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Abstract: The security of several fully homomorphic encryption (FHE) schemes depends on the
intractability assumption of the approximate common divisor (ACD) problem over integers. Subse-
quent efforts to solve the ACD problem as well as its variants were also developed during the past
decade. In this paper, an improved orthogonal lattice (OL)-based algorithm, AIOL, is proposed to
solve the general approximate common divisor (GACD) problem. The conditions for ensuring the
feasibility of AIOL are also presented. Compared to the Ding–Tao OL algorithm, the well-known LLL
reduction method is used only once in AIOL, and when the error vector r is recovered in AIOL, the
possible difference between the restored and the true value of p is given. Experimental comparisons
between the Ding-Tao algorithm and ours are also provided to validate our improvements.

Keywords: general approximate common divisors; fully homomorphic encryption; lattice attack;
orthogonal lattice

MSC: 68W40

1. Introduction

Background. The approximate common divisor (ACD) problem was first studied by
Howgrave-Graham [1]. Further interest in this problem was inspired by the proposal of
fully homomorphic encryption (FHE) by Van Dijk et al. [2], as well as the cryptographic
constructions proposed subsequently [3–5]. The security of these cryptosystems depends
on the hardness assumption of the ACD problem and its variants.

The ACD problem is usually formulated in two ways: the problem of the general
approximate common divisor (GACD) and the problem of the partial approximate common
divisor (PACD). Both of these formulations polynomially take as inputs many samples
xi = pqi + ri with sufficiently small but non-zero ri and aim to work out the hidden common
divisor p, while the latter is given an additional exact sample x0 = pq0 (i.e., r0 = 0).
Intuitively, the PACD problem is easier than GACD, considering that one can work out
p directly if he/she knows the factorization of the additional sample x0, whereas the
capability of integer factorization has no direct impact on the GACD problem. However,
Van Dijk et al. pointed out that at present, there is no PACD algorithm that does not
work for GACD [2]. And the usefulness of PACD has been demonstrated by a much more
efficient construction of the FHE scheme [5], the security of which has been proven to rely
on PACD rather than on GACD. The original papers [1,2] presented a few possible lattice
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attacks on the GACD problem, including the orthogonal lattices (OL) method, simultaneous
diophantine approximation (SDA) method, and multivariate polynomial equations (MP)
method. During the past decade, several related improvements and cryptanalytic works
were proposed [6–14]. Detailed comparisons of these methods are summarized in Table 1.
Further explanations on these methods are given below.

• SDA methods. The basic idea of SDA methods is to note that if ri is small, then the
fraction qi/q0 is an instance of a simultaneous diophantine approximation to xi/x0
(i = 1, 2, · · · , t). Once q0 is determined, r0 can be computed from r0 ≡ x0 (mod q0).
Hence, p = (x0 − r0)/q0.

• OL methods. The common objective of OL methods is to find some short vectors
that are orthogonal to certain unknown referred vector(s) vref. The difference lies in
the setting on vref, as well as the methods for finding such short objective vectors.
At EuroCrypt 2010, Van Dijk et al. [2] described two OL methods. The first is to set
vref = (1,−r1/R, · · · ,−rt/R) with R = 2ρ, and the second is to set vref = q =
(q1, · · · , qt) and v′ref = r = (r1, · · · , rt). About 4 years later, the second method
was further improved by Ding and Tao [7] in the sense that they used only one
referred vector vref = q. In this sequel, we mainly focus on this improved OL method.
According to the shape of the basis of the working lattice L(α), this kind of OL method
can be further divided into two sub-categories: OL-∧, with a lower triangular matrix
as the working lattice basis [8,9], and OL-∨, with an upper triangular matrix as the
working lattice basis [7,9,10].

• MP methods. The origin of MP methods can be traced back to Howgrave’s work
at CaLC 2001 [1], where the PACD problem was reduced to the problem of finding
small roots of multivariate polynomial equations. This idea was further extended
to suit the need to solve GACD [2,11,15,16]. The core idea of MP methods is to
construct a t-element polynomial Q(X1, X2, · · · , Xt) of degree n in the variables
Xi(i = 1, · · · , t) such that Q(r1, · · · , rt) ≡ (mod pk) for a properly chosen n and
k. Then, if |Q(r1, · · · , rt)| < pk, the equation Q(r1, · · · , rt) = 0 holds over the integers.
Eventually, to obtain r1, · · · , rt, at least t algebraic independent target vectors were
needed in order to be able to perform elimination to reduce Q(r1, · · · , rt) = 0 to a
univariate polynomial equation. After then, one can compute p = gcd(x0, x1 − r1)
easily. If we have very limited PACD samples, the MP method has advantages in
computational cost. However, if sufficiently many PACD samples are available, the
process of searching the required algebraic independent target vectors has a huge
cost. In this case, Galbraith et al. [8] suggested the use of linear polynomials in the MP
method, and this, in turn, is essentially equivalent to the orthogonal lattice method.

