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Abstract: The main purpose of this paper is to introduce a new family of parametric Kantorovich-type
operators on the half-bounded interval. The convergence properties of these new operators are
investigated. The Voronovskaja-type weak inverse theorem and the rate of uniform convergence are
obtained. Furthermore, we obtain some shape preserving properties of these operators, including
monotonicity, convexity, starshapeness, and semi-additivity preserving properties. Finally, some nu-
merical illustrative examples show that these new operators have a better approximation performance
than the classical ones.
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1. Introduction

In approximation theory, constructing Kantorovich-type operators to reduce errors
is a well known method. The Kantorovich-type operators and their approximation prop-
erties have attracted a lot of attention since the 1990s. Since then, different types of
Kantorovich operators were constructed [1,2]. Taking the classical Szász operator as an
example, it is usually used to approximate continuous functions, while Szász–Kantorovich
operator can be utilized to approximate a broad class of functions, such as integrable
ones. Later, in order to improve the approximation rate, various new operators were
constructed, which preserve the test functions that emerged in this field and a lot of
advancements have been made regarding this subject to acquire better approximation.
In [3], King introduced a sequence of positive linear operators, which approximate each
continuous function on [0, 1] while preserving the function x2, and gave quantitative es-
timates. Different King-type operators were constructed and had been achieved [3–7].
For some recent studies on linear positive operators preserving exponential functions, we
refer the readers to [8–14]. Following the idea of King, and the further developed in
references [3,4,6,7], we introduced a kind of King-type of Szász–Kantorovich operators [5],

S∗∗
n ( f ; x) = n

∞

∑
k=0

sn,k(τn(x))
∫ k+1

n

k
n

f (t)dt,

where

sn,k(τn(x)) = e−nτn(x) (nτn(x))k

k!
, τn(x) =

−1 +
√

n2x2 + 2
3

n
, x ≥

√
3

3
.
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In [5], we presented the direct and converse estimate of S∗∗
n ( f ; x). In [15], we intro-

duced other kinds of Szász operators Sn,µ( f ; x), which preserve constants and e−µx(µ > 0).
The operators Sn,µ( f ; x) are given by the following: for µ > 0,

Sn,µ( f ; x) =
∞

∑
k=0

sn,k(x) f (
k
n
), x ∈ [0, ∞), (1)

where

sn,k(x) = e−nαn(x) (nαn(x))k

k!
; αn(x) =

µx

n(1 − e−
µ
n )

.

Remark 1.
lim

n→∞
αn(x) = x.

The rate of convergence and the Voronovskaja asymptotic relationship of Szász
operators (1) in the sense of uniform convergence on the [0, ∞) interval were obtained [15].
A natural question is: what happens if we combine the idea of function extension with that
of integral averaging? In this paper, we construct new Kantorovich operators corresponding
to Sn,µ( f ; x) as follows: for µ > 0,

S∗
n,µ( f ; x) =

∞

∑
k=0

sn,k(x)n
∫ k+1

n

k
n

f (t)dt, (2)

where the definition of sn,k(x) can be found in (1).
In this study, we will give some fundamental properties, which play a significant role

in the uniform approximation, we obtain the uniform approximation results of S∗
n,µ( f ; x)

on C∗[0, ∞) space. At the same time, operator plays important role in computer-aided
geometric design, which deals with computational aspects of geometric objects in mathe-
matical developments of curves and surfaces. Inspired by the ideas of Zhang Chungou and
others [16–24], some shape-preserving properties of these operators are obtained.

Remark 2. Throughout this paper, C[0, ∞) represents the space of continuous functions on the
[0, ∞) interval; CB[0, ∞) represents the space of continuous bounded functions on the [0, ∞)
interval; C∗[0, ∞) := { f ∈ C[0, ∞) : lim

n→∞
f (x) exists and is limited }, ∥ f ∥∞ := sup

x∈[0,∞)

| f (x)|.

The complete structure of the manuscript constitutes six sections. The remaining
part of this paper is organized as follows. In Section 2, we give some basic properties of
the operators, such as the moments for proving the convergence theorems. In Section 3,
we establish the approximation theorems of the positive theorem and the Voronovskaja-
type weak inverse theorem for continuous functions. In Section 4, we present some new
shape preserving properties of these operators (2). In Section 5, we will demonstrate some
numerical experiments which verify the validity of the theoretical results and the potential
superiority of these new operators. Finally, in Section 6, some conclusions are provided.

2. Definitions and Lemmas

Definition 1 ([1]). For h > 0, r ∈ N, the rth forward differences are given by

−→
∆ 1

h f (x) =
−→
∆ h f (x) = f (x + h)− f (x),

−→
∆ r

h f (x) =
−→
∆ h(

−→
∆ r−1

h f (x)),

or equivalently by
−→
∆ r

h f (x) =
r

∑
k=0

(−1)k
(

r
k

)
f (x + (r − k)h).
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Definition 2 ([1]). For δ > 0, the continuous modulus is defined as:

ω( f ; δ) = sup{| f (x)− f (y)| : |x − y| ≤ δ, x, y ∈ [0, ∞)}.

Definition 3 ([16,17]). Let f be continuous on [0, ∞), the average function of f is defined as
follows: for all x ≥ 0,

A f (x) =
{ 1

x
∫ x

0 f (t)dt, x ∈ (0, ∞);
0 , x = 0.

