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Abstract: Cauchy problems are considered for families of, generally speaking, non-Volterra functional
differential equations of the second order. For each family considered, in terms of the parameters
of this family, necessary and sufficient conditions for the unique solvability of the Cauchy problem
for all equations of the family are obtained. Such necessary and sufficient conditions are obtained
for the following four kinds of families: integral restrictions are imposed on positive and negative
functional operators, namely, operator norms are specified; pointwise restrictions are imposed on
positive and negative functional operators in the form of values of operators’ actions on the unit
function; an integral constraint is imposed on a positive functional operator, a pointwise constraint is
imposed on a negative functional operator; a pointwise constraint is imposed on a positive functional
operator, an integral constraint is imposed on a negative functional operator. In all cases, effective
conditions for the solvability of the Cauchy problem for all equations of the family are obtained,
expressed through some inequalities regarding the parameters of the families. The set of parameters
of families of equations for which Cauchy problems are uniquely solvable can be easily calculated
approximately with any accuracy. The resulting solvability conditions improve the solvability
conditions following from the Banach contraction principle. An example of the Cauchy problem for
an equation with a coefficient changing sign is given. Taking into account various restrictions for
the positive and negative parts of functional operators allows us to significantly improve the known
solvability conditions.

Keywords: functional differential equations; boundary value problems; solvability conditions;
Cauchy problem

MSC: 34K06; 34K10

1. Preliminaries

The Cauchy problem for functional differential equations in the non-Volterra case [1]
(§ 2.2.3, p. 50) has been studied quite intensively in recent years [1–10]. We consider the
Cauchy problem for the linear second order functional differential equation

ẍ(t) = (T+x)(t)− (T−x)(t) + f (t), t ∈ [0, 1], (1)

x(0) = c0, ẋ(0) = c1, (2)

where the operators T+, T− : C[0, 1] → L[0, 1] are linear and positive, f ∈ L[0, 1], c0,
c1 ∈ R, C[0, 1] and L[0, 1] are the spaces of all continuous and integrable functions equipped
with the standard norms respectively. An operator from C[0, 1] into L[0, 1] is called pos-
itive if it maps each non-negative function into an almost everywhere non-negative one.
Equalities and inequalities with integrable functions will be considered as equalities and
inequalities that are valid almost everywhere on the corresponding interval. Let AC1[0, 1]
be the Banach space of all functions x : [0, 1] → R such that x and the derivative ẋ are
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absolutely continuous on the interval [0, 1] with the norm ||x||AC1 = |x(0)| + |ẋ(0)| +∫ 1
0 |ẍ(s)| ds. We will say that a function x : [0, 1] → R is a solution to problem (1) and (2)

if x ∈ AC1[0, 1], x satisfies Equation (1) almost everywhere on [0, 1], and x satisfies initial
conditions (2).

In many results on solvability conditions for the Cauchy problem and other boundary
value problems for functional differential equations, some smallness conditions are imposed
on the positive part T+ and the negative part T− of the functional operator T = T+ −
T− (see [1,3,11–15]). Generally, the results are close to those obtained using the Banach
contraction principle.

Using one-sided a priori estimates, A. Lomtatidze and S. Mukhigulashvili [16–18]
managed to weaken the conditions on one of the operators T+, T−, guaranteeing the
unique solvability of some boundary value problems. Similar relaxations of the solvability
conditions were obtained by A. Lomtatidze, R. Hakl, B. Půža [19,20], A. Lomtatidze, R.
Hakl, E. Bravyi [21] for the Cauchy problem, J. Šemr and R. Hakl [10,22,23] for the Cauchy
problem for systems of functional differential equations, and by R. Hakl, A. Lomtatidze,
S. Mukhigulashvili, B. Půža, for some other boundary value problems [16,24,25].

In these early works, integral restrictions were imposed on both functional operators
in the form of integral inequalities∫ 1

0
(T+1 )(s) ds ⩽ P+,

∫ 1

0
(T−1 )(s) ds ⩽ P−

(see works on solvability conditions for the Cauchy problem [21] by A. Lomtatidze,
R. Hakl, E. Bravyi and [10,19,20], where the solvability conditions for the operator T−

were weakened and optimal solvability conditions for the Cauchy problem were obtained).
Later, pointwise restrictions

(T+1 )(t) ⩽ P+, (T−1 )(t) ⩽ P−, t ∈ [0, 1],

for some given constants P+, P− were imposed on both functional operators [26] and the
similar weaker solvability conditions on the operator T− were obtained.

However, apparently, for arbitrary pointwise constraints, necessary and sufficient
solvability conditions for all equations in the family have not been obtained for a long time.
But it is pointwise restrictions that give the narrowest families of equations and, therefore,
the necessary and sufficient conditions for the solvability of the Cauchy problem for all
equations from these families give the strongest results. Only in the work [27] were various
types of pointwise constraints used to form families of equations.

Here we take a more general approach, using both types of constraints together (point
and integral), so we get a new class of solvability conditions. And the obtained necessary
and sufficient conditions for the solvability of the Cauchy problem for all equations from
these families will exceed the known results.

We define new families of functional operators using two types of restrictions, integral
for one from operators T+, T− and pointwise restrictions for another operator. Then we
find the necessary and sufficient conditions for a unique solvability of the Cauchy problem
for all equations with operators from the chosen family. The obtained sufficient solvability
conditions are unimprovable in the following sense. If these conditions are violated, then there
exists an equation in the given family for which the Cauchy problem is not uniquely solvable.

All operators T+ and T− considered here will belong to some families of the operators
defined by pointwise and integral restrictions we impose on the functions T+1 and T−1 ,
where 1 (t) = 1 is the unit function.

Let non-negative functions p+, p− ∈ L[0, 1] and non-negative numbers P−, P+ be
given. Let us introduce the following kinds of restrictions on the functional operators T+

and T−:

(T−1 )(t) = p−(t), t ∈ [0, 1], (T+1 )(t) = p+(t), t ∈ [0, 1], (3)
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∫ 1

0
(T−1 )(s) ds = P−, (T+1 )(t) = p+(t), t ∈ [0, 1], (4)

(T−1 )(t) = p−(t), t ∈ [0, 1],
∫ 1

0
(T+1 )(s) ds = P+, (5)

∫ 1

0
(T−1 )(s) ds = P−,

∫ 1

0
(T+1 )(s) ds = P+. (6)

Note that only conditions (3) [27] (it corresponds to pointwise restrictions) and con-
ditions (6) [20–23,25,28,29] (corresponds to integral restrictions) were studied in earlier
works (primarily in the case of the first order equations). The author is almost unaware
of any works where mixed constraints (4) or (5) were used to obtain conditions for the
solvability of the Cauchy problem (the only exception is the work [30], published during
the preparation of this article).

