = (e4e−λθ − (λ2 − e1λ + e5)eλθ)λ.

(77)

Hence,

Re

[(
dλ

dθ

)−1
]

θ=θ∗ ,ζ=ζ0

= Re
[W1(λ)

W2(λ)

]

θ=θ∗ ,ζ=ζ0

=
W1RW2R +W1IW2I

W2
2R +W2

2I
. (78)
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By (G7), one obtains

Re

[(
dλ

dθ

)−1
]

θ=θ∗ ,ζ=ζ0

> 0, (79)

which completes the proof.

Based on the study above, the following conclusion is easily acquired.

Theorem 6. Suppose that (G5)-(G7) hold, then the equilibrium point E(u1?, u2?) of the model (50)
holds locally asymptotically stable if θ ∈ [0, θ∗) and model (50) produces a cluster of Hopf bifurca-
tions at the equilibrium point E(u1?, u2?) when θ = θ∗.

Remark 2. In model (50), we adjust the growth rate of the density of the second species via changing
state feedback and parameter perturbation with delay.

6. Bifurcation Domination via Hybrid Controller II

In this part, we are to explore the Hopf bifurcation control issue of the system (2) by
virtue of a suitable hybrid controller consisting of state feedback and parameter perturba-
tion involving delay. According to the idea in [22], one can lightly formulate the following
controlled 2D Lotka–Volterra commensal symbiosis system:





du1(t)
dt

= β1

[
r1u1(t)(1−

u1(t− θ)

l1
+ a

u2(t)
l1

)− q1Eu1(t)
m1E + m2u1(t)

]

+ β2[u1(t− θ)− u1(t)],
du2(t)

dt
= γ1

[
r2u2(t)(1−

u2(t− θ)

l2
)− q2Eu2(t)

m3E + m4u2(t)

]

+ γ2[u2(t− θ)− u2(t)],

(80)

where θ stands for control parameter. System (50) and system (2) own the same equi-
librium points E(u1?, u2?). The linear system of system (80) around E(u1?, u2?) takes the
following expression:





du1(t)
dt

=

[
β1

(
r1

(
1− u1?

l1
+ a

u2?

l1

)
− q1E(m1E + m2u1?)− q1Em2u1?

(m1E + m2u1?)2

)
− β2

]
u1(t),

+ β1a u1?
l1

u2(t)− (β1
u1?
l1
− β2)u1(t− θ),

du2(t)
dt

=

[
γ1

(
r2

(
1− u2?

l2

)
− q2E(m3E + m4u2?)− q1Em4u2?

(m3E + m4u2?)2

)
− γ2

]
u2(t),

− (γ1
u2?
l2
− γ2)u2(t− θ).

(81)

Let




f1 = β1

[
r1(1−

u1?

l1
+ a

u2?

l1
)− q1E(m1E + m2u1?)− q1Em2u1?

(m1E + m2u1?)2

]
− β2,

f2 = β1a
u1?

l1
,

f3 = β1
u1?

l1
− β2,

f4 = γ1

[
r2(1−

u2?

l2
)− q2E(m3E + m4u2?)− q1Em4u2?

(m3E + m4u2?)2

]
− γ2,

f5 = γ1
u2?

l2
− γ2.

(82)

Then (81) becomes




du1(t)
dt

= f1u1(t) + f2u2(t)− f3u1(t− θ),
du2(t)

dt
= f4u2(t)− f5u2(t− θ).

(83)
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The characteristic equation of system (83) owns the following expression:

det
[

λ− f1 + f3e−λθ − f2
0 λ− f4 + f5e−λθ

]
= 0, (84)

which leads to
(λ2 − h1λ + h5)eλθ + h4e−λθ + h2λ− h3 = 0. (85)

where 



h1 = b1 + b4,
h2 = b3 + b5,
h3 = b1b5 + b3b4,
h4 = b3b5,
h5 = b1b4.

(86)

If θ = 0, then Equation (85) reads as:

λ2 − (h1 − h2)λ− h3 + h4 + h5 = 0. (87)

If
(G8) h2 − h1 > 0, h4 + h5 − h3 > 0.

is fulfilled, then the two roots λ1, λ2 of Equation (87) have negative real parts. Thus the
equilibrium point E(u1?, u2?) of the model (80) under θ = 0 keeps a locally asymptotically
stable state.