Definition 4 ([16]). If function f (x) is continuous and x−1 f (x) is increasing (or decreasing) on
(0, ∞), then f (x) said to be starshaped with respect to the origin. Alternatively, it can be defined by
the following: for each α, 0 ≤ α ≤ 1, f (αx) ≤ α f (x) (or f (αx) ≥ α f (x)).

Definition 5 ([16]). ∀x1, x2 ∈ [0, ∞), if f (x1 + x2) ≤ f (x1) + f (x2), then f (x) is called
semi-additivity; if f (x1 + x2) ≥ f (x1) + f (x2), then f (x) is called super-additivity.

For the Szász–Mirakjan operators, the following lemmas are known (see, for instance, [16]).

Lemma 1 ([15] Lemma 2.1). Let x ∈ [0, ∞), µ > 0, we have
(1) Sn,µ(1; x) = 1;
(2) Sn,µ(e−µt; x) = e−µx;

(3) Sn,µ(e−2µt; x) = e−µx(e−
µ
n +1).

Lemma 2 ([15] Lemma 2.2). Let x ∈ [0, ∞), µ > 0, it holds that

(1) Sn,µ(t; x) = e−nαn(x) ∑∞
k=0

(nαn(x))k

k!
k
n = αn(x);

(2) Sn,µ(t2; x) = e−nαn(x) ∑∞
k=0

(nαn(x))k

k!
k2

n2 = α2
n(x) + αn(x)

n ;

(3) Sn,µ(t3; x) = e−nαn(x) ∑∞
k=0

(nαn(x))k

k!
k3

n3 = α3
n(x) + 3α2

n(x)
n + αn(x)

n2 ;

(4) Sn,µ(t4; x) = e−nαn(x) ∑∞
k=0

(nαn(x))k

k!
k4

n4 = α4
n(x) + 6α3

n(x)
n + 7α2

n(x)
n2 + αn(x)

n3 .

Lemma 3 ([15] Lemma 2.3). Let x ∈ [0, ∞), µ > 0, then one has
(1) lim

n→∞
n(αn(x)− x) = µx

2 ;

(2) lim
n→∞

n[α2
n(x) + αn(x)

n − 2xαn(x) + x2] = x;

(3) lim
n→∞

{n2[α4
n(x)− 4xα3

n(x) + 6x2α2
n(x)− 4x3αn(x) + x4] + n[6α3

n(x)− 12xα2
n(x) +

6x2αn(x)] + [7α2
n(x)− 4xαn(x)] + αn(x)

n } = 3x2.

Lemma 4. Let x ∈ [0, ∞), µ > 0, then we have
(1) S∗

n,µ(1; x) = 1;

(2) S∗
n,µ(e−µt; x) = e−µx(1 − e−

µ
n ) n

µ ;

(3) S∗
n,µ(e−2µt; x) = e−µx(e−

µ
n +1)(1 − e−

2µ
n ) n

2µ .

Proof. Using the definition of the operators S∗
n,µ( f ; x) (2), combining Lemma 1 (1)–(3),

by directly calculating, the result is satisfied. We only take (3) as an example to prove, as (1)
and (2) are similar.

S∗
n,µ(e

−2µt; x) =
∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
n
∫ k+1

n

k
n

e−2µtdt

=
∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
e−2µ k

n (1 − e−
2µ
n )

n
2µ

= e−µx(e−
µ
n +1)(1 − e−

2µ
n )

n
2µ

.
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Remark 3. lim
n→∞

e−µx(1 − e−
µ
n ) n

µ = e−µx.

Remark 4. lim
n→∞

e−µx(e−
µ
n +1)(1 − e−

2µ
n ) n

2µ = e−2µx.

We need also a well-known result (see Ref. [25]).

Lemma 5 ([25]). Let {An} be a sequence of linear positive operators from C∗[0, ∞) to C∗[0, ∞),
satisfying lim

n→∞
An(e−kt; x) = e−kx, k = 0, 1, 2, and the above convergence is uniform if and only if

lim
n→∞

An( f ; x) = f (x) uniformly in [0, ∞) for all f ∈ C∗[0, ∞).

Lemma 6. Let x ∈ [0, ∞), µ > 0, then we have
(1) S∗

n,µ(t; x) = αn(x) + 1
2n ;

(2) S∗
n,µ(t2; x) = α2

n(x) + 2αn(x)
n + 1

3n2 ;

(3) S∗
n,µ(t3; x) = α3

n(x) + 9α2
n(x)
2n + 7αn(x)

2n2 + 1
4n3 ;

(4) S∗
n,µ(t4; x) = α4

n(x) + 8α3
n(x)
n + 15α2

n(x)
n2 + 6αn(x)

n3 + 1
5n4 .

Proof. Indeed, utilizing the definition of S∗
n,µ( f ; x) (2), noting Lemma 2 (1)–(4), after some

simple calculations, the assertion is true. We only take (4) as an example to prove, as (1)–(3)
are similar.

S∗
n,µ(t

4; x) =
∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
n
∫ k+1

n

k
n

t4dt

=
∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
· k4

n4 +
2
n

∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
· k3

n3

+
2
n2

∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
· k2

n2 +
1
n3

∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
· k

n

+
1

5n4

∞

∑
k=0

e−nαn(x) (nαn(x))k

k!