Among the above work, the OL algorithm by Ding and Tao [7] is ingenious due to its
use of the well-known LLL algorithm twice to accurately recover the error vector r. After
mapping the given GACD instances into a lattice L, the first calling of the LLL algorithm
is to find suitable t − z(z = 1, 2) short vectors ui(i = 1, 2, · · · , t − z) for establishing
the equations

U · x = U · r for U = [u1| · · · |ut−z],

where ui = (ui1, ui2, · · · , uit). Then, a new lattice L′ is constructed using the base vectors
of the solution space of the above equation, and the second calling of the LLL algorithm
is to recover the error vector r accurately. Knowing r, it is very easy to recover p, even for
a primary school student, say, by using the extended Euclidean algorithm. According to
Ding and Tao [7], it is an amazing thing that the first calling of the LLL algorithm over L
should find multiple short vectors of appropriate length to construct the equations, and
they claimed that a theoretical proof would be a very significant result. Another merit of
the Ding–Tao method is that setting the related parameters is simple, and this makes the
implementation of OL attacks against GACD-based cryptosystems very easy in practice.
For example, the lower bound of the number of samples t depends only on γ, and the
length of the short vector v depends only on t and γ.
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Table 1. Comparisons of methods for GACD.

OL Attack

Comparative
Results

SDA [8,12,17] MP [1,11,16,18]

OL-∧ [9]

OL-∨ [9]

α = 2ρ, [OL-∧] SDA and OL-∧ with α = 2ρ

attack have similar performances.

MP is not better than
OL-∧ with α = 2ρ attack
for practical cryptanalysis;
both OL attacks have advantages
over the MP approach.

α is in general,
[OL-∧, OL-∨].

When (γ− ρ) is very small,
OL-∧ with a rounding technique
is the fastest.

The cases with α in general
and rounding techniques are
more suitable for cases where
ρ is no longer extremely
smaller than η.

Motivation and Contributions. the italics should be retained With further experiments
on the Ding–Tao algorithm, we find that the actual effect of the algorithm is better than
they claimed. In particular, we realize that the conditions ρ < η/2 and t ≥ (4γ)1/3 could
be relaxed and merged, and the second calling of the LLL algorithm could also be saved.
Moreover, we find that even for failure executions of the Ding–Tao algorithm, there is a
high probability that the recovered p differs from the actual value by only 1 or very small
numbers. Therefore, our motivation in this work is to propose an improved OL algorithm
to reduce both space and time costs for solving the GACD problem. Our main contributions
are summarized as follows:

• First, we modify the range of parameters N, t and the length of the short target vector
v in the Ding–Tao algorithm so that we need to build lattice and call the LLL algorithm
only once. The success rate for recovering p reaches 100% under the merged condition

t ≥ max
{

4,
5
3

⌈
η − ρ−

√
(η − ρ)2 − 1.2(γ + ρ)

⌉}
.

Note that this inequation also implies ρ ≤ η + 0.6−
√
(η + 0.6)2 + 1.2γ no matter

whether ρ < η/2 holds.
• Second, based on the above modification, we give a proof on why, in our algorithm

AIOL, the method of only calling the LLL algorithm once gives us the desired short
vectors. This can be viewed as a theoretical answer to Ding and Tao’s amazing question.

• Third, we give the possible differences between the recovered p and the actual hidden
common divisor when the error vector r is recovered. Knowing these differences is, in
turn, helpful for recovering p and thus expanding the scope of OL attacks.

Roadmap. The remaining contents are organized as follows. In Section 2, the formal
definitions of the problems of GACD and PACD are given, and the lattice concepts and
the LLL algorithm are introduced briefly. In Section 3, the orthogonal lattice-based ap-
proaches, including our improvements, for GACD are explored and developed in detail.
Experiments and comparisons, as well as related discussions, are presented in Section 4.
Finally, concluding remarks are given in Section 5.