Suppose that λ = iξ is the root of Equation (85). Then Equation (85) takes

((iξ)2 − h1iξ + h5)eiξθ + h4e−iξθ + (h2iξ − h3) = 0, (88)

namely,

(−ξ2 − h1iξ + h5)(cos ξθ + i sin ξθ) + h4(cos ξθ − i sin ξθ) + (h2iξ − h3) = 0. (89)

It follows from (89) that
{

(−ξ2 + h5) cos ξθ + h1ξ sin ξθ + h4 cos ξθ − h3 = 0,
(−ξ2 + h5) sin ξθ − h1ξ cos ξθ − h4 sin ξθ + h2ξ = 0,

(90)

which leads to {
(−ξ2 + h5 + h4) cos ξθ + h1ξ sin ξθ = h3,
−h1ξ cos ξθ + (−ξ2 + h5 − h4) sin ξθ = −h2ξ.

(91)

It follows from (91) that
{

M1 cos φθ + N1 sin φθ = L1,
M2 cos φθ + N2 sin φθ = L2,

(92)

where 



M1 = (−ξ2 + h5 + h4),
M2 = −h1ξ,
N1 = h1ξ,
N2 = (−ξ2 + h5 − h4),
L1 = h3,
L2 = −h2h.

(93)
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It follows from (92) and (93) that




cos ξθ =
h3(−ξ2 + h5 − h4) + h1h2ξ2

(−ξ2 + h5 + h4)(−ξ2 + h5 − h4) + h2
1ξ2

,

sin ξθ =
−h1h3ξ − h2ξ(ξ2 + h5 + h4)

(−ξ2 + h5 + h4)(−ξ2 + h5 − h4) + h2
1ξ2

.
(94)

It follows from (94) that 



cos2 ξθ =
Q1

R1
,

sin2 ξθ =
Q2

R2
,

(95)

where





Q1 = (2h1h2 + h2
1h2

2 + h2
3)ξ

4 − (2(h5 − h4)(h2
3 + h1h2h3))ξ

2 + h2
3(h5 − h4)2,

R1 = ξ8 − 4h5ξ6 + (6h2
5 − 2h2

4)ξ
4 + (4h4h5 − 4h3

5)ξ
2 + h4

4 + h4
5 − 2h2

4h2
5,

Q2 = h2
2ξ6 − 2(h1h2h3 + h2

2(h5 + h4))ξ
4 + (h2

1h2
3 + 2h1h2h3(h5 + h4) + h2

2(h5 + h4)
2,

R2 = ξ8 − 4h5ξ6 + (6h2
5 − 2h2

4)ξ
4 + (4h4h5 − 4h3

5)ξ
2 + h4

4 + h4
5 − 2h2

4h2
5,

(96)

In view of cos2 ξθ + sin2 ξθ = 1, we obtain

ξ8 + X1ξ6 + X2ξ4 + X3ξ2 + X4 = 0, (97)

where




X1 = −(h2
2 + 4h4h5),

X2 = 6h2
5 − 2h2

4 − 2h1h2 − h2
1h2

2 − h2
3 + 2(h1h2h3 + h2

2(h5 + h4)),
X3 = 4h4h5 − 4h3

5 + (2(h5 − h4)(h2
3 + h1h2h3))

− (h2
1h2

3 + 2h1h2h3(h5 + h4) + h2
2(h5 + h4)

2),
X4 = h4

4 + h4
5 − 2h2

4h2
5 − h2

3(h5 − h4)
2.

(98)

Let
∆3(ξ) = ξ8 + X1ξ6 + X2ξ4 + X3ξ2 + X4. (99)

Suppose that
(G9) h4

4 + h4
5 − 2h2

4h2
5 − h2

3(h5 − h4)
2 < 0

holds, since limξ→+∞ ∆3(ξ) = +∞ > 0, then we know that Equation (97) admits at least
one positive real root. Thus, Equation (85) owns at least one pair of purely roots. Without
loss of generality, here we assume that Equation (97) has eight positive real roots (say
ξν, ν = 1, 2, 3, · · · , 8). According to (94), one has

θ
(k)
ν =

1
ξν

[
arccos

(
h3(−ξ2

ν + h5 − h4) + h1h2ξ2
ν

(−ξ2
ν + h5 + h4)(−ξ2

ν + h5 − h4) + h2
1ξ2

ν

)
+ 2kπ

]
, (100)

where ν = 1, 2, 3, · · · 8; k = 0, 1, 2, · · · . Set θ∗0 = min{ν=1,2,3,··· 8;k=0,1,2,··· }{θ(k)ν } and assume
that when θ = θ∗0, (85) has a pair of imaginary roots ±iθ∗0.