= α4
n(x) +

8α3
n(x)
n

+
15α2

n(x)
n2 +

6αn(x)
n3 +

1
5n4 .

Remark 5. lim
n→∞

S∗
n,µ(t; x) = x.

Remark 6. lim
n→∞

S∗
n,µ(t2; x) = x2.

With the help of Lemma 6, the limit values for the central moments can be obtained.

Lemma 7. Let x ∈ [0, ∞), µ > 0, then we have
(1) lim

n→∞
nS∗

n,µ((t − x); x) = µx+1
2 ;

(2) lim
n→∞

nS∗
n,µ((t − x)2; x) = x;

(3) lim
n→∞

n2S∗
n,µ((t − x)4; x) = 3x2.
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Proof. By the definition of S∗
n,µ( f ; x) (2), utilizing the results of Lemmas 3 and 6, (1) and (2)

are satisfied. For the proof of (3), it follows from definition of S∗
n,µ( f ; x), Lemma 3 (3) and

Lemma 6 (1)–(3) that

lim
n→∞

n2S∗
n,µ((t − x)4; x)

= lim
n→∞

n2
∞

∑
k=0

e−nαn(x) (nαn(x))k

k!
n
∫ k+1

n

k
n

(t − x)4dt

= lim
n→∞

n2[S∗
n,µ(t

4; x)− 4xS∗
n,µ(t

3; x) + 6x2S∗
n,µ(t

2; x)− 4x3S∗
n,µ(t; x) + x4S∗

n,µ(1; x)]

= lim
n→∞

n2
{

x4
[

µ4

n4(1 − e−
µ
n )4

− 4µ3

n3(1 − e−
µ
n )3

+
6µ2

n2(1 − e−
µ
n )2

− 4µ

n(1 − e−
µ
n )

+ 1
]

+ x3
[

8µ3

n4(1 − e−
µ
n )3

− 18µ2

n3(1 − e−
µ
n )2

+
12µ

n2(1 − e−
µ
n )

− 2
n

]
+ x2

[
15µ2

n4(1 − e−
µ
n )2

− 14µ

n3(1 − e−
µ
n )

+
2
n2

]
+ x

[
6µ

n4(1 − e−
µ
n )

− 1
n3

]
+

1
5n4

}
= lim

n→∞

{
n2[α4

n(x)− 4xα3
n(x) + 6x2α2

n(x)− 4x3αn(x) + x4]

+ n[6α3
n(x)− 12xα2

n(x) + 6x2αn(x)] + [7α2
n(x)− 4xαn(x)] +

αn(x)
n

}
+ lim

n→∞

{
n[2α3

n(x)− 6xα2
n(x) + 6x2αn(x)− 2x3] + [8α2

n(x)− 10xαn(x) + 2x2]

+
1
n
[5αn(x)− x] +

1
5n2

}
= 3x2,

and here, we use the fact that

lim
n→∞

n[2α3
n(x)− 6xα2

n(x) + 6x2αn(x)− 2x3] = 0,

lim
n→∞

[8α2
n(x)− 10xαn(x) + 2x2] = 0,

lim
n→∞

1
n
[5αn(x)− x] +

1
5n2 = 0.

Lemma 8 ([2]). For any continuous ω(t)(not identical to 0), there exists a concave continuous
modulus ω̃(t) such that for t > 0, one has ω(t) ≤ ω̃(t) ≤ 2ω(t), where the constant 2 can not be
any smaller and ω(t) is defined as follows: if ω(t) is continuous, non-decreasing, semi-additive,
and lim

t→0+
ω(t) = ω(0) = 0, then ω(t) is said to be a modules of continuity.

Lemma 9 ([23]). The function f (x) is convex (or concave) on [0, ∞) equivalent to for any h > 0,
ah( f ; x) is convex (or concave) on [0, ∞), where ah( f ; x) =

∫ x+h
x f (t)dt.

Holhos [26] proposed the concept of modulus ω∗( f ; δ): for any δ > 0 and f ∈
C∗[0,+∞),

ω∗( f ; δ) = sup
x,t≥0,|e−x−e−t |≤δ

| f (x)− f (t)|.

The relationship between the above modulus and the classical modulus is [26]: ω∗( f ; δ)
= ω( f ∗; δ), where

f ∗(x) =

{
f (− ln x), x ̸= 0;
lim
t→∞

f (t), x = 0.



Mathematics 2023, 11, 4997 6 of 15

Lemma 10 ([26]). The As: C∗[0, ∞) → C∗[0, ∞) are positive linear operators, and let

∥As(1)− 1∥∞ = αs,

∥As(e−t)− e−x∥∞ = βs,

∥As(e−2t)− e−2x∥∞ = γs.

If all the αs, βs, γs vanish at infinity, then for any f ∈ C∗[0, ∞), we have the following
conclusion:

∥As( f )− f ∥∞ = ∥ f ∥∞αs + (2 + αs)ω
∗( f ;

√
αs + 2βs + γs).

3. Theorem of Approximation

Theorem 1 (Korovkin-type theorem). Let µ > 0, for any f (x) ∈ C∗[0, ∞), the sequence of
positive operators {S∗

n,µ( f ; x)} converges to f (x) as n → ∞ uniformly in [0,+∞).