2. Preliminaries

Throughout this paper, we make the following agreement on notations: capital bold-
face letters denote matrices, e.g., A, while lowercase bold letters denote vectors e.g., a; let
(·, ·) and ∥ · ∥ be the inner product and the l2 Euclidean length, respectively, and AT denote
the transpose of matrix A; and the logarithmic notation log always takes 2 as the base,
while ⌈r⌉ denotes the smallest integer not less than r.
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Definition 1 (ACD Distribution). Given γ, η, ρ ∈ N, let p be an η-bit odd integer. Then, the
ACD distribution, Dγ,ρ(p), is an efficiently sampleable distribution defined as follows:

Dγ,ρ(p) = {pq + r|q←− Z∩ (0, 2γ/p), r ←− Z∩ (−2ρ, 2ρ)}. (1)

Definition 2 (GACD Problem). Given access to an ACD distribution Dγ,ρ(p) as an oracle, the
objective of the general approximate common divisor (GACD) problem is to find p.

Definition 3 (PACD Problem). Given access to an ACD distribution Dγ,ρ(p) as an oracle, with
the restriction that the first output of Dγ,ρ(p) is x0 = pq0 for some q0 ←− Z ∩ (0, 2γ/p), the
objective of the partial approximate common divisor (PACD) problem is to find p.

Remark 1. Apparently, a PACD instance is a GACD by coincidence only with a probability that is
negligible with respect to ρ.

Definition 4 (δ−LLL reduction basis). Given a lattice basis B = (b1, · · · , bn), the correspond-
ing Gram–Schmidt basis B∗ = (b∗1 , · · · , b∗n), B is a reduced basis if and only if the following two
conditions are satisfied:

(1) The size condition: µi,j =
(bi, b∗j )

∥b∗j ∥
2 ≤ 1/2, for all 1 ≤ j < i ≤ n;

(2) The Lovász condition: ∥b∗i ∥2 ≥ (δ− µ2
i,i−1)∥b∗i−1∥2, for all 1 < i ≤ n, where 1/4 < δ < 1.

Definition 5 (Geometric Series Assumption [19]). Given the Gram–Schmidt basis (b∗1 , · · · , b∗n),

∥b∗i ∥
∥b1∥

= θi−1 (2)

for i = 1, 2, · · · , n, where 3/4 ≤ θ < 1 is called GSA constant.

The geometric series assumption (GSA) means the length of the Gram–Schmidt basis
∥b∗i ∥ with LLL reduction decays geometrically with the quotient θ and indicates

∥b∗i ∥ ≤ ∥b1∥(i = 1, 2, · · · , n). (3)

Theorem 1 ([20]). Given an LLL reduction lattice basis B = (b1, · · · , bn), (b∗1 , · · · , b∗n) is the
corresponding Gram–Schmidt basis. The following results hold:

(1) ∥b1∥ ≤ α
n−1

4 |det(B)
1
n |;

(2) ∥b∗j ∥ ≤ α
(i−j)

2 ∥b∗i ∥, for 1 ≤ j < i ≤ n;

(3) ∥bj∥ ≤ α
(i−1)

2 ∥b∗i ∥, for 1 ≤ j < i ≤ n;

where α =
1

δ− 1
4

, δ is the parameter in the Definition 4.

Theorem 2 ([21]). The LLL basis reduction algorithm with the factor δ = 3
4 computes an LLL-

reduced basis in polynomial time in the maximal bit-length of the coefficients of the input basis,
the lattice rank n, and the space dimension m. Specifically, if b1, · · · , bn is an input lattice basis,
M = max{∥b1∥, · · · , ∥bt∥}, then LLL runs in

O
(

n5m · (log 4
3

M)3
)

bit operations under school multiplication.
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3. Orthogonal Lattice (OL)-Based Approach
3.1. The Basic Idea of OL Algorithms

Nguyen and Stern [22] have demonstrated the usefulness of the orthogonal lattice in
cryptanalysis, and this has been used in several ways to attack the ACD problem. The idea
is to find the u = (u1, u2, · · · , ut) ∈ L⊥(q, r) that is orthogonal to both q = (q1, q2, · · · , qt)
and r = (r1, r2, · · · , rt). Since xi = pqi + ri, x = (x1, x2, · · · , xt) is orthogonal to u, the task
is to find t− 1 linearly independent vectors u shorter than any vector in L⊥(x) to recover
q, r and therefore p.