Next, the following condition is provided:

(G10) L1RL2R + L1IL2I > 0,

where 



L1R = h2 − 2ξ0θ∗0 sin ξ0θ∗0 − h1 cos ξ0θ∗0,
L1I = 2ξ0θ∗0 cos ξ0θ∗0 − e1 sin ξ0θ∗0,
L2R = (ξ0h5 − h4ξ0 − ξ3

0) sin ξ0θ∗0 − h1ξ2
0 cos ξ0θ∗0,

L2I = (ξ3
0 − ξ0h5 − h4ξ0) cos ξ0θ∗0 − h1ξ2

0 sin ξ0θ∗0.

(101)
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Lemma 3. Let λ(θ) = δ1(θ) + iδ2(θ) be the root of Equation (85) at θ = θ∗0 satisfying δ1(θ∗0) =

0, δ2(θ∗0) = ξ0, then Re
(

dλ
dθ

)∣∣∣
θ=θ∗0,ξ=ξ0

> 0.

Proof. Using Equation (85), one gains

(2λ− h1)
dλ

dθ
eλθ +(λ2− h1λ+ h5)eλθ

(
dλ

dθ
θ + λ

)
− h4e−λθ

(
dλ

dθ
θ + λ

)
+ h2

dλ

dθ
= 0, (102)

which implies (
dλ

dθ

)−1
=
L1(λ)

L2(λ)
− θ

λ
, (103)

where {
L1(λ) = (2λ− h1)eλθ + h2,
L2(λ) = (h4e−λθ − (λ2 − h1λ + h5)eλθ)λ.

(104)

Hence,

Re

[(
dλ

dθ

)−1
]

θ=θ∗0,ξ=ξ0

= Re
[L1(λ)

L2(λ)

]

θ=θ∗0,ξ=ξ0

=
L1RL2R + L1IL2I

L2
2R + L2

2I
. (105)

By (G10), one gains

Re

[(
dλ

dθ

)−1
]

θ=θ∗0,ξ=ξ0

> 0, (106)

which completes the proof.

Based on the study above, the following conclusion is easily acquired.

Theorem 7. Suppose that (G8)–(G10) hold, then the equilibrium point E(u1?, u2?) of the model (80)
is locally asymptotically stable if θ ∈ [0, θ∗0) and model (80) generates a Hopf bifurcation around
the positive equilibrium point E(u1?, u2?) when θ = θ∗0.

Remark 3. In model (80), we adjust the growth rates of the densities of the first species and the
second species via changing state feedback and parameter perturbation with delay.

Remark 4. Zhu et al. [11] dealt with the global stability and partial survival extinction of the
model (1). In this paper, we set up a more reasonable delayed predator-prey model and explore
the bifurcation behavior and hybrid controller design of the formulated Lotka–Volterra commensal
symbiosis model. Theoretically speaking, the research methods have enriched the bifurcation theory
of delayed differential equations to some degree. Biologically speaking, the obtained results of this
article play a vital role in controlling the densities of predator species and prey species. Based on this
viewpoint, we think that this paper has some novelties.

7. Matlab Simulations

Example 1. Consider the following Lotka–Volterra commensal symbiosis system accompany-
ing delay:





du1(t)
dt

= 0.5u1(t)(1− 1.6u1(t− θ) + 0.12u2(t))−
0.3× 1.7u1(t)
3.4 + 0.5u1(t)

,

du2(t)
dt

= 0.84u2(t)(1− 3.4u2(t− θ))− 0.3× 1.7u2(t)
3.4 + 0.4u2(t)

.
(107)