Proof. Let fk = e−kx, k = 0, 1, 2, from Lemma 4, we write

sup
x∈[0,∞)

∣∣∣S∗
n,µ(1; x)− 1

∣∣∣ = 0, (3)

With the help of Mathematica software (Version 12.0), we can write the expansion as

∥S∗
n,µ(e

−t; x)− e−x∥∞

=

∥∥∥∥n(1 − e−
1
n )e−nαn(x)[1−e−

1
n ] − e−x

∥∥∥∥
∞

≤
∥∥∥∥n(1 − e−

1
n )e−nαn(x)[1−e−

1
n ] − n(1 − e−

1
n )e−x

∥∥∥∥
∞
+

∥∥∥n(1 − e−
1
n )e−x − e−x

∥∥∥
∞

=

∥∥∥∥n(1 − e−
1
n )e−nαn(x)[ 1

n −
1

2n2 +
1

6n3 +O(n−3)] − n(1 − e−
1
n )e−x

∥∥∥∥
∞
+

∥∥∥n(1 − e−
1
n )− 1

∥∥∥
∞

≤

∥∥∥∥∥∥∥n(1 − e−
1
n )e

−x

[
µ

n(1−e−
µ
n )

+
−µ

2n2(1−e−
µ
n )

+
µ

6n3(1−e−
µ
n )

+O(n−3)

]
− n(1 − e−

1
n )e−x

∥∥∥∥∥∥∥
∞

+
1

2n
(4)

=

∥∥∥∥n(1 − e−
1
n )e−xe−

(µ−1)x
2n +O(n−2) − n(1 − e−

1
n )e−x

∥∥∥∥
∞
+

1
2n

=

∥∥∥∥n(1 − e−
1
n )e−x −(µ − 1)x

2n
+ n(1 − e−

1
n )e−x (µ − 1)2x2

8n2 + O(n−2)

∥∥∥∥
∞
+

1
2n

≤ 1
2n

+ n(1 − e−
1
n )

|µ − 1|
2n

· 1
e
+ n(1 − e−

1
n )

(µ − 1)2

n2 · 1
2e2 + O(n−2)

:= βn,

Finally, by similar manner, we also obtain that
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∥S∗
n,µ(e

−2t; x)− e−2x∥∞

=

∥∥∥∥n
2
(1 − e−

2
n )e−nαn(x)[1−e−

2
n ] − e−2x

∥∥∥∥
∞

≤
∥∥∥∥n

2
(1 − e−

2
n )e−nαn(x)[1−e−

2
n ] − n

2
(1 − e−

2
n )e−2x

∥∥∥∥
∞
+

∥∥∥n
2
(1 − e−

2
n )e−2x − e−2x

∥∥∥
∞

=

∥∥∥∥n
2
(1 − e−

2
n )e−nαn(x)[ 2

n −
4

2n2 +
8

6n3 +O(n−3)] − n
2
(1 − e−

2
n )e−2x

∥∥∥∥
∞
+

∥∥∥n
2
(1 − e−

2
n )− 1

∥∥∥
∞

(5)

≤

∥∥∥∥∥∥∥
n
2
(1 − e−

2
n )e

−2x

[
µ

n(1−e−
µ
n )

+
−µ

n2(1−e−
µ
n )

+
4µ

6n3(1−e−
µ
n )

+O(n−3)

]
− n

2
(1 − e−

2
n )e−2x

∥∥∥∥∥∥∥
∞

+
1
n

=

∥∥∥∥n
2
(1 − e−

2
n )e−2xe−

(µ−2)x
2n +O(n−2) − n

2
(1 − e−

2
n )e−2x

∥∥∥∥
∞
+

1
n

=

∥∥∥∥n
2
(1 − e−

2
n )e−2x −(µ − 2)x

n
+

n
2
(1 − e−

2
n )e−2x (µ − 2)2x2

2n2 + O(n−2)

∥∥∥∥
∞
+

1
n

≤ 1
n
+

n
2
(1 − e−

2
n )

|µ − 2|
n

· 1
2e

+
n
2
(1 − e−

2
n )

(µ − 2)2

n2 · 1
2e2 + O(n−2) := γn,

Letting n → ∞, βn and γn tend to zero uniformly on [0, ∞). Combining Lemma 5,
the proof of Theorem 1 can be completed.

According to Lemma 10 and the results of (3)–(5), we can obtain the following posi-
tive theorem.

Theorem 2 (Positive theorem). Let f ∈ C∗[0, ∞), then

∥S∗
n,µ( f ; x)− f (x)∥∞ ≤ 2ω∗( f ;

√
2βn + γn),

where
∥S∗

n,µ(e
−t; x)− e−x∥∞ := βn;

∥S∗
n,µ(e

−2t; x)− e−2x∥∞ := γn.

Theorem 3 (Voronovskaja-type weak inverse theorem). Let f ′′ ∈ CB[0, ∞), then

lim
n→∞

n[S∗
n,µ( f ; x)− f (x)] =

µx + 1
2

f ′(x) +
x
2

f ′′(x).