Definition 1. We will say that Cauchy problem (1) and (2) possesses the property Ai, i = 1, 2, 3, 4,
if problem (1) and (2) is uniquely solvable for all positive linear operators T+, T− : C[0, 1] → L[0, 1]
satisfying conditions (3), (4), (5), (6) respectively.

In the study of boundary value problems for functional differential equations, the
Fredholm property is often useful (see, for example, [1,3,31]). For the convenience of
readers, we will give a definition of the Fredholm property and show that the Cauchy
problem (1) and (2) possesses this property.

Below we present some information from [32]. Let X, Y be Banach spaces, and
F : X → Y a linear operator. The set of all solutions to the equation Fx = 0 is called
the null-space of the operator F. An operator F is called normal if the equation Fx = y
is solvable for those and only those y ∈ Y for which g(y) = 0 for all solutions g of the
homogeneous adjoint equation F∗g = 0, where F∗ : Y∗ → X∗ is the adjoint operator.
For the operator F to be normal, it is necessary and sufficient that the range of values of the
operator F be closed.

A normal operator is called Noetherian if it and its adjoint operator have null-spaces
of finite dimension. The difference between those dimensions is called the operator index.

A Noetherian operator of zero index is called a Fredholm operator.
For a Fredholm operator F, the Fredholm alternative [31,32] is valid. In particular, the

equation Fx = g is uniquely solvable for all g ∈ Y if and only if the homogeneous equation
Fx = 0 has only the trivial solution.

For a bounded operator F to be Fredholm, it is necessary and sufficient that the
operator F be representable in the form F = W + V, where the linear bounded operator
W : X → Y is invertible, and the operator V : X → Y is completely continuous or
finite-dimensional (we will call an operator with a finite-dimensional domain of values
finite-dimensional). Thus, a finite-dimensional or completely continuous perturbation of
the operator does not affect the Fredholm property.

Cauchy problem (1) and (2) can be rewritten in the form of one equation [5] (p. 14).

[L, ℓ]x = { f , c},

where
(Lx)(t) ≡ ẍ(t)−

(
(T+x)(t)− (T−x)(t)

)
, t ∈ [0, 1],

ℓx ≡ col{x(0), ẋ(0)} = col{c0, c1} ≡ c.

the linear operator [L, ℓ] acts from the space AC1[0, 1] into L[0, 1]×R2.
Let us represent the operator F = [L, ℓ] of the Cauchy problem (1) and (2) as

F = [δ, ℓ]− [T+ − T−, 0],
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where δx = ẍ. Obviously, the operator

[δ, ℓ] : AC1[0, 1] → L[0, 1]×R2

is invertible. Indeed, the Cauchy problem for the ordinary differential equation

ẍ = f , x(0) = c0, ẋ(0) = c1

has a unique solution x(t) =
∫ t

0 (t − s) f (s) ds + c0 + t c1, t ∈ [0, 1].
Here we consider differences of linear positive operators T+, T− : C[0, 1] → L[0, 1].

Each such operator is bounded. Indeed, the norm of the linear operator T+− T− : C[0, 1] →
L[0, 1] is not greater than ∫ 1

0

(
(T+1 )(t) + (T−1 )(t)

)
dt,

where 1 (t) = 1, t ∈ [0, 1], is the unit function. Note that the norm of a positive operator
T+ : C[0, 1] → L[0, 1] is equal to

∫ 1
0 (T

+1 )(t) dt.
Further, the space AC1[0, 1] is compactly embedded into the space C[0, 1]. This can

be proved by direct application of the Arzela–Ascoli theorem [31] (p. 27). Consequently,
the bounded operator T+ − T− : C[0, 1] → L[0, 1] is compact as an operator acting from
the space AC1[0, 1] into the space L[0, 1]. Thus, the operator [T+ − T−, 0] : AC1[0, 1] → R2

is compact. So, the operator [L, ℓ] of the Cauchy problem (1) and (2) has the Fredholm
property and the following assertion is valid.

Lemma 1 (The Fredholm alternative). Cauchy problem (1) and (2) is uniquely solvable if and
only if the homogeneous problem{

ẍ(t) = (T+x)(t)− (T−x)(t), t ∈ [0, 1],
x(0) = 0, ẋ(0) = 0,

(7)

has only the trivial solution.

The class of differences of linear positive operators from C[0, 1] to L[0, 1] includes
operators with “deviated argument”:

(Tx)(t) =
m

∑
i=1

pi(t)xhi
(t), t ∈ [0, 1], xhi

(t) =
{

x(hi(t)) if hi(t) ∈ [0, 1],
0 if hi(t) ̸∈ [0, 1],

where pi ∈ L[0, 1], hi : [0, 1] → R are measurable functions, i = 1, . . . , m. These operators
can be taken as illustrative examples for all statements of the work.

Note, every linear positive operator T : C[0, 1] → L[0, 1] has the representation [33]
(pp. 303–304) in the form of the Riemann–Stieltjes integral:

(Tx)(t) =
∫ 1

0
x(s) dsr(t, s), t ∈ [0, 1],

where for each t ∈ [0, 1] the function r(t, ·) does not decrease, for each s ∈ [0, 1] the function
r(·, s) is integrable on [0, 1], r(1, ·)− r(0, ·) ∈ L[0, 1].

Remark 1. It is easy to see that all equalities in the definitions of properties Ai, i = 1, 2, 3, 4, can
be replaced by non-strict inequalities less than or equal to “⩽”.

Indeed, from the Fredholm property of the Cauchy problem (Lemma 1) it follows that it is
sufficient to consider the homogeneous Cauchy problems. Then the unique solvability is equivalent
to the absence of nontrivial solutions. If the problem does not possess some property in Definition 1,
then it does not have this property for all greater or equal parameters. This follows from the fact that
any additives in the form of a positive operator (T0x)(t) = q(t)x(0), t ∈ [0, 1], where q ∈ L[0, 1],
q(t) ⩾ 0 , t ∈ [0, 1], preserve a nontrivial solution to the homogeneous problem.
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Our aim is to obtain necessary and sufficient conditions for the unique solvability of
the Cauchy problem for all equations of the family to be uniquely solvable, that is, we
search criteria for properties Ai, i = 1, 2, 3, 4.