It is easy to acquire that system (107) admits a unique positive equilibrium point
E(0.4678, 0.2431). One can easily verify that the conditions (G1)-(G3) of Theorem 4 hold true.
By applying Matlab software (latest version 2023b), one can obtain θ0 ≈ 2.22. To Validate
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the correctness of the acquired assertions of Theorem 4, we choose both different delay
values: θ = 2.17 and θ = 2.45. For θ = 2.17 < θ0 ≈ 2.22, we obtain simulation diagrams
which are presented in Figure 1. Based on Figure 1, we find that u1 → 0.4678, u2 → 0.2431
when t→ +∞. In other words, the equilibrium point E(0.4678, 0.2431) of the model (107)
holds a locally asymptotically stable state. Biologically speaking, the density of the first
species and the density of the second species will tend to 0.4678, 0.2431, respectively. For
θ = 2.45 > θ0 ≈ 2.22, we obtain simulation diagrams which are presented in Figure 2.
Based on Figure 2, we find that u1 will keep the periodic vibrating level around the value
0.4678, u2 will keep the periodic vibrating level around the value 0.2431. That is to say, a
family of periodic solutions (namely, Hopf bifurcations) appear near the equilibrium point
E(0.4678, 0.2431). Biologically speaking, the density of the first species and the density of the
second species will keep periodic vibration around the values 0.4678, 0.2431, respectively.

nying delay:





du1(t)

dt
= β1

[
0.5u1(t) (1 − 1.6u1(t − θ) + 0.12u2(t)) − 0.3 × 1.7u1(t)

3.4 + 0.5u1(t)

]

+ β2 (u1(t − θ) − u1(t)) ,
du2(t)

dt
= γ1

[
0.84u2(t) (1 − 3.4u2(t − θ)) − 0.3 × 1.7u2(t)

3.4 + 0.4u2(t)

]

+ γ2 (u2(t − θ) − u2(t)) .

(6.3)

It is easy to acquire that system (6.3) admits a unique positive equilibrium point E(0.4678, 0.2431). Let

β1 = 0.5, β2 = 0.5, γ1 = 0.84, γ2 = 0.02. One can easily verify that the conditions (G7)-(G9) of Theorem

5.1 hold true. By applying Matlab software, one can get θ∗0 ≈ 2.32. To Validate the correctness of

the acquired assertions of Theorem 5.1, we choose both different delay values: θ = 2.25 and θ = 2.39.

For θ = 2.25 < θ∗0 ≈ 2.32, we get simulation diagrams which are presented in Figure 5. Based on

Figure 5, we find that u1 → 0.4678, u2 → 0.2431 when t → +∞. In other words, the equilibrium point

E(0.4678, 0.2431) of model (6.3) holds locally asymptotically stable state. For θ = 2.39 > θ∗0 ≈ 2.32,

we get simulation diagrams which are presented in Figure 6. Based on Figure 6, we find that u1 will

keep periodic vibrating level around the value 0.4678, u2 will keep periodic vibrating level around the

value 0.2431. That is to say, a family of periodic solutions (namely, Hopf bifurcations) appear near the

equilibrium point E(0.4678, 0.2431).
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Figure 1. Matlab simulation figures of system (107) under the delay θ = 2.17 < θ0 = 2.22. The
equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.

Example 2. Consider the following controlled Lotka–Volterra commensal symbiosis system accom-
panying delay:





du1(t)
dt

= 0.5u1(t)(1− 1.6u1(t− θ) + 0.12u2(t))−
0.3× 1.7u1(t)
3.4 + 0.5u1(t)

,

du2(t)
dt

= α1

[
0.84u2(t)(1− 3.4u2(t− θ))− 0.3× 1.7u2(t)

3.4 + 0.4u2(t)

]

+ α2(u2(t− θ)− u2(t)).

(108)

It is easy to acquire that system (108) admits a unique positive equilibrium point
E(0.4678, 0.2431). Let α1 = 0.84, α2 = 0.05. One can easily verify that the conditions
(G5)–(G7) of Theorem 6 hold true. By applying Matlab software, one can obtain θ∗ ≈ 2.5.
To Validate the correctness of the acquired assertions of Theorem 6, we choose both different
delay values: θ = 2.4 and θ = 2.9. For θ = 2.4 < θ∗ ≈ 2.5, we obtain simulation diagrams
which are presented in Figure 3. Based on Figure 3, we find that u1 → 0.4678, u2 → 0.2431
when t→ +∞. In other words, the equilibrium point E(0.4678, 0.2431) of the model (108)
holds a locally asymptotically stable state. Biologically speaking, the density of the first
species and the density of the second species will tend to be 0.4678, 0.2431, respectively.
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For θ = 2.9 > θ∗ ≈ 2.5, we obtain simulation diagrams which are presented in Figure 4.
Based on Figure 4, we find that u1 will keep a periodic vibrating level around the value
0.4678, u2 will keep a periodic vibrating level around the value 0.2431. That is to say, a
family of periodic solutions (namely, Hopf bifurcations) appear near the equilibrium point
E(0.4678, 0.2431). Biologically speaking, the density of the first species and the density of the
second species will keep periodic vibration around the values 0.4678, 0.2431, respectively.