Proof. According to Taylor expansion, it can be written as

f (t) = f (x) + f ′(x)(t − x) +
1
2

f ′′(x)(t − x)2 + h(t, x)(t − x)2,

where h(t, x) = 1
2 [ f ′′(ξ)− f ′′(x)], ξ is between x and t. Applying the operator S∗

n,µ (2) on
both sides of the above expansion, we obtain

S∗
n,µ( f ; x)− f (x) = f ′(x)S∗

n,µ((t − x); x) +
f ′′(x)

2
S∗

n,µ((t − x)2; x) + S∗
n,µ(h(t, x)(t − x)2; x).

Let δ > 0, form the definition of ω( f ; δ), we know that

| f (t)− f (x)| ≤ (1 +
|t − x|

δ
)ω( f ; δ),
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and also

|h(t, x)| ≤ 1
2
(1 +

|t − x|
δ

)ω( f ′′; δ).

By the linearity of the operator S∗
n,µ and the above inequality, we can write

S∗
n,µ(|h(t, x)|(t − x)2; x) ≤ ω( f ′′; δ)S∗

n,µ((t − x)2; x) +
1
δ

ω( f ′′; δ)S∗
n,µ(|t − x|3; x).

Taking δ = 1√
n , we apply Cauchy–Schwartz inequality, and then in view of Lemma 7,

lim
n→∞

nS∗
n,µ(h(t, x)(t − x)2; x)

= lim
n→∞

ω( f ′′; δ)nS∗
n,µ((t − x)2; x) + lim

n→∞
ω( f ′′; δ)n

3
2 S∗

n,µ(|t − x|3; x)

≤ lim
n→∞

ω( f ′′; δ) lim
n→∞

√
nS∗

n,µ((t − x)2; x) · lim
n→∞

√
n2S∗

n,µ((t − x)4; x)

= 0.

Combining with Lemma 7, we conclude that

lim
n→∞

n[S∗
n,µ( f ; x)− f (x)] =

µx + 1
2

f ′(x) +
x
2

f ′′(x).

4. Shape Preservation

For f ∈ C∗[0, ∞), the operators can also be expressed in the form

S∗
n,µ( f ; x) =

n(1 − e−
µ
n )

µ

d
dx

Sn,µ(F; x) = n
∞

∑
k=0

−→
∆ 1

n
F(

k
n
)e−nαn(x) (nαn(x))k

k!
, (6)

where
F(x) =

∫ x

0
f (t)dt.

Theorem 4 (Monotonicity). Let f (x) be monotonically increasing (or decreasing) on C∗[0, ∞),
for ∀n ∈ N, so are all the operators S∗

n,µ( f ; x).

Proof. If f (x) is monotonically increasing on C∗[0, ∞), then F′(x) is also monotonically
increasing, i.e., F(x) is convex. If Sn,µ( f ; x) have convexity preserving property [24], then
Sn,µ(F; x) are convex,

d
dx

S∗
n,µ( f ; x) =

n(1 − e−
µ
n )

µ

d2

dx2 Sn,µ(F; x) ≥ 0,

which implies S∗
n,µ( f ; x) are monotonically increasing.

Similarly, we see that if f (x) is monotonically decreasing on C∗[0, ∞), so are the
operators S∗

n,µ( f ; x).

Theorem 5 (Convexity). Let f (x) be convex (or concave) on C∗[0, ∞), so are all the operators
S∗

n,µ( f ; x).
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Proof. We shall use the representation

d
dx

S∗
n,µ( f ; x) =

µn

1 − e−
µ
n

∞

∑
k=0

[∫ k+2
n

k+1
n

f (t)dt −
∫ k+1

n

k
n

f (t)dt

]
e−nαn(x) (nαn(x))k

k!
(7)

=
µn

1 − e−
µ
n

∞

∑
k=0

∆⃗ 1
n

a 1
n
( f ;

k
n
)e−nαn(x) (nαn(x))k

k!
,

d2

dx2 S∗
n,µ( f ; x) =

µ2n

(1 − e−
µ
n )2

∞

∑
k=0

[∫ k+3
n

k+2
n

f (t)dt − 2
∫ k+2

n

k+1
n

f (t)dt +
∫ k+1

n

k
n

f (t)dt

]
e−nαn(x) (nαn(x))k

k!

=
µ2n

(1 − e−
µ
n )2

∞

∑
k=0

∆⃗2
1
n

a 1
n
( f ;

k
n
)e−nαn(x) (nαn(x))k

k!
.

If f (x) is convex, from Lemma 9 it is known that ah( f ; x) is also convex, and we have
∆⃗2

1
n

a 1
n
( f ; k

n ) ≥ 0, i.e., d2

dx2 S∗
n,µ( f ; x) ≥ 0. So, S∗

n,µ( f ; x) are also convex.

Similarly, we see that if f (x) is concave on C∗[0, ∞), so are the operators S∗
n,µ( f ; x).

Theorem 6 (Starshapeness). Let f (x) be non-negative on C∗[0, ∞), f (0) = 0, x−1 f (x) be
decreasing on (0, ∞); then, for ∀n ∈ N, so are all the operators x−1S∗

n,µ( f ; x). But in general,
if x−1 f (x) is increasing on (0, ∞), x−1S∗

n,µ( f ; x) are no longer increasing.