Based on the idea of Nguyen and Stern, the current idea is to find t − z(z = 1, 2)
linearly independent vectors u that are only orthogonal to q. The core steps of the current
OL algorithm include the following two steps.

First, find t− z(z = 1, 2) linearly independent vectors u orthogonal to q, that is,

t

∑
i=1

ui · qi = 0. (4)

Then, establish and solve the indefinite equation U · x = U · r for U = [u1| · · · |ut−z].
Second, find small positive-integer solutions to the above equations. At present, the

common way to find the small solutions is to construct a lattice L′ with a basis matrix

D =


d0
d1
...

dz

 (5)

and then employ the LLL algorithm to reduce the basis matrix D with the hope that the
first output is the vector r. However, at present, only experimental conditions can meet this
expectation, and there is still a lack of theory.

Let the general solution formula of the equations be

d = d0 + t1d1 + · · ·+ tzdz (6)

where d0 is a special solution, t1, · · · , tz are integers, and d1, · · · , dz is a basis of the integer
solution space for the corresponding homogeneous linear equations.

Let d′ ∈ L′. Then,

d′ = k0d0 + k1d1 + · · ·+ kzdz (7)

where k0, k1, · · · , kz are integers. Obviously, when k0 = 1, (7) = (6). Reduce the lattice
D to D′:

D′ =


d′0
d′1
...

d′z

. (8)

To facilitate finding r, consider the explicit vectors d′0, d′1, · · · , d′z. It is easy to deduce
that only one of them is the solution to the equations.

Let d′i be the solution to the equations, and if d′i = d′0, then d′0 is probably equal to r.
With this in mind, Ding and Tao [7] found the conditions for which the algorithm can work
well (theoretically not proved):

ρ <
η

2
and t ≥ (4γ)1/3. (9)

In addition, if d′i ̸= d0, we find an interesting occurrence, which is that the recovery
value p′ is only 1 or a very small number different from the true value p in many cases of
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our experiment. And our experiments lead to the following general conclusions between p
and p′:

Let d′i = (ui1, ui2, · · · , uit) ̸= d′0, dru = gcd(r1 − ui1, r2 − ui2, · · · , rt − uit). Then,

p′ − p = dru, (10)

where p′ is the recovered value of p. Therefore, if d′i ̸= d0, using vector d′i, p′ can be
restored. And since dru is bounded, p can be restored by p′.

In summary, one of the outputs d1, · · · , dz generated by the LLL algorithm can be
used to recover r under the appropriate conditions.

3.2. Our Proposal

In this part, an improved OL algorithm (Algorithm 1) , AIOL, is described in detail.

Algorithm 1 (AIOL): An improved OL algorithm for GACD.

Input: The GACD parameters γ, η, ρ ∈ N, and t ACD samples {x1, · · · , xt}
$←−− Dγ,ρ(p), with t

satisfying

t ≥ max
{

4,
⌈

5
3

(
η − ρ−

√
(η − ρ)2 − 1.2(γ + ρ)

)⌉}
. (11)

Output: The approximate greatest common divisor p.

1. Randomly choose N ∈ (2γ+η−1, 2γ+η) and construct a lattice L with the basis

B =


1 x1

1 x2
. . .

...
1 xt

N

. (12)

2. Reduce the lattice L by calling the LLL algorithm with δ = 3
4 . Let the reduced basis be

V = [v1| · · · |vt+1], where vi = (ui1, · · · , uit, vi(t+1)), (i = 1, 2, · · · , t + 1).

3. Collect short vectors from V so that ∥vi∥ < 2η−ρ−2−log
√

t, (i = 1, 2, · · · , t− z), where z = 1, 2.
Then, solve the following Diophantine equations with t unknowns r1, · · · , rt:

t

∑
j=1

uij · ri =
t

∑
j=1

uij · xi(i = 1, · · · , t− z). (13)

4. Rewrite the integer solutions of (13) as follows:

d = d0 + t1d1 + · · ·+ tzdz, (14)

where d0 is a special solution of the Diophantine equations, t1, · · · , tz are integers, and d1, · · · , dz is
a basis of the integer solution space for the corresponding homogeneous linear equations.