It should be emphasized that we consider generally speaking non-Volterra operators
T+, T−, so the solvability of the Cauchy problem under natural assumptions is not guar-
anteed, unlike the Cauchy problem for ordinary differential equations. Note, the results
can be used in the study of applied, in particular, computational problems such as in, for
example [34,35]. The statements obtained in Theorems 1–4 improve all results known to
the author (see [10,19–23,28–30]).

The work is organized as follows. Section 2 presents the main results. Section 3 contains
a proof of Theorem 1. Section 4 contains proofs of Theorems 2 and 3 and Corollaries 1 and 2.
Theorem 4 and Corollary 3 is proved in Section 5. Section 6 provides an example illustrating
applications of Theorem 1. Section 7 discusses the results obtained.

2. Main Results

The main results are the following Theorems 1–4. In them we use the following notation

∆−(t1, t3, p−) ≡
(

1 +
∫ t3

0
(1 − s)p−(s) ds

)(
1 +

∫ t1

t3

(t1 − s)p−(s) ds
)
−∫ 1

t3

(1 − s)p−(s) ds
∫ t3

0
(t1 − s)p−(s) ds,

∆+(t1, t3, p+) ≡
(

1 −
∫ t3

0
(t1 − s)p+(s) ds

)(
1 −

∫ 1

t3

(1 − s)p+(s) ds
)
−∫ t3

0
(1 − s)p+(s) ds

∫ t1

t3

(t1 − s)p+(s) ds,
(8)

∆+−(t1, t3, p+, p−) ≡
∫ t3

0
(1 − s)p+(s) ds

∫ t3

0
(t1 − s)p−(s) ds −

∫ t3

0
(t1 − s)p+(s) ds

∫ t3

0
(1 − s)p−(s) ds+∫ t1

t3

(t1 − s)p+(s) ds
∫ 1

t3

(1 − s)p−(s) ds −
∫ 1

t3

(1 − s)p+(s) ds
∫ t1

t3

(t1 − s)p−(s) ds,

p(t) ≡ p+(t)− p−(t), t ∈ [0, 1],

k(t) ≡ 1 −
∫ t

0
(t − s)p(s) ds, t ∈ [0, 1].

Theorem 1. Problem (1) and (2) has the property A1 if and only if∫ 1

0
(1 − s)p+(s) ds < 1 (9)

and the inequality

∆(t1, t3, p+, p−) ≡ ∆−(t1, t3, p−) + ∆+(t1, t3, p+) + ∆+−(t1, t3, p+, p−)− 1 > 0 (10)

holds for all t1 ∈ [0, 1], t3 ∈ [0, t1].
If inequality (9) is fulfilled and inequality (10) holds with

t3 =
t1k(1)− k(t1)

k(1)− k(t1)
,

for all t1 ∈ [0, 1] such that t1 > k(t1)/k(1), then problem (1) and (2) has the property A1.

Remark 2. In the conditions of Theorem 1, the equality ∆+−(t1, t3, p+, p−) = 0 holds if functions
p+ and p− are linearly dependent.
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Remark 3. The conditions of Theorem 1 impose much weaker restrictions on the function p− than
the inequality (9) for the function p+. This result apparently cannot be obtained using the Banach
contraction principle or an estimate of the spectral radius of the corresponding operator.

Theorem 2. Problem (1) and (2) has the property A2 if and only if inequality (9) holds and

P− ⩽ min
0<t3⩽t1<1

 1
t1(1 − t1)

+

∫ t3
0 sp+(s) ds +

∫ t1
t3
(t1 − s)p+(s) ds

t1
+

2

√√√√(
1 −

∫ t3
0 (t1 − s)p+(s) ds

)(
1 −

∫ t1
t3

sp+(s) ds 1−t1
t1

−
∫ 1

t1
(1 − s)p+(s) ds

)
t1(1 − t1)

.

Corollary 1 ([23] for p+ = 0, [30]). Let p+ be a non-negative constant. The property A2 holds if
and only if the following inequalities

p+ < 2, P− ⩽ min
t∈(0,1)

(
1

t(1 − t)
+

p+t
2

+

√
(2 − p+t2)(2 − p+(1 − t))

t(1 − t)

)

are fulfilled.

Theorem 3. Problem (1) and (2) has the property A3 if and only if P+ ⩽ 1 and

P+ ⩽ min
0<t3⩽t1<1

∆−(t1, t3, p−)

max{(t1 + (1 − t1)
t3∫
0

sp−(s) ds), (1 − t1)(1 +
t1∫

t3

(t1 − s)p−(s) ds)}
.

Corollary 2. Let p− be a non-negative constant. Then problem (1) and (2) has the property A3 if
and only if

p− ∈ [0, 27/2], P+ ⩽ 1,

or

p− ∈ (27/2, 16), 0 ⩽ P+ ⩽
(16 − p−) (p− +

√
p−(p− − 12))

3(24 − p− +
√

p−(p− − 12))
.

Theorem 4. Problem (1) and (2) has the property A4 if and only if

P+ ⩽ 1, P− ⩽ min
t∈(0,1)

(
1

(1 − t)t
+ 2

√
1 −P+t
(1 − t)t

)
.

Corollary 3. If P+ = 0, then problem (1) and (2) has the property A4 if and only if P− ⩽ 8.
Problem (1) and (2) has the property A4 for all P+ ∈ [0, 1] if and only if

P− ⩽
5
3
+

1
3

(
55

3
√

108 + 12
√

69
27 +

√
69

+
27 +

√
69

3
√

108 + 12
√

69

)
.

3. Proof of Theorem 1

Let us present the proof in the form of a sequence of auxiliary statements.
First of all, Cauchy problem (1) and (2) has the Fredholm property and the Fredholm al-

ternative is valid (Lemma 1). Consideration of the homogeneous problem (7) can be reduced
to the study of the Cauchy problem for simpler equations using the following lemma.
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Lemma 2. Problem (1) and (2) has the property A1 if and only if the Cauchy problem{
ẍ(t) = p1(t)x(t1) + p2(t)x(t2), t ∈ [0, 1],
x(0) = 0, ẋ(0) = 0,

(11)

has only the trivial solution for all points t1, t2 such that

0 ⩽ t1 ⩽ t2 ⩽ 1, (12)

and for all functions p1, p2 ∈ L[0, 1] such that

p1(t) + p2(t) = p+(t)− p−(t), t ∈ [0, 1],

− p− ⩽ pi(t) ⩽ p+(t), t ∈ [0, 1], i = 1, 2.
(13)

Proof of Lemma 2. Suppose problem (1) and (2) does not possess the propertyA1. Then some
homogeneous problem (7) has a non-trivial solution y. Let s1 be a point of the minimum of the
solution y on the interval [0, 1], s2 a point of the maximum of y. We have y(s1) ⩽ y(t) ⩽ y(s2),
t ∈ [0, 1], therefore,

y(s1)p+(t) = y(s1)(T+1 )(t) ⩽ (T+y)(t) ⩽ y(s2)(T+1 )(t) = y(s2)p+(t), t ∈ [0, 1],

y(s1)p−(t) = y(s1)(T−1 )(t) ⩽ (T−y)(t) ⩽ y(s2)(T−1 )(t) = y(s2)p−(t), t ∈ [0, 1].