Proof. For the first part of the Theorem, if f (x) is non-negative on C∗[0, ∞), f (0) = 0,
x−1 f (x) is decreasing on (0, ∞), and combining with Definition 4, we have the following:
When k

n < t < k+1
n , k = 1, 2, · · · , choosing α = k

nt , 0 < α < 1, we obtain f (t) ≤ α−1 f (αt) =
nt
k f ( k

n );
When k−1

n < t < k
n , k = 1, 2, · · · , choosing α = nt

k , 0 < α < 1, we obtain f (t) = f ( nt
k

k
n ) ≥

nt
k f ( k

n ), by (7), we know

d
dx

S∗
n,µ( f ; x)

x
= x−2[x

d
dx

S∗
n,µ( f ; x)− S∗

n,µ( f ; x)]

= x−2n
∞

∑
k=1

[
(k − 1)

∫ k+1
n

k
n

f (t)dt − k
∫ k

n

k−1
n

f (t)dt

]
Sn,k(αn(x))

− x−2n
∫ 1

n

0
f (t)dte−nαn(x)

≤ −x−2
∞

∑
k=1

f ( k
n )

2k
Sn,k(αn(x))− x−2n

∫ 1
n

0
f (t)dte−nαn(x)

≤ 0,

therefore, x−1S∗
n,µ( f ; x) is decreasing on (0, ∞).

Second, setting f (t) = t2, from Lemma 6, it is known that

S∗
n,µ(t

2; x) =
µ2

n2(1 − e−
µ
n )2

x2 + 2
µ

n2(1 − e−
µ
n )

x +
1

3n2 ,

d
dx

S∗
n,µ(t2; x)

x
=

3µ2x2 − (1 − e−
µ
n )2

3n2(1 − e−
µ
n )2x2

.

It follows easily that, for x > 1−e−
µ
n√

3µ
, S∗

n,µ(t2; x) are increasing. For 0 < x < 1−e−
µ
n√

3µ
,

S∗
n,µ(t2; x) are decreasing. So, if x−1 f (x) are increasing on (0, ∞), S∗

n,µ( f ; x) are no longer
increasing.
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Theorem 7 (Semi-additivity). Let f (x) be non-negative, f (0) = 0, semi-additive and increasing
on C∗[0, ∞), then for ∀n ∈ N, so are all the operators S∗

n,µ( f ; x). But in general, if f (x) is
super-additive and decreasing on C∗[0, ∞), S∗

n,µ( f ; x) are no longer super-additive.

Proof. First for all x, y ∈ [0, ∞), n ∈ N

S∗
n,µ( f ; x + y) =

∞

∑
k=0

n
∫ k+1

n

k
n

f (t)dte−nαn(x+y) (nαn(x + y))k

k!

=
∞

∑
k=0

n
∫ k+1

n

k
n

f (t)dte−nαn(x+y)
( µ

1−e−
µ
n
)k

k!

k

∑
j=0

(
k
j

)
xjyk−j

=
∞

∑
j=0

∞

∑
k=j

n
∫ k+1

n

k
n

f (t)dte−nαn(x+y)(
µ

1 − e−
µ
n
)k xjyk−j

j!(k − j)!
,

let K = k − j, then k = K + j, it can be written that

S∗
n,µ( f ; x + y) =

∞

∑
j=0

∞

∑
K=0

n
∫ K+1

n

K
n

f (t +
j
n
)dte

− µx

1−e−
µ
n · e

− µy

1−e−
µ
n ·

(
µx

1−e−
µ
n

)j

j!
·

(
µy

1−e−
µ
n

)K

K!
. (8)

If f (x) is semi-additive on C∗[0, ∞), then,

S∗
n,µ( f ; x + y) ≤

∞

∑
j=0

∞

∑
K=0

n
∫ K+1

n

K
n

f (t)dt · e
− µx

1−e−
µ
n · e

− µy

1−e−
µ
n ·

(
µx

1−e−
µ
n

)j

j!
·

(
µy

1−e−
µ
n

)K

K!

+
∞

∑
j=0

∞

∑
K=0

n
∫ K+1

n

K
n

f (
j
n
)dt · e

− µx

1−e−
µ
n · e

− µy

1−e−
µ
n ·

(
µx

1−e−
µ
n

)j

j!
·

(
µy

1−e−
µ
n

)K

K!

= Sn,µ( f ; x) + S∗
n,µ( f ; y).

In addition, if f (x) is increasing on C∗[0, ∞), for h > 0, ah = ah( f ;x)
h =

∫ x+h
x f (t)dt

h ≥
f (x), then for any h > 0,

S∗
n,µ( f ; x) = Sn,µ(a 1

n
; x) ≥ Sn,µ( f ; x). (9)

and therefore
S∗

n,µ( f ; x + y) ≤ S∗
n,µ( f ; x) + S∗

n,µ( f ; y).

On the other hand, setting g(t) = t2, then g(x + y) ≥ g(x) + g(y). In fact, by Lemma 6

and direct calculation gives that for the case xy ≤ (1−e−
µ
n )2

6µ2 , one has

S∗
n,µ(g; x + y)≤S∗

n,µ(g; x) + S∗
n,µ(g; y),

that means S∗
n,µ(g; x) are no longer super-additive for x ∈ [0, ∞).

Theorem 8 (Average convexity). Let f (x) be non-negative on C∗[0, ∞), f (0) = 0, if A f (x) is
convex (or concave), so are all the operators AS∗

n,µ(x).