Figure 1. Matlab simulation figures of system (6.1) under the delay θ = 2.17 < θ0 = 2.22. The equilibrium

point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 2. Matlab simulation figures of system (6.1) under the delay θ = 2.45 > θ0 = 2.22. A cluster of peri-

odic solutions (i.e., Hopf bifurcations) arise around the equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431).
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Figure 2. Matlab simulation figures of system (107) under the delay θ = 2.45 > θ0 = 2.22.
A cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point
E(u1∗, u2∗) = E(0.4678, 0.2431).

Example 3. Consider the following controlled Lotka–Volterra commensal symbiosis system accom-
panying delay:





du1(t)
dt

= β1

[
0.5u1(t)(1− 1.6u1(t− θ) + 0.12u2(t))−

0.3× 1.7u1(t)
3.4 + 0.5u1(t)

]

+ β2(u1(t− θ)− u1(t)),
du2(t)

dt
= γ1

[
0.84u2(t)(1− 3.4u2(t− θ))− 0.3× 1.7u2(t)

3.4 + 0.4u2(t)

]

+ γ2(u2(t− θ)− u2(t)).

(109)

It is easy to acquire that system (109) admits a unique positive equilibrium point
E(0.4678, 0.2431). Let β1 = 0.5, β2 = 0.5, γ1 = 0.84, γ2 = 0.02. One can easily verify that
the conditions (G7)-(G9) of Theorem 7 hold true. By applying Matlab software, one can
obtain θ∗0 ≈ 2.32. To Validate the correctness of the acquired assertions of Theorem 7, we
choose both different delay values: θ = 2.25 and θ = 2.39. For θ = 2.25 < θ∗0 ≈ 2.32,
we obtain simulation diagrams which are presented in Figure 5. Based on Figure 5, we
find that u1 → 0.4678, u2 → 0.2431 when t→ +∞. In other words, the equilibrium point
E(0.4678, 0.2431) of the model (109) holds a locally asymptotically stable state. Biologically
speaking, the density of the first species and the density of the second species will tend to
be 0.4678, 0.2431, respectively. For θ = 2.39 > θ∗0 ≈ 2.32, we obtain simulation diagrams
which are presented in Figure 6. Based on Figure 6, we find that u1 will keep a periodic
vibrating level around the value 0.4678, u2 will keep a periodic vibrating level around
the value 0.2431. That is to say, a family of periodic solutions (namely, Hopf bifurcations)
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appear near the equilibrium point E(0.4678, 0.2431). Biologically speaking, the density of
the first species and the density of the second species will keep periodic vibration around
the values 0.4678, 0.2431, respectively.

Figure 1. Matlab simulation figures of system (6.1) under the delay θ = 2.17 < θ0 = 2.22. The equilibrium

point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 2. Matlab simulation figures of system (6.1) under the delay θ = 2.45 > θ0 = 2.22. A cluster of peri-

odic solutions (i.e., Hopf bifurcations) arise around the equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431).
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Figure 3. Matlab simulation figures of system (6.2) under the delay θ = 2.4 < θ∗ = 2.5. The equilibrium

point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 4. Matlab simulation figures of system (6.2) under the delay θ = 2.9 > θ∗ = 2.5. A cluster of peri-

odic solutions (i.e., Hopf bifurcations) arise around the equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431).
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Figure 3. Matlab simulation figures of system (108) under the delay θ = 2.4 < θ∗ = 2.5. The
equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 3. Matlab simulation figures of system (6.2) under the delay θ = 2.4 < θ∗ = 2.5. The equilibrium

point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 4. Matlab simulation figures of system (6.2) under the delay θ = 2.9 > θ∗ = 2.5. A cluster of peri-

odic solutions (i.e., Hopf bifurcations) arise around the equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431).
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Figure 4. Matlab simulation figures of system (108) under the delay θ = 2.9 > θ∗ = 2.5.
A cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point
E(u1∗, u2∗) = E(0.4678, 0.2431).
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Figure 5. Matlab simulation figures of system (6.2) under the delay θ = 2.25 < θ∗0 = 2.32 The equilibrium

point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 5. Matlab simulation figures of system (108) under the delay θ = 2.25 < θ∗0 = 2.32 The
equilibrium point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 5. Matlab simulation figures of system (6.2) under the delay θ = 2.25 < θ∗0 = 2.32 The equilibrium

point E(u1∗, u2∗) = E(0.4678, 0.2431) holds locally asymptotically stable level.
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Figure 6. Matlab simulation figures of system (6.3) under the delay θ = 2.39 > θ∗0 = 2.32. A

cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point E(u1∗, u2∗) =

E(0.4678, 0.2431).