Thus,

p+(t)y(s1)− p−x(s2) ⩽ (T+y)(t)− (T−y)(t) ⩽

p+(t)y(s2)− p−(t)y(s1),

and there exists a measurable function ξ : [0, 1] → [0, 1] such that

(Ty)(t) = (p+(t) y(t1)− p−(t) y(t2))ξ(t)+

(p+(t) y(t2)− p−(t) y(t1))(1 − ξ(t)), t ∈ [0, 1].

So,

(T+y)(t)− (T−y)(t) = p1(t)y(s1) + p2y(s2), t ∈ [0, 1],

where

p1(t) = p+(t) ξ(t)− p−(t) (1 − ξ(t)),

p2(t) = p+(t) (1 − ξ(t))− p−(t) ξ(t), t ∈ [0, 1].

We can put t1 = min{s1, s2}, t2 = max{s1, s2}.
Conversely, let problem (11) under conditions (12) and (13) have a non-trivial solution.

Then there exists a measurable function ξ : [0, 1] → [0, 1] such that p1 = ξ p+ − (1 −
ξ)p−, p2 = (1 − ξ)p+ − ξ p−. Therefore, problem (7) has the same solution for the linear
positive operators

T+x = ξ p+x(t1) + (1 − ξ)p+x(t2), T−x = (1 − ξ)p−x(t1) + ξ p−x(t2),

for which we have T+1 = p+, T−1 = p−. Thus, problem (1) and (2) does not possess the
property A1.

For the subsequent Lemma 7 we will need a strengthened formulation following from
the proof of Lemma 2.



Mathematics 2023, 11, 4980 8 of 18

Lemma 3. Problem (1) and (2) has the property A1 if and only if for all points t1, t2 and all
for functions p1, p2 satisfying conditions (12) and (13) Cauchy problem (11) has no non-trivial
solutions y such that

y(t1) = min
t∈[0,1]

y(t), y(t2) = max
t∈[0,1]

y(t).

Proof of Lemma 3. The statement follows from the proof of Lemma 2, which shows that if
there is a nontrivial solution to problem (1) and (2), then there are points t1, t2 for which
problem (11) has a nontrivial solution for some p1, p2 satisfying (13). Moreover, point t1
can be chosen as the minimum point of this non-trivial solution, and point t2 can be chosen
as the maximum point.

Now we need to be able to solve problem (11). The following notation will be convenient

G(t, s) ≡ max{t − s, 0}, t, s ∈ [0, 1]; Giz =
∫ 1

0
G(ti, s)z(s) ds, z ∈ L[0, 1];

ki ≡ 1 − Gi p, i = 1, 2; gt1,t2,p(s) ≡ G(t2, s)k1 − G(t1, s)k2, s ∈ [0, 1].

Note that ki = k(ti), i = 1, 2 and G(t, s) is the Cauchy function of the problem{
ẍ(t) = f (t), t ∈ [0, 1],
x(0) = 0, ẋ(0) = 0.

(14)

Lemma 4. Cauchy problem (11) has only the trivial solution for all points t1, t2 and all functions
p1, p2 ∈ L[0, 1] satisfying conditions (12) and (13) if and only if

∆(t1, t2, p1) ≡
∣∣∣∣ 1 − G1 p1 1 − G1 p

−G2 p1 1 − G2 p

∣∣∣∣ =1 − G2 p +
∫ 1

0
p1(s)gt1,t2,p(s) ds ̸= 0 (15)

for all t1, t2 and all functions p1 ∈ L[0, 1] such that

0 ⩽ t1 ⩽ t2 ⩽ 1, −p−(t) ⩽ p1(t) ⩽ p+(t), t ∈ [0, 1]. (16)

Proof of Lemma 4. Applying the Cauchy operator of problem (14) to the functional differ-
ential equation of problem (11), we obtain an equation equivalent to problem (11):

x(t) =
∫ 1

0
G(t, s)p1(s) ds x(t1) +

∫ 1

0
G(t, s)p2(s) ds x(t2), t ∈ [0, 1].

It is easy to see that this equation has no non-trivial solutions if and only if the following
determinant is non-zero:∣∣∣∣ 1 − G1 p1 −G1 p2

−G2 p1 1 − G2 p2

∣∣∣∣ = ∣∣∣∣ 1 − G1 p1 1 − G1 p
−G2 p1 1 − G2 p

∣∣∣∣ = ∆(t1, t2, p1) ̸= 0.

Next, we can clarify the sign in inequality (15).

Lemma 5. Inequality (15) holds for all points t1, t2 and all functions p1 ∈ L[0, 1] satisfying
conditions (16) if and only if

∆(t1, t2, p1) > 0 (17)

for all t1, t2, p1 ∈ L[0, 1] satisfying conditions (16).

Remark 4. In particular, it follows from Lemmas 2, 4 and 5 that if problem (1) and (2) has the
property A1, then

k(t) > 0, t ∈ [0, 1].
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To prove this it is enough to put p1 = 0 in Lemma 5.

Proof of Lemma 5. The functional ∆(t1, t2, p1) is continuous. The values t1 = 0, t2 = 0,
p1 ≡ 0 satisfy condition (16). For these values we have ∆(0, 0, 0) = 1. The statement of
Lemma 5 now follows from Lemma 4 and the path-connectedness of the set of parameters
satisfying conditions (16).

We can refine Lemma 5 by finding an explicit form of the function p1 that minimizes
the value of ∆(t1, t2, p1).