Proof. Now, let us take the second order derivative of Sn,µ(F; x). It follows from Formula (6)
that

d2

dx2 Sn,µ(F; x) = (
µ

1 − e−
µ
n
)2

∞

∑
k=0

−→
∆ 2

1
n

F(
k
n
)e−nαn(x) (nαn(x))k

k!
.
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Thus

d
dx

AS∗
n,µ(x) =

d
dx

∫ x
0 S∗

n,µ( f ; t)dt
x

=
n(1 − e−

µ
n )

µ
·

x d
dx Sn(F; x)− Sn(F; x)

x2 .

It follows that

d2

dx2 AS∗
n,µ(x)

=
n(1 − e−

µ
n )

µ
x−3[x2 d2

dx2 Sn,µ(F; x)− 2x
d

dx
Sn,µ(F; x) + 2Sn,µ(F; x)]

=
n(1 − e−

µ
n )

µ
x−3

[
x2
(

µ

1 − e−
µ
n

)2 ∞

∑
k=0

−→
∆ 2

1
n

F(
k
n
)e−nαn(x) (nαn(x))k

k!

− 2x
µ

1 − e−
µ
n

∞

∑
k=0

−→
∆ 1

n
F(

k
n
)e−nαn(x) (nαn(x))k

k!
+ 2

∞

∑
k=0

F(
k
n
)e−nαn(x) (nαn(x))k

k!

]

=
n(1 − e−

µ
n )

µ
x−3

∞

∑
k=2

[−→
∆ 2

1
n

F(
k − 2

n
)k(k − 1)− 2

−→
∆ 1

n
F(

k − 1
n

)k + 2F(
k
n
)

]
e−nαn(x) (nαn(x))k

k!

=
n(1 − e−

µ
n )

µ
x−3

∞

∑
k=3

k(k − 1)(k − 2)
n

−→
∆ 2

1
n

A f (
k − 2

n
)e−nαn(x) (nαn(x))k

k!
.

If A f are convex, for k ≥ 3,
−→
∆ 2

1
n

A f (
k−2

n ) ≥ 0, thus d2

dx2 AS∗
n,µ(x) ≥ 0, i.e., AS∗

n,µ (x)

are convex. Similarly, we see that if A f (x) are concave on [0, ∞), so are the operators
AS∗

n,µ(x).

Theorem 9 (Average starshapeness). Let f (x) be non-negative on C∗(0, ∞), f (0) = 0, x−1A f (x)
be decreasing on (0, ∞), then for ∀n ∈ N, so are all the operators x−1 AS∗

n,µ(x). But if x−1 A f (x) is
increasing on (0, ∞), x−1 AS∗

n,µ(x) are no longer increasing.

Proof. First, for x−1 A f (x) is decreasing on (0, ∞),

(
k
n
)−1 A f (

k
n
) ≤ (

k − 1
n

)−1 A f (
k − 1

n
), k ≥ 2,

noting Relation (6), we write

d
dx

x−1 AS∗
n,µ
(x)

= x−3 n(1 − e−
µ
n )

µ
[x

d
dx

Sn,µ(F; x)− 2Sn,µ(F; x)]

= x−3 n(1 − e−
µ
n )

µ

[
x

µ

1 − e−
µ
n

∞

∑
k=0

−→
∆ 1

n
F(

k
n
)e−nαn(x) (nαn(x))k

k!
− 2

∞

∑
k=0

F(
k
n
)e−nαn(x) (nαn(x))k

k!

]

= x−3 n(1 − e−
µ
n )

µ

∞

∑
k=1

[−→
∆ 1

n
F(

k − 1
n

)k − 2F(
k
n
)

]
e−nαn(x) (nαn(x))k

k!

= x−3 n(1 − e−
µ
n )

µ

∞

∑
k=2

[
k2(k − 2)

n2 (
k
n
)−1 A f (

k
n
)− k(k − 1)2

n2 (
k − 1

n
)−1 A f (

k − 1
n

)

]
e−nαn(x) (nαn(x))k

k!

− x−3 n(1 − e−
µ
n )

µ
F(

1
n
)e−nαn(x)nαn(x) ≤ 0.

So, x−1 AS∗
n,µ(x) is decreasing.
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Second, choosing f (t) = t2, from Lemma 6, it is known that

S∗
n,µ(t

2; x) =
µ2

n2(1 − e−
µ
n )2

x2 + 2
µ

n2(1 − e−
µ
n )

x +
1

3n2 ,

AS∗
n,µ(x)

x
=

µ2

3n2(1 − e−
µ
n )2

x +
µ

n2(1 − e−
µ
n )

+
1

3n2
1
x

,

d
dx

AS∗
n,µ(x)

x
=

µ2

3n2(1 − e−
µ
n )2

− 1
3n2

1
x2 .

It is known that, for x ≥ 1−e−
µ
n

µ , x−1 AS∗
n,µ(x) are increasing; for 0 < x < 1−e−

µ
n

µ ,

x−1 AS∗
n,µ(x) are decreasing. x−1 AS∗

n,µ(x) are no longer increasing.

Theorem 10. Let f (x) be non-negative, f (0) = 0 and increasing on C∗[0, ∞), ∀n ∈ N, for h > 0,
one has ω(S∗

n,µ; h) ≤ S∗
n,µ(ω; h).

