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Abstract: Weber’s inverse problem in the plane is to modify the positive weights associated with
n fixed points in the plane at minimum cost, ensuring that a given point a priori becomes the
Euclidean weighted geometric median. In this paper, we investigate Weber’s inverse problem in
the plane and generalize it to the surface of the sphere. Our study uses a subspace orthogonal to
a subspace generated by two vectors X and Y associated with the given points and weights. The
main achievement of our work lies in determining a vector perpendicular to the vectors X and Y, in
Rn; which is used to determinate a solution of Weber’s inverse problem. In addition, lower bounds
are obtained for the minimum of the Weber function, and an upper bound for the difference of the
minimal of Weber’s direct and inverse problems. Examples of application at the plane and unit sphere
are given.
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1. Introduction

Inverse problems appear in different areas of science; that is why in recent decades the
study of such problems has gained interest. Inverse problems are usually ill-posed problems,
as some of the conditions given by Hadamard [1] for a well-posed problem are not fulfilled.

In optimization, Burton and Toint [2], motivated by practical situations, studied the
inverse shortest paths problem in a graph, formulating an algorithm based on the method of
Goldfarb–Idnani. In location theory, Berman et al. [3] studied the inverse 1-median problem
over a network. In 1999, Cai et al. [4] studied the inverse center location problem. Zhan,
Liu, and Ma [5] studied the inverse center location problem on a tree with equal weights
associated with the vertices.

In 2004, Burkard, Pleschiutschnig, and Zhang [6] studied different inverse median prob-
lems. In 2010, Burkard, Galavii, and Gassner [7] studied the inverse Fermat–Weber problem
in the plane, presenting a purely combinatorial O(nlogn) algorithm for this problem.

In this paper, we investigate Weber’s inverse problem in the plane, and generalize it to
the surface of the sphere, which is used to model the planet Earth. The sphere, as a regular
surface, has its own metric, characterized by the intrinsic distance or geodesic distance.

Our study differs from the approach of Burkard et al. [7], in that our analysis is given
in the orthogonal subspace σ⊥ to the vector subspace σ generated by the vectors X and Y
obtained from the given points and weights. It is assumed that the point given a priori
is different from the given n points, and belongs to the interior of the convex capsule of
those points.

Since the vector product of two vectors in Rn is not defined for n > 3, the achievement
of our research is to obtain a vector perpendicular to the vectors X and Y in Rn, which is
used to determine a solution to Weber’s inverse problem.

In addition, lower bounds are obtained for the minimum of the Weber function, and an
upper bound for the difference of the minima of the Weber functions of the direct and
inverse problems.
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This paper is organized as follows: in Section 2 results are given on the direct and
inverse Weber problems in the plane (Burkard et al. [7]). In Section 3 results are given on the
Weber problem on the sphere (Drezner and Wesolowsky [8], Mangalika [9]). In Section 4
the theory is developed, and in Section 5 the inverse Weber problem is generalized to the
sphere. Numerical examples in localization theory in the plane and on the sphere are given
in Section 6.

2. Weber Problems: Direct and Inverse in the Plane

Given n points pi = (xi, yi) ∈ R2, together with non-negative weights wi ∈ R, i =
1, . . . , n; the Weber problem consists in finding a point p0 = (x0, y0) ∈ R2 that minimizes
the Weber function

F(p) =
n

∑
i=1

wid(p, pi), (1)

where d(p, pi) is the Euclidean distance from point p to point pi. The point p0 ∈ R2 that
minimizes (1) is called weighted geometric median (Fletcher et al. [10]).

The origin of this problem is attributed to the mathematician Pierre de Fermat, and sev-
eral solutions were proposed. Evangelista Torricelli approached the problem with three
points, and later Simpson [11] presented additional solutions to this problem, initially
known as Fermat’s problem.

Weiszfeld [12] proposed an iterative method that allows obtaining a point that mini-
mizes the Weber function. For this purpose, he constructs a sequence given by

pk+1 =

n

∑
i=1

wi
d(pk, pi)

pi

n

∑
i=1

wi
d(pk, pi)

. (2)

Definition 1 (Burkard [7]). If p0 6= pi, for all i = 1, . . . , n, the resultant force R(p0) at p0 is
given by

R(p0) =
n

∑
i=1

wi
d(p0, pi)

(pi − p0). (3)

If p0 = pj for some j = 1, 2, . . . , n, we have

R(p0) = max{‖Rj‖ − wj, 0}
Rj

‖Rj‖
,

where

Rj =
n

∑
i=1
i 6=j

wi
d(pi, pj)

(pi − pj).