Lemma 6. Inequality (17) holds for all points t1, t2 and all functions p1 ∈ L[0, 1] satisfying
condition (16) if and only if ∫ 1

0
(1 − s)p+(s) ds < 1, (18)

and

1 − G2 p +
∫ t3

0
p+(s)gt1,t2,p(s) ds −

∫ 1

t3

p−(s)gt1,t2,p(s) ds > 0 (19)

for all 0 ⩽ t1 ⩽ t2 ⩽ 1 such that t2k(t1)− t1k(t2) < 0, where

t3 =
t1k2 − t − t2k1

k2 − k1
. (20)

Proof of Lemma 6. Check when inequality (17) holds for all functions p1 satisfying (16).
For this, we find a function p1 that minimizes ∆ in (17) for fixed t1 and t2. This is the
function

p̃1(s) =

{
−p−(s), s ∈ E+

t1,t2,p,
p+(s), s ∈ E−

t1,t2,p,
(21)

where E+
t1,t2,p ≡ {s : gt1,t2,p(s) < 0}, E−

t1,t2,p ≡ {s : gt1,t2,p(s) ⩾ 0}.
Let us construct these sets. For 0 ⩽ t1 ⩽ t2 ⩽ 1, we have

gt1,t2,p(s) =


0, s ∈ [t2, 1],
(t2 − s)k1, s ∈ [t1, t2],
(t2 − s)k1 − (t1 − s)k2, s ∈ [0, t1].

(22)

It follows from Remark 4 that k1 > 0 and k2 > 0 if inequality (17) is fulfilled for all
parameters satisfying (16). Therefore,

E+
t1,t2,p =

{
∅, t2k1 − t1k2 ⩾ 0,
[0, t3), t2k1 − t1k2 < 0,

E−
t1,t2,p =

{
[0, 1], t2k1 − t1k2 ⩾ 0,
[t3, 1], t2k1 − t1k2 < 0,

where t3 is defined by (20), and t3 ∈ (0, t1) if t2k1 − t1k2 < 0.
Consider the case

t2k1 − t1k2 ⩾ 0.

Then the minimizing function p1 is equal to −p− (in particular, if t1 = 0, t2k1 − t1k2 = t2 ⩾ 0).
Then we get

∆(t1, t2,−p−) = 1 − G2 p+ + G2 p− − G2 p−(1 − G1 p+ + G1 p−) + G1 p−(1 − G2 p+ + G2 p−) =

(1 − G2 p+)(1 + G1 p−) + G2 p−G1 p+,
(23)

and
∆(0, t2,−p−) = 1 − G2 p+. (24)

It follows from (24) that inequality (18) is necessary. Since G1 p− ⩾ 0, G2 p− ⩾ 0, G1 p+ ⩾ 0,
it follows from (23) and (24) that inequality (18) is sufficient for the inequality (17) to be
satisfied under condition (16).
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Consider the case t2k1 − t1k2 < 0. Then E+
t1,t2,p = [0, t3], where t3 ∈ (0, t1) is de-

fined by (20). Calculating ∆(t1, t2, p1) in the inequality (17) with p1 = p̃1, we obtain the
inequality (19).

Thus, inequalities (18) and (19) are equivalent to the fulfillment of inequality (17) for
all parameters satisfying (16).

Lemma 7. Condition (17) of Lemma 5 and condition (19) of Lemma 6 need only be checked for
t2 = 1.

Proof of Lemma 7. Suppose ∆(t1, t2, p1) = 0 for some 0 ⩽ t1 ⩽ t2 < 1. Then by Lemma 3,
for some p1, p2 satisfying condition (13) the problem (11) has a solution x that takes its
minimum (nonpositive) value at the point t1 and taking its maximum (non-negative) value
at the point t2. Consider the Cauchy problem

¨̃x(t) =
{

p1(t)x̃(t1) + p2(t)x̃(t2), t ∈ [0, t2],
−p−(t)x̃(0) + p+(t)x̃(t2), t ∈ [t2, 1],

x̃(0) = 0, ˙̃x(0) = 0.
(25)

It is obvious that this problem also has a non-trivial solution x̃ such that

x̃(t) =
{

x(t), t ∈ [0, t2],
x(t2), t ∈ (t2, 1],

max
t∈[0,1]

x̃(t) = x̃(1), min
t∈[0,1]

x̃(t) = x̃(t1).

Moreover, problem (25) is a problem (7) for some linear positive operators T+, T− :
C[0, 1] → L satisfying conditions (3). Thus, from the assumption that in the family of
problems (7) under conditions (3) there is a problem with a non-trivial solution we con-
clude that in this family there is a problem with a non-trivial solution that takes a maximum
value at the point t = 1. Therefore, in both Lemmas 5 and 6 we can put t2 = 1.

Now we get a statement in which to check the property A1 we need to minimize
the function quadratic with respect to p+ and p+− on the triangle 0 ⩽ t3 ⩽ t1 ⩽ 1.
Checking the conditions of this statement for families of functions p+, p− may turn out to
be simpler due to the simple dependence of the minimized function on p+, p−.

Lemma 8. Cauchy problem (1) and (2) possesses the property A1 if and only if for all 0 ⩽ t3 ⩽
t1 ⩽ 1 the inequality

1 − G2 p +
∫ t3

0
p+(s)gt1,1,p(s) ds −

∫ 1

t3

p−(s)gt1,1,p(s) ds > 0

holds.

Proof of Lemma 8. By Lemma 7, put t2 = 1 in Lemma 6. In this lemma, any choice of t3
other than the value specified by (20) corresponds to a function p1 ̸= p̃1 from (21), and
therefore does not reduce the value of ∆ in inequality (17). Therefore, it is equivalent to
checking inequality (19) for all t3.

Using Lemma 7 and substituting gt1,1,p from (22) into the conditions of Lemmas 6 and 8,
we obtain the conditions of Theorem 1.

4. Proof of Theorems 2, 3 and Corollaries 1, 2

We use Theorem 1 and find out when its conditions are satisfied for given non-negative
p+ ∈ L[0, 1] and all non-negative p− ∈ L[0, 1] from the family of functions defined by
condition (4), as well for some non-negative p− ∈ L[0, 1] and all non-negative p+ ∈ L[0, 1]
from the family of functions defined by condition (5).

To do this, we consider expression (10) for the quantity ∆ ≡ ∆(t1, t3, p+, p−), which
for unique solvability of (1) and (2) must be positive for all t1 ∈ [0, 1], t3 ∈ [0, t1].