5. Let r = d0.

6. Compute p = gcd(x1 − r1, x2 − r2).

Through the proof in the next section, it can be seen that when the condition

(η − ρ)2 ≥ 1.2(γ + ρ) (15)

or, equivalently,

ρ ≤ η + 0.6−
√
(η + 0.6)2 + 1.2γ (16)

holds, the AIOL algorithm will successfully recover p.

3.3. The Proof of the AIOL Algorithm

Lemma 1. For ∀ v ∈ L, if ∥v∥ < 2η−ρ−2−log
√

t, then Equation (13) holds.
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Proof. Let v = (u1, u2, · · · , ut, ∑t
i=1 uixi + ut+1N), M = 2η−ρ−2−log

√
t; then,

∥v∥ =

√√√√ t

∑
i=1

u2
i +

(
t

∑
i=1

uixi + ut+1N

)2

< M. (17)

Thus,

|ui| < M,

∣∣∣∣∣ t

∑
i=1

uixi + ut+1N

∣∣∣∣∣ < M(1 ≤ i ≤ t). (18)

Since 2γ+η−1 ≤ N ≤ 2γ+η ,

∣∣∣∣∣ t

∑
i=1

uixi

∣∣∣∣∣ ≤ 2γ
√

t · ∥u∥

≤ 2γ
√

t · ∥v∥

≤ 2γ
√

t · 2η−ρ−2−log
√

t

= 2γ+η−ρ−2 < N/2.

(19)

Therefore, there is no modular N operation, and ut+1 = 0. Thus,
v = (u1, u2, · · · , ut, ∑t

i=1 uixi).
We also have ∣∣∣∣∣ t

∑
i=1

uiri

∣∣∣∣∣ ≤ 2ρ
√

t · ∥v∥ ≤ 2η−2. (20)

To prove that
∣∣∑t

i=1 uiqi
∣∣ = 0 holds, suppose

∣∣∑t
i=1 uiqi

∣∣ ̸= 0, so

p

∣∣∣∣∣ t

∑
i=1

uiqi

∣∣∣∣∣ ≥ p ≥ 2η−1 (21)

∣∣∣∣∣ t

∑
i=1

uixi

∣∣∣∣∣ =
∣∣∣∣∣p t

∑
i=1

uiqi +
t

∑
i=1

uiri

∣∣∣∣∣ ≥ p

∣∣∣∣∣ t

∑
i=1

uiqi

∣∣∣∣∣−
∣∣∣∣∣ t

∑
i=1

uiri

∣∣∣∣∣ ≥ 2η−1 − 2η−2 = 2η−2, (22)

but ∣∣∣∣∣ t

∑
i=1

uixi + ut+1N

∣∣∣∣∣ =
∣∣∣∣∣ t

∑
i=1

uixi

∣∣∣∣∣ < M = 2η−ρ−2−log
√

t < 2η−2. (23)

This is a contradiction. The Equations (4) and (13) hold. Then, Lemma 1 holds.

Lemma 1 gives an upper bound on the length of the desired vectors in the lattice L
that makes the the Equation (13) work.

Lemma 2. If the number t of samples satisfies

(4/3)(3t−2)/4 · 2(γ+η)/(t+1) ≤ 2η−ρ−2−log
√

t, (24)

then LLL reduction basis vectors are valid for the construction of Equation (13).

Proof. According to Theorem 1, we consider the (t− 1)-th LLL reduction basis vector vt−1,
whose length can be estimated as below:
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∥vt−1∥ ≤ α(t−1)/2∥v∗t ∥, ((3) o f Theorem 1)

= (4/3)(t−1)/2∥v∗t ∥, (α = 4/3 as δ→ 1)

≤ (4/3)(t−1)/2∥v1∥, (GSA)

≤ (4/3)(t−1)/2 · (4/3)t/4 · |B|1/(t+1), ((1) o f Theorem 1)

≤ (4/3)(3t−2)/4 · 2(γ+η)/(t+1), (|B| ≤ 2(γ+η)).

(25)

Therefore, by Lemma 1, Equation (13) holds when (24) is true.

Lemma 2 estimates the length of the (t− 1)-th vector output by the LLL algorithm
and makes it fall within the range required by Lemma 1. Thus, the vectors found can be
used to construct Equation (13).