Remark 6.1. It follows from the Matlab simulation results of Example 6.1-Example 6.3, one can know

that the bifurcation value of system (6.1) is equal to 2.22, the bifurcation value of system (6.2) is equal

to 2.5 and the bifurcation value of system (6.3) is equal to 2.32, which indicates that we can expand the

domain of stability of system (6.1) and postpone the time of emergence of Hopf bifurcation of system (6.1)

via the formulated two hybrid delayed feedback controllers.

7. Conclusions

It is well known that delayed dynamical model is a vital tool to describing the interaction of different

biological populations in natural world. During the past decades, a great deal of works on predator-prey

models have been carried out and rich fruits on this topic have been reported. In this paper, we propose a

new delayed Lotka-Volterra commensal symbiosis model. The existence and uniqueness, non-negativeness

and boundedness of the solution of the delayed Lotka-Volterra commensal symbiosis system are discussed.

The Hopf bifurcation issue is discussed. The sufficient conditions on the stability and bifurcation of this

model are obtained. The critical delay value θ0 is acquired. In order to adjust the domain of stability

and the time of appearance of bifurcation phenomenon of this model, we have successfully designed two

different hybrid delayed feedback controllers. Two critical delay values θ∗, θ⋆ are acquired. In these

two controllers, the role of delay are displayed. The exploration fruits have great theoretical value in

controlling and balancing the densities of two species. In addition, the exploration ideas can be used to

dominate the bifurcation phenomenon, stability and chaos in various fractional-order and integer-order

dynamical systems in numerous fields.
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Figure 6. Matlab simulation figures of system (109) under the delay θ = 2.39 > θ∗0 = 2.32.
A cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point
E(u1∗, u2∗) = E(0.4678, 0.2431).

Remark 5. It follows from the Matlab simulation results of Examples 7.1–7.3, one can know that
the bifurcation value of system (107) is equal to 2.22, the bifurcation value of system (108) is equal
to 2.5 and the bifurcation value of system (109) is equal to 2.32, which indicates that we can expand
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the domain of stability of system (107) and postpone the time of emergence of Hopf bifurcation of
system (107) via the formulated two hybrid delayed feedback controllers.

8. Conclusions

It is well known that the delayed dynamical model is a vital tool for describing the
interaction of different biological populations in the natural world. During the past decades,
a great deal of work on predator-prey models has been carried out and rich fruits on this
topic have been reported. In this paper, we propose a new delayed Lotka–Volterra commen-
sal symbiosis model. The existence and uniqueness, non-negativeness and boundedness of
the solution of the delayed Lotka–Volterra commensal symbiosis system are discussed. The
Hopf bifurcation issue is discussed. Sufficient conditions on the stability and bifurcation
of this model are obtained. The critical delay value θ0 is acquired. In order to adjust the
domain of stability and the time of appearance of the bifurcation phenomenon of this
model, we have successfully designed two different hybrid delayed feedback controllers.
Two critical delay values θ∗, θ? are acquired. In these two controllers, the role of delay is
displayed. The exploration fruits have great theoretical value in controlling and balancing
the densities of two species. By adjusting the delay value, we can delay or advance the
time of cycle motion of the two species. In addition, the exploration ideas can be used to
dominate the bifurcation phenomenon, stability and chaos in various fractional-order and
integer-order dynamical systems in numerous fields. In 2020, Zhu et al. [11] investigated
the partial survival, extinction and global attractivity of the positive equilibrium point of the
model (1). In this work, we introduce a delay into model (1) and obtain model (2). We have
dealt with the boundedness, existence and uniqueness of the solution, Hopf bifurcation
and its control problem of the formulated model (2). The research method of this paper is
different from that of Zhu et al. [11] and the gained results are entirely innovative. Based
on this point, we think that our studies replenish the work of Zhu et al. [11] to a certain
degree. From a biological point of view, we only consider the growth rates of the density of
the first and the second species depending on the same feedback time. In the future, we
will deal with the controlled models (48) and (50) involving two different delays.
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