Mathematics 2023, 11, 4980 11 of 18

For fixed sets E+ = [0, t3], E− = [t3, 1], and for all points t1, t3, 0 ⩽ t3 ⩽ t1 ⩽ 1, the
value of ∆ depends on each of the restrictions p+|E+ , p+|E− , p−|E+ , p−|E− linearly and
continuously. Thus, its greatest lower bound over all sets of admissible p+, p− with given
integrals on these sets is∫

E+
p+(s) ds = P+

+ ,
∫

E+
p−(s) ds = P−

+ ,
∫

E−
p+(s) ds = P+

− ,
∫

E−
p−(s) ds = P−

− ,

∆ accepts if each of the functions p+ and p− is “concentrated” at two points: p+ in t++ ∈ E+

and t+− ∈ E−; p− to t−+ ∈ E+ and t−− ∈ E−.
In particular, from representation (10), we obtain

∆ = C−
+ +

∫
E+

p−(s)r(s) ds,

where r(s) = G(1, s)A−
+ + G(t1, s)B−

+ , s ∈ [0, 1], for some constants A−
+, B−

+ , C−
+ ∈ R that

do not depend on p−|E+ . Therefore,

inf
p− |E+ :

∫
E+ p−(s) ds=P−

+

∆ = C + P−
+ r(t−+),

where the point t−+ ∈ E+ is the minimum point: mins∈E+ r(s) = r(t−+). The function r is
linear on E+, hence t−+ can only be at the ends of the segment [0, t3], that is

t−+ ∈ {0, t3}.

Find t−− ∈ E−. From representation (10) we get

∆ = C−
− +

∫
E−

p−(s)q(s) ds,

where
q(s) = G(1, s)A−

− + G(t1, s)B−
− ,

B−
− = −

∫
E−

G(t1, s)p−(s) ds +
∫

E−
G(t1, s)p+(s) ds,

A−
− = 1 +

∫
E−

G(1, s)p−(s) ds −
∫

E−
G(1, s)p+(s) ds.

The function q is linear on [t3, t1] and on [t1, 1], therefore, t−− ∈ {t3, t1, 1}. If t−− = 1,
then

∫
E− p−(s)q(s) ds = 0. But we can get this value taking P−

− = 0, therefore we may

not consider this point. Further, since (9), we have q̇(s) = −(1 −
∫ 1

t3
p+(τ)(1 − τ) dτ +∫ t1

t3
p+(τ)(t1 − τ) dτ) + (1 − t1)

∫ t3
0 p−(τ) dτ) < 0 for s ∈ [t3, t1]. Therefore, we need

consider only the case t−− = t1. Similar arguments show that t+− = {t3, t1}, t++ = 0. In all
these cases, the infimum of ∆ is not achieved on integrable functions p+, p−.

Therefore, we obtain the following statements.

Lemma 9. Problem (1) and (2) has the property A2 if and only if inequality (9) is fulfilled and the
inequality

∆2 ≡ ∆+(t1, t3, p+) + (1 − t−+)P−
+ − (1 − t1)P−

− (t1 − t−+)P−
++∫ t3

0
(1 − s)p+(s) ds(t1 − t−+)P−

+ −
∫ t3

0
(t1 − s)p+(s) ds(1 − t−+)P−

++∫ t1

t3

(t1 − s)p+(s) ds(1 − t−+)P−
− ⩾ 0

(26)

holds for all t1, t3, 0 ⩽ t3 ⩽ t1 ⩽ 1, P−
+ ⩾ 0, P−

− ⩾ 0, P−
+ + P−

− ⩽ P−, t−+ ∈ {0, t3}.
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Lemma 10. Problem (1) and (2) has the property A3 if and only if P+ ⩽ 1 and the inequality

∆3 ≡
(
1 − t1P+

+

)
(1 − (1 − t+−)P+

− )−P+
−P+

+ (t1 − t+−) + ∆−(t1, t3, p−)− 1+

P+
+

∫ t3

0
(t1 − s)p−(s) ds − t1P+

+

∫ t3

0
(1 − s)p−(s) ds+

(t1 − t+−)P+
−

∫ 1

t3

(1 − s)p−(s) ds − (1 − t+−)P+
−

∫ t1

t3

(t1 − s)p−(s) ds ⩾ 0

(27)

holds for all t1, t3, 0 ⩽ t3 ⩽ t1 ⩽ 1, P+
+ ⩾ 0, P+

− ⩾ 0, P+
+ + P+

− ⩽ P+, t+− ∈ {t3, t1}.

When we minimize ∆2 in (26), it is easy to show that it suffices to consider only the
case t−+ = 0. Note that ∆+, defined by (8), is positive for t3 ∈ [0, t1] if inequality (9) holds.
If P−

+ = 0, then ∆2 ⩾ 0. For P−
+ = P− −P−

− , minimizing ∆2 with respect to the quadratic
variable P−

− gives us the minimum of ∆2 as a quadratic function of P−. From the condition
min ∆2 ⩾ 0 we obtain the assertion of Theorem 2.

Now we prove Corollary 1. Let the conditions of Theorem 2 be fulfilled and p+ be
constant. Inequality (9) means that p+ < 2. The second condition of Theorem 2 gives the
following inequality

P− ⩽
1

t1(1 − t1)
+

p+

2t1

(
(t1 − t3)

2 + t2
3

)
+√

1
t1(1 − t1)

(2 − p+(t2
1 − (t1 − t3)2)(2 − p+((t2

1 − t2
3)

1 − t1

t1
+ (1 − t1)2)) ≡ P̃−

for all t1 ∈ (0, 1), t3 ∈ [0, t1].
It is obvious that for p+ = 0 the statement of the corollary is true. Let p+ > 0. We have

∂P̃−

∂t3
=

p+

t1

2t3 − t1 −
(p+(1 − t1)(3t1t2

3 + t1t3 − 2t3
3 − t2

1) + 2(t2
1 − t3))√

(1 − t1)(2 + p+t2
3 − 2p+t1t3)(p+(1 − t1)(t2

3 − t1) + 2t1)

.

The function ∂P̃−
∂t3

has zeros at the points

t31 = t1

p+t1(1 − t1)− 2t1 −
√

t1(1 − t1)(2 − p+(1 − t1))(2 − p+t2
1)

p+t1(1 − t1)2 − 4t1 + 2
,

t32 = t1

p+t1(1 − t1)− 2t1 +
√

t1(1 − t1)(2 − p+(1 − t1))(2 − p+t2
1)

p+t1(1 − t1)2 − 4t1 + 2
,

t33 = 1/2 +
1 − 2t1

p+t1(1 − t1)
.

The point t31 is the minimum point of P̃− on the interval t3 ∈ [0, t1]. After substituting
t3 = t31 into the function P̃− we obtain Corollary 1 (which was also obtained in [30] in
another way).