Based on the above two lemmas, the following theorem can be obtained.

Theorem 3. When GACD parameters satisfy

(η − ρ)2 ≥ 1.2(γ + ρ)

or

ρ ≤ η + 0.6−
√
(η + 0.6)2 + 1.2γ,

and the number of samples satisfy

t ≥ max
{

4,
⌈

5
3

(
η − ρ−

√
(η − ρ)2 − 1.2(γ + ρ)

)⌉}
,

then the equation
t

∑
j=1

uij · ri =
t

∑
j=1

uij · xi(i = 1, · · · , t− z)

holds.

Proof. From Condition (24), we can obtain that the length of the LLL reduction basis vectors
satisfies Lemma 2. Thus, the LLL reduction basis vectors are valid for the construction of
Equation (13). Combining the above two lemmas, we simplify the inequation and ignore
some small terms to obtain the following bound of sample numbers t. The specific process
is as follows. We take the logarithm base 2 on both sides of (24) to obtain:

3t− 2
4

log
4
3
+

γ + η

t + 1
≤ η − ρ− 2− log

√
t. (26)

Removing some smaller items of (26), log 4
3 ≈ 0.4, we have

0.3t +
γ + η

t + 1
≤ η − ρ, (27)

By sorting out Formula (27), we obtain

0.3t2 − (η − ρ− 0.3)t + (γ + η) ≤ 0, (28)

Then,

0.3t2 − (η − ρ)t + (γ + η) ≤ 0, (29)

By solving Inequality (29), when

∆ = (η − ρ)2 − 1.2(γ + ρ) ≥ 0, (30)
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we can give a lower bound on t

t ≥ 5
3

(
η − ρ−

√
(η − ρ)2 − 1.2(γ + ρ)

)
. (31)

Here, Conditions (15) and (16) are equivalent. By organizing Formula (16) into an
inequality regarding ρ, we can obtain

ρ2 − 2(η + 0.6)ρ− 1.2γ ≥ 0. (32)

Notice that ∆ = 4(η + 0.6)2 + 4.8γ ≥ 0; thus, solving Inequality (32) gives an upper
bound on ρ, ρ ≤ η + 0.6−

√
(η + 0.6)2 + 1.2γ.

In summary, when Conditions (16) and (31) hold, the algorithm can recover p suc-
cessfully. Note that the condition t ≥ 4 comes from the third step of AIOL, where we
need to collect at least 2 short vectors to build the required Diophantine equations. Then,
the condition

t ≥ max
{

4,
⌈

5
3

(
η − ρ−

√
(η − ρ)2 − 1.2(γ + ρ)

)⌉}
.

is true. Hence, Theorem 3 holds.

Theorem 3 gives a lower bound on the number of samples t. If the parameters γ, η,
and ρ meet Conditions (15) or (16), the error term ri can be established, and the secret
number p can be determined.

3.4. The Complexity of the AIOL Algorithm

In the AIOL algorithm, the dominant computation is the LLL reduction of the lattice.
Since only one appropriate set of N and t needs to be used at a time, the most complex
calculations required of the AIOL algorithm are a single LLL lattice reduction. According
to Theorem 2, the complexity of running the LLL lattice reduction algorithm is polynomial
in γ, η, and t for δ = 3

4 . More specifically, let L be a lattice of rank t + 1 with the basis
b1, · · · , bt+1 and ∥bi∥ ≤ 2γ+η+1, (i = 1, · · · , t + 1). Then the number of bit operations
needed by the LLL basis reduction in AIOL for δ = 3

4 is

O
(
(t + 1)6 · (log 4

3
2γ+η+1)3

)
, (33)

or, equivalently,
O
(
(t + 1)6 · (γ + η + 1)3

)
(34)

under school multiplication, where t satisfies Formula (11).

Remark 2. The above analysis suggests that the asymptotical complexity of our AIOL algorithm
is higher than that of the Ding–Tao algorithm, where the bit complexity is O

(
(t + 1)6 · (γ + 1)3)

under school multiplication (in [7], this complexity is given by O
(
(t + 1)6 · (2(γ + 1))3). Here,

we omit the constant 2 considering the effects of the leading symbol O). The reason is that in AIOL,
the lattice parameter N is set to γ + η bits, which is much bigger than in the Ding–Tao algorithm,
where N is set to γ bits.