Thus, for p0 = pj, we have R(pj) = 0, if wj ≥ ‖Rj‖.

Theorem 1. The point p0 is a solution of the Fermat–Weber problem if and only if R(p0) = 0.

For a proof, see, e.g., Kuhn [13].

Theorem 2 (Burkard [7]). If the point p0 is an optimal solution of the Fermat–Weber problem,
then p0 lies in the convex hull of the points pi, i = 1, . . . , n.

Now, consider n + 1 points pi = (xi, yi) ∈ R2, i = 0, 1, . . . , n, with weights wi >
0, ∀i = 1, . . . , n.

The Inverse Weber problem in the plane consists in modifying the weights wi with
a minimum cost, in such a way that the point p0 given a priori is the weighted geometric
median, with respect to the new positive weights w∗i , i = 1, . . . , n.
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To guarantee a finite solution, positive bounds wi and wi were considered such that

wi ≤ wi ≤ wi, ∀i = 1, . . . , n.

Thus, the inverse Weber problem in the plane can be posed as a linear programming
problem, with 2n bounded variables and 2 equality constraints, Plastria [14], cited by
Burkard et al. [7].

Minimize
n

∑
i=1

ci(ri + ti)

Subject to
n

∑
i=1

(wi + (ri − ti))xi = 0

n

∑
i=1

(wi + (ri − ti))yi = 0

ri ≤ wi − wi , ∀i = 1, . . . , n
ti ≤ wi − wi , ∀i = 1, . . . , n

ri, ti ≥ 0, ∀i = 1, . . . , n,

(4)

where
n

∑
i=1

ci(ri + ti) is the total cost, ri and ti denote the amount at which wi increases and

decreases, respectively. This problem can be solved in linear time due to Megiddo [15].
Burkard et al. [6] made a study on the inverse median problem, and in 2010, in their

paper on the Inverse Fermat–Weber problem on the plane, they presented an algorithm
that runs in O(nlogn) time.

Theorem 3 (Burkard [7]). If p0 lies in the interior of the convex hull of the points pi, i = 1, . . . , n,
and the given bounds of the weights allow a feasible solution, then there always exists an optimal
solution of the inverse Fermat–Weber problem, where at most two modified weights lie strictly
between their lower and their upper bound.

3. Weber’s Problem in the Unit Sphere

In this section we give some results on the Weber problem on the unit Sphere

S2 = {(x, y, z) ∈ R3/x2 + y2 + z2 = 1}.

Given n different points pi ∈ S2, i = 1, . . . , n, and weights wi > 0, ∀i = 1, . . . , n,
the classical Weber problem consists of finding a point p0 ∈ S2 that minimizes the Weber
function

F(p) =
n

∑
i=1

widS2(p, pi), (5)

where dS2(p, pi) is the intrinsic or geodesic distance from point p to point pi.
Analogous to the case in the plane, the point p0 is called weighted geometric median.

This problem was initially studied by Drezner and Wesolowsky [16], and by Kats and
Cooper [17]. On the sphere, the Weber function is nonconvex, which complicates the
problem. Drezner [18] continued the study of this problem, and in 1983 Drezner and
Wesolowsky [8] studied the minimax and maximin problem on the sphere. Hansen et al. [19]
proposed an algorithm to approximate the solution to the Weber problem on the sphere,
taking as a reference the study of the minisum and minimax problems [20].

Since the sphere is a regular surface, we can parameterize it using spherical coordinates
given by the application X : 〈−π

2 , π
2 〉 × 〈0, 2π〉 → S2, defined by

X(φ, θ) = (cos φ cos θ, cos φ sin θ, sin θ).