Now let us finish the proof of Theorem 3. When we minimize ∆3 in (27) with respect
to P+

+ and P+
− , we reduce the problem to minimization of the quadratic function −(P+

+ )2 +
R1(P+

+ ) + R0 with respect to P+
+ ∈ [0,P+] for some constants R1, R2 ∈ R. Therefore, the

minimum is taken at P+
+ = 0 or P+

+ = P+. So, we have to consider the following cases:
(i) P+

+ = 0, P+
− = P+, t+− = t3; (ii) P+

+ = 0, P+
− = P+, t+− = t1; (iii) P+

− = 0, P+
+ = P+, ∆3

does not depend on t+−. It is easy to show that if the minimum of ∆3 is negative in the case
(i), then the minimum of ∆3 is negative in the case (ii). So, it suffices to consider the cases
(ii) and (iii). Here the dependence on P+ is linear. This gives us Theorem 3.
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Let us prove Corollary 2. Let the conditions of Theorem 3 be fulfilled and p− = m be
constant. Then the minimum of ∆3 is taken for the case (ii). In this case Theorem 3 gives
the following solvability conditions

P+ ⩽ 1, P+ ⩽
m2t3(1 − t1)(t1t3 − 2t1 + t3) + 2m(t2

1 − 2t1t3 + 2t3) + 4
(1 − t1)(m(t1 − t3)2 + 2)

≡ P̃+

for all t1 ∈ (0, 1), t3 ∈ [0, t1].
If m < 2

t1(1−t1)
, then for t3 ∈ [0, t1] the function P̃+ takes its minimum at t3 = 0. Then

P̃+ = 1
1−t1

⩾ 1.

Let now m ⩾ 2
t1(1−t1)

. Then the function P̃+ takes its minimum at t3 = t1 − 2
m(1−t1)

⩾
0. In this case, we have

P̃+(t1) =
t1(mt2

1 − mt1 + 4)m
4

.

Minimizing this expression with respect to t1, we conclude that if m ⩽ 12, then P̃+(t1) ⩾ 1.

If m > 12, then P̃+ takes its minimum at t1 = 1
3 +

√
m(m−12)

3m . We get

min
t1∈(0,1)

P̃+(t1) =
(m +

√
m(m − 12))(24 − m −

√
m(m − 12))

108
=

(16 − p−) (p− +
√

p−(p− − 12))
3(24 − p− +

√
p−(p− − 12))

Moreover, min
t1∈(0,1)

P̃+(t1) ⩽ 1 if and only if m ⩾ 27/2. This implies Corollary 2.

5. Proof of Theorem 4 and Corollary 3

We use Theorem 1 and with the help of Theorems 2 and 3 find conditions of positivity
of ∆ ≡ ∆(t1, t3, p+, p−) from inequality (10) for all non-negative functions p+, p− ∈ L[0, 1]
such that ∫ 1

0
p−(t) dt = P−,

∫ 1

0
p+(t) dt = P+, P+ ⩽ 1. (28)

Let

P−
+ =

∫ t3

0
p−(s) ds, P−

− =
∫ 1

t3

p−(s) ds, P−
+ + P−

− = P−. (29)

It follows from the proof of Theorem 2 that under condition (29) when calculating the
infimum of ∆, we should set

∫ t3
0 p−(s)w(s) ds equal to P−

+ w(0) or P−
+ w(t3), and the value∫ 1

t3
p−(s)w(s) ds equal to P−

− w(t1) for any coefficients w.
Also, it follows from the proof of Theorem 3 that when we calculate the infimum of

∆ with respect to the functions p+ satisfying condition (28) we should set
∫ 1

0 p+(s)w(s) ds
equal to P+w(0) or P+w(t1) for all coefficients w.

Now it follows from Theorem 1, that in the first case (when
∫ 1

0 p+(s)w(s) ds =
P+w(0)) we have

∆ = ∆− −P+(t1 + P−
+ (1 − t1)t−+),

in the latter case (when
∫ 1

0 p+(s)w(s) ds = P+w(t1)) we have

∆ = ∆− −P+(1 − t1),

where t−+ ∈ {0, t3} and

∆− = 1 + P−
+ (1 − t−+)−P−

− (1 − t1)P−
+ (t1 − t−+).

By Theorems 2 and 3, we have to verify the inequality ∆ ⩾ 0 for t−+ = 0 and t−+ = t3.
If t−+ = t3, then ∆ depends on t3 ∈ [0, t1] linearly, therefore, we have to verify ∆ ⩾ 0 for
t−+ = 0 and t−+ = t1.
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If t−+ = t1, then ∆ ⩾ 0. Consider the case t−+ = 0. Then we have

∆ = 1 + P−
+ −P−

−P−
+ t1(1 − t1)−P+ max{t1, 1 − t1}.

If P−
− = 0, then ∆ = 1 + P−

+ −P+ max{t1, 1 − t1} ⩾ 0.
If P−

− = P− −P−
+ , then

∆ = (P−
+ )2(1 − t1)t1 −P−

+ (1 −P−
− t1(1 − t1)) + 1 −P+ max{t1, 1 − t1}.

With respect to the variable P−
+ the function ∆ takes the minimum value at

P−
+ =

P−

2
− 1

2t1(1 − t1)
.

This value belongs to [0,P−] if and only if

P−(1 − t1)t1 ⩾ 1. (30)

Otherwise ∆ takes its minimum value on P−
+ ∈ [0,P−] at P−

+ = 0: min ∆ = 1 −
P+ max{t1, 1 − t1} ⩾ 0, since P+ ⩽ 1.

If inequality (30) holds, then

min ∆ = − (P−(1 − t1)t1 − 1)2

4(1 − t1)t1
+ 1 −P+ max{t1, 1 − t1}.

It is obvious that min ∆ ⩾ 0 means

P− ⩽
1

(1 − t1)t1
+ 2

√
1 −P+ max{t1, 1 − t1}

(1 − t1)t1
.

This implies Theorem 4. The minimum under the conditions of Theorem 4 can be
calculated for P+ = 0 and P+ = 1. This gives Corollary 3.

6. Example

We present an example that illustrates the application of Theorems 1 and 2 and
shows that the solvability conditions obtained using Theorem 1 significantly improve the
conditions obtained using the Banach contraction principle.

Let constants t0 ∈ [0, 1], a ∈ R be given. Define the non-negative functions p+,
p− : [0, 1] → [0,+∞):

p+(t) = max{a(t − t0), 0}, p−(t) = −min{a(t − t0), 0}.

Then p(t) = p+(t)− p−(t) = a(t − t0), t ∈ [0, 1]. Therefore, if Cauchy problem (1) and (2)
possesses the property A1, then the Cauchy problem{

ẍ(t) = a(t − t0)x(h(t)) + f (t), t ∈ [0, 1],
x(0) = c0, ẋ(0) = c1,

(31)

is uniquely solvable for all measurable functions h : [0, 1] → [0, 1]. If problem (1) and (2)
does not possesses the property A1, then there exists a measurable function h : [0, 1] → [0, 1]
such that problem (31) is not uniquely solvable.