4. Experiments and Comparisons

In this section, we conduct experiments on our algorithm AIOL, as well as the Ding–
Tao algorithm. The experimental environment is specified as follows: an Intel Core i5-
1235U CPU processor (1.30 GHz) with 16 GB of memory, Windows 10 OS, and Maple 2021
coding language.

The experiments are organized as follows. To test the effects of relaxation on conditions
of the error length ρ and the required number of samples t, we adopted the following
settings on the related parameters:
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• We fixed η = 160, i.e., the bit-length of the hidden common divisor p;
• Let γ = 300, 400, 500, 1000, 1500, and 2000, respectively;
• For each case of setting on the bit-length of GACD samples γ, we ran the Ding–Tao

algorithm and our AIOL algorithm 100 times for different ρ (resp., t) around the
upper (resp., lower) bound of ρ (resp., t) given by the Ding–Tao Condition (9) and our
Condition (11) and Condition (16), respectively.

• Then, for each case, we collected the success rate of recovering the hidden common
divisor p, as well as the maximal ρ (resp., the minimal t) that enables the related
algorithms work. That is, ρmax and tmin represent the upper bound of ρ and the lower
bound of t, respectively, when the corresponding algorithm can be used to recover
p successfully.

The results of the first experiments are summarized in Table 2, where the symbol ‘–’
indicates that in this case, the related algorithm failed to work out. We can see that:

• The overall success rate of our algorithm is 100%, which is observably higher than
that of the Ding–Tao algorithm under the same settings of ρ, γ and a similar scale of t.
Moreover, even for bigger settings of ρ in AIOL, the success rates are still higher than
those obtained by the Ding–Tao algorithm for the smaller settings of ρ (intuitively, the
bigger the value of ρ, the more errors are involved in the given ACD samples, and this,
in turn, means more difficulty in solving the given GACD instances).

• The condition on ρ given by the Ding–Tao Condition (9) is irrelevant when considering
that, for γ = 300 and γ = 1000, the maximal values of ρ to ensure the Ding–Tao
algorithm has a high success rate are 103 and 30, respectively. These are, respectively,
either observably bigger or smaller than the given bound 79 < η/2.

• The condition on ρ given by AIOL is relaxed to the case of ρ > η/2. And this condition
is tight in the sense that for all these cases, the maximal values of ρ to ensure the success
of AIOL are almost same with the bound given by (16).

• The condition on t given by the Ding–Tao Condition (9) is rigorous in the sense that
for even small values of t, our tests of the Ding–Tao algorithm failed, whereas the
condition on t given by (11) in AIOL is loose since for even small t, our algorithm still
works well. At present, we have no idea how to give a tight bound on choosing t for
the AIOL algorithm.

Table 2. Experiments and comparisons: conditions on ρ, t and success rate (η = 160).

γ
Ding–Tao AIOL

ρ (9) ρmax t (9) tmin succ % ρ (16) ρmax t (11) tmin succ %

300 79 103 11 11 82% 137 137 35 17 100%

400 79 91 12 12 87% 134 134 34 19 100%

500 79 80 13 13 90% 131 131 39 23 100%

1000 79 30 16 16 89% 122 122 54 33 100%

1500 79 – 19 – – 115 115 60 40 100%

2000 79 – 21 – – 109 109 72 46 100%

Remark 3. Our experiments also indicate that the running time of AIOL becomes longer with an
increase in the parameters γ, η, ρ. Under the same settings of γ and ρ, decreasing t will reduce the
computational cost significantly. This is the reason why our AIOL algorithm runs much faster than
the Ding–Tao algorithm for the above experimental GACD instances.

5. Conclusions

Interest in the general approximate common divisor (GACD) problem has been excited
by the possibility of building fully homomorphic encryptions over integers, though many
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such kinds of cryptographic constructions have been broken. In fact, from even an abstract
point of view, the GACD problem can be viewed as a learning-with-error (LWE) version of
the greatest common divisor (GCD) problem over the 1-dimensional lattice Z. Although
we know that all lattice problems are easy to solve at low dimensions, more efforts are
still needed to tackle the GACD problem. In this paper, an improved orthogonal lattice
algorithm, AIOL, is proposed for solving the GACD problem. Compared with Ding
and Tao’s OL method, the parameter conditions applicable to AIOL are relaxed, and the
experiments show that the success rate of AIOL is enhanced observably.
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