Proof. Since

e
− µh

1−e−
µ
n

∞

∑
j=0

(
µh

1−e−
µ
n

)j

j!
= 1; e

− µx

1−e−
µ
n

∞

∑
k=0

(
µx

1−e−
µ
n

)k

k!
= 1,

for h > 0, from Formulas (8) and (9), we write∣∣∣S∗
n,µ( f ; x + h)− S∗

n,µ( f ; x)
∣∣∣

≤
∞

∑
j=0

∞

∑
k=0

n
∫ k+1

n

k
n

∣∣∣∣ f (t +
j
n
)− f (t)

∣∣∣∣dt · e
− µ(x+h)

1−e−
µ
n ·

(
µh

1−e−
µ
n

)j

j!
·

(
µx

1−e−
µ
n

)k

k!

=
∞

∑
j=0

∞

∑
k=0

n
∫ k+1

n

k
n

ω( f ;
j
n
)dt · e

− µ(x+h)

1−e−
µ
n ·

(
µh

1−e−
µ
n

)j

j!
·

(
µx

1−e−
µ
n

)k

k!

= Sn,µ(ω; h) ≤ S∗
n,µ(ω; h).

5. Illustrative Examples

In order to visually test the effect of approximation, in this section, the image of the
new Szász–Kantorovich operator with different values for variables µ and n is drawn with
the help of Matlab software (Version 2020b). In addition, the images of the approximation
effect of several types of operators acting on the same function are compared. In Figure 1,
we want to test how Szász–Kantorovich operators will perform for different µ values.
In Figure 2, we plot the graphs for different values of n. Figures 3 and 4 show that the new
family of Szász–Kantorovich operators presents better performance in comparison with the
classic Szász operators, the classic Szász–Kantorovich operators and the Szász–Kantorovich
operators of preserving x2 for given values. At the same time, the root mean square errors
of their approximation are calculated as show in Tables 1 and 2.
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Table 1. Root mean square errors of approximation of four classes of operators to the function
f (x) = xe−2x.

n Szász Operators Szász–Kantorovich
Operators

New Szász–Kantorovich
Operators with µ = 0.5

New Szász–Kantorovich
Operators with µ1 = 1.5

5 9.7571 × 10−5 7.9165 × 10−5 4.1841 × 10−5 3.0618 × 10−6

15 1.82370 × 10−5 1.6047 × 10−5 1.0227 × 10−5 1.1653 × 10−6

30 7.8565 × 10−6 7.0426 × 10−6 4.7050 × 10−6 5.9893 × 10−7

Table 2. Root mean square errors of approximation of three classes of Kantorovich-type operators to
the function f (x) = xe−2x.

n Szász–Kantorovich Operators Szász–Kantorovich Operators of
Preserving e−µx, µ = 1

Szász–Kantorovich Operators of
Preserving x2

5 7.9165 × 10−5 1.8002 × 10−5 1.1293 × 10−4

15 1.6047 × 10−5 5.3095 × 10−6 2.0315 × 10−5

30 7.0426 × 10−6 2.5618 × 10−6 8.6504 × 10−6

4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5
10

-3

=0.5

=0.9

=1.5

f(x)=xe
-2x

Figure 1. The approximation of the new Szász–Kantorovich operators to the function f (x) = xe−2x,
where µ = 0.5, 0.9, 1.5, n = 5.

4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5

3
10

-3

n=5

n=15

n=30

f(x)=xe
-2x

Figure 2. The approximation of the new Szász–Kantorovich operators to the function f (x) = xe−2x,
where n = 5, 15, 30, µ = 0.2.
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6 6.2 6.4 6.6 6.8 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-4

f(x)=xe
-2x

Szasz Operator

Szasz-Kantorovich Operator

New Szasz-Kantorovich Operator, =0.5

New Szasz-Kantorovich Operator,
1
=1.5

Figure 3. The approximation of the classic Szász operator, Szász–Kantorovich operator and the new
Szász–Kantorovich operator to the function f (x) = xe−2x, where n = 10, µ = 0.5, µ1 = 1.5.

6 6.2 6.4 6.6 6.8 7
0

0.2

0.4

0.6

0.8

1

1.2
10

-4

f(x)=xe
-2x

Szasz-Kantorovich Operator

Szasz-Kantorovich Operator of Preserving e
- x

, =1

Szasz-Kantorovich Operator of Preserving x
2

Figure 4. The approximation of the Szász–Kantorovich operator, the Szász–Kantorovich operator
of preserving e−µx, µ = 1 and the Szász–Kantorovich operator of preserving x2 to the function
f (x) = xe−2x, where n = 10.

6. Conclusions

In this paper, we present a type of Szász–Kantorovich operators using the following
ideas: (1) integral averaging leads to Kantorovich-type operators; (2) a function extension
improves the approximation abilities; (3) the introduction of a parameter µ can be fine tune
the approximation ability of the operators.

All these features combined provide a better approximation procedure. We further inves-
tigate the convergence of these operators, as well as attain the quantitative estimates, some
shape preserving properties, while some important approximation tools, such as the forward
differences, the modulus of continuity and the concave continuous modulus, are utilized.
Numerical examples are used to verify the validity of our Szász–Kantorovich operators.

However, in this paper, we only considered the direct theorems of the Szász–Kantorovich
operators, the functions are univariate. The converse results and higher dimensional case
will be investigated in our future work.
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