It should be noted that the application of the Banach contraction principle to this
problem gives the following result: Cauchy problem (31) is uniquely solvable if

|a|
∫ 1

0
(1 − s)|s − t0| ds < 1,
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that is
|a| < 6

(1 − t0)3 + t2
0(3 − t0)

. (32)

This solvability condition will be significantly improved by the following condition (33).
Condition (32) coincides with condition (33) only in two cases (when the coefficient p(t) is
non-negative, that is, for t0 = 0, a > 0 and for t0 = 1, a <0 (see Figure 1)). In other cases,
condition (33) is much weaker, than (32), moreover, the constants in (33) are unimprovable.

Direct verification of the conditions of Theorem 1 makes it possible to obtain necessary
and sufficient conditions for the constants t0 and a under which inequality (10) is satisfied
for all 0 ⩽ t3 ⩽ t1 ⩽ 1. We find that for such p+, p− by Theorem 1 problem (1) and (2)
enjoys the property A1 if and only if

−A−(t0) < a < A+(t0), (33)

where the functions A−, A+ are defined by equalities (see Figure 1)

A+(t0) =

 6/(1 − t0)
3 for t0 ∈ [0, t∗],

min
0<t3⩽t1<t0

3(q1+
√

q2
1+4 q2)

q2
for t0 ∈ (t∗, 1],

t∗ is a unique real solution of the equation (3t0 − 1)2/4 = (1 − t0)
3 (t∗ ≈ 0.54),

q1 = (t0 − t1)
3 − 3(1 − t1)(t0 − t3)

2 + 3t0 − 1,

q2 = t2
1(3 − t0 − 2t3)(t0 − t3)

2(3t0 − t1)− (3t0 − 1)(t1 − t3)
2(3t0 − t1 − 2t3);

A−(t0) =

 min
t0<t3⩽t1<1

{
3(r1−

√
r2

1−4 r2)
r2

, 6
t2
0(3−t0)

}
for t0 ∈ [0, t∗),

6
t2
0(3−t0)

for t0 ∈ [t∗, 1],

t∗ is a unique solution of the equation t2
0(3 − t0) = 2 − 3t0 (t∗ ≈ 0.47),

r1 = (t2
1(3t0 − t1) + 3(t0 − t3)

2(t1 − 1))/6,

r2 = (t1(t0 + 2t3)(3t0 − t1) + (3t1 − t0 − 2t3)(1 + t1 − 3t0))(t0 − t3)
2(t1 − 1)/36.

Figure 1. The graphs of the functions −A− and A+ (33) are indicated in green, the solvability bounds
(32) obtained using the Banach’s principle are indicated in red.
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If the parameter a satisfies the inequality (33), then Cauchy problem (31) is uniquely
solvable for all measurable deviations of the argument h : [0, 1] → [0, 1]. If the condition
(33) is not satisfied, then there is a measurable function h : [0, 1] → [0, 1] such that Cauchy
problem (31) is not uniquely solvable.

It follows that, for t0 ∈ [1/5, t∗], problem (1) and (2) possesses property A1 if and
only if

a ∈
(
− 6

t2
0(3 − t0)

,
6

(1 − t0)3

)
.

In particular, if t0 = 1/2, then the inequality − 48
5 < a < 48 is necessary and sufficient for

problem (1) and (2) to enjoy property A1. Thus, for b ∈ L[0, 1] the Cauchy problem{
ẍ(t) = b(t)(t − 1/2)x(h(t)) + f (t), t ∈ [0, 1],
x(0) = c0, ẋ(0) = c1,

(34)

is uniquely solvable for all measurable h : [0, 1] → [0, 1] if

0 ⩽ b(t) ⩽ 48, b(t) ̸≡ 48,

or
−48/5 ⩽ b(t) ⩽ 0, b(t) ̸≡ −48/5,

and the constants 48 and 48/5 cannot be increased.
Let us apply Theorem 2 to the Cauchy problem{

ẍ(t) = b(t)(t − 1/2)x(h(t))− d(t)x(g(t)) + f (t), t ∈ [0, 1],
x(0) = c0, ẋ(0) = c1,

(35)

where b(t) = 0 for t ∈ [0, 1/2], b(t) ⩾ 0 for t ∈ (1/2, 1], d(t) ⩾ 0 for all t ∈ [0, 1]. So, here
we have not changed the operator T+ from Cauchy problem (34), but consider an arbitrary
operator T−. Application of Theorem 2 gives the following solvability condition: the
Cauchy problem (35) is uniquely solvable for all measurable functions h, g : [0, 1] → [0, 1]
if sup

t∈[1/2,1]
b(t) ⩽ 48, b(t) ̸≡ 48 for t ∈ [1/2, 1], and

∫ 1

0
d(t) dt ⩽ 4 + 4

√√√√
1 −

sup
t∈[1/2,1]

b(t)

48
.

For sup
t∈[1/2,1]

b(t) = 48, we have the solvability condition
∫ 1

0 d(t) dt ⩽ 4, which is

expected to be significantly less than 48
∫ 1/2

0 (1/2− s) ds = 6 from the solvability conditions
of problem (34). This is explained by the fact that when considering problem (35) we
imposed not pointwise restrictions on the operator T−, but weaker integral restrictions. All
constants in these solvability conditions cannot be increased.

7. Discussion

In this paper we have presented a new class of sufficient conditions for the unique
solvability of the Cauchy problem for linear functional differential equations. These con-
ditions are necessary conditions for the unique solvability of the Cauchy problem for all
equations from a certain family. We use a new kind of family, when we impose different
restrictions on linear operators in functional differential equation.

The obtained solvability conditions improve all known ones. They are unimprovable
in the sense that if they are not satisfied, then in the considered family of equations given
by relations (3)–(6), there exists an equation for which the Cauchy problem is not uniquely
solvable.
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We consider only linear functional differential equations, but generalizations to non-
linear equations with Lipschitz nonlinearities are possible and do not encounter funda-
mental difficulties. Natural generalizations of the results obtained to other boundary value
problems and functional differential equations with continuous and discrete time are also
possible. Moreover, the obtained results can be extended to fractional differential equations
(see, for example, [36], where a method close to ours and to the method of the books [1,5]
was used). The proposed methodology in the paper can be used for real problems (such as
described in [37]).
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