Thus, the points are given by pi = X(φi, θi), i = 1, . . . , n.
In spherical coordinates, Weber’s function (5) is given by
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F(φ, θ) =
n

∑
i=1

widS2(X(φ, θ), X(φi, θi)). (6)

The intrinsic distance or geodesic distance between points p and pi is given by the
length of the shortest arc of the maximum circle passing through these point

Theorem 4. Given two points X1 = X(φ1, θ1), X2 = X(φ2, θ2) ∈ S2, the shortest arc length
α = α(X1, X2) verifies

sin
(α

2

)
=

1
2

√
2− 2 sin φ1 sin φ2 cos(θ1 − θ2). (7)

Proof. Using spherical coordinates, we have

X1 = X(φ1, θ1) = (cos φ1 cos θ1, cos φ1 sin θ1, sin φ1),

X2 = X(φ2, θ2) = (cos φ2 cos θ2, cos φ2 sin θ2, sin φ2).

From Figure 1, we have

‖MX2‖ =
‖X1 − X2‖

2
,

then

sin
(α

2

)
=
‖X1 − X2‖

2
. (8)

Also

‖X1 − X2‖2 = ‖X(φ1, θ1)− X(φ2, θ2)‖2 = 2− 2 sin φ1 sin φ2 cos(θ1 − θ2).

Therefore
sin
(

α
2
)
= 1

2

√
2− 2 sin φ1 sin φ2 cos(θ1 − θ2).

Figure 1. Great Circle on unit sphere.

Theorem 5 (Drezner and Wesolowsky [16], Mangalika [9]). Let X ∈ S2. The spherical circle
D(X, π

2 ) is a convex set. The function f : D(X, π
2 ) → R defined by f (Y) = dS2(X, Y), ∀Y ∈

D(X, π
2 ) is a convex function.

Theorem 6 (Drezner, Z. and Wesolowsky, G.O [16], Mangalika, D. [9]). Let Xi ∈ D(X0, π
4 ) ⊂

S2, i = 1, . . . , n. Then the Weber function f : D(X0, π
4 ) → R is a convex function and is

minimized at a single point of D(X0, π
4 ).
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4. Theory Development

In this section we construct a new method to find a solution to Weber’s Inverse
problem in the plane.

Consider n + 1 points pi = (xi, yi) ∈ R2, i = 0, 1, . . . , n, with weights wi > 0, ∀i =
1, . . . , n, and p0 6= pi.

By (3) and Theorem 1, p0 = (x0, y0) will be the weighted geometric median, if and
only if

R(p0) =
n

∑
i=1

wi
d(p0, pi)

(pi − p0) = 0.

Then

n

∑
i=1

wi
di
(xi − x0) = 0, (9)

n

∑
i=1

wi
di
(yi − y0) = 0, (10)

where di = d(p0, pi), which is the Euclidean distance from point p0 to point pi.
By (9) and (10) we have

〈(w1, w2, . . . , wn),
(

x1 − x0

d1
,

x2 − x0

d2
, . . . ,

xn − x0

dn

)
〉 = 0.

〈(w1, w2, . . . , wn),
(

y1 − y0

d1
,

y2 − y0

d2
, . . . ,

yn − y0

dn

)
〉 = 0.

Let

w = (w1, w2, . . . , wn) (11)

X =

(
x1 − x0

d1
,

x2 − x0

d2
, . . . ,

xn − x0

dn

)
, (12)

Y =

(
y1 − y0

d1
,

y2 − y0

d2
, . . . ,

yn − y0

dn

)
, (13)

it is verified:
〈w, X〉 = 0, and 〈w, Y〉 = 0; that is w ⊥ X and w ⊥ Y. (14)

Let σ = L({X, Y}) be the vector subspace generated by the vectors X and Y, and σ⊥

the subspace orthogonal to σ. Then, from (14) it follows that the solutions to Weber’s
Inverse problem lie in the orthogonal subspace σ⊥.

Let N = (N1, . . . , Nn) ∈ σ⊥, N 6= 0. We consider the vector

w∗ = (w∗1 , . . . , w∗n) = projNw. (15)

Then

w∗ =
〈w, N〉
‖N‖2 N.

That is

w∗i =
〈w, N〉
‖N‖2 Ni, ∀i = 1, . . . , n. (16)

Theorem 7. Let N = (N1, . . . , Nn) ∈ σ⊥, N 6= 0. If Ni > 0, ∀i = 1, . . . , n, then Weber’s
Inverse problem has a solution given by

w∗i =
〈w, N〉
‖N‖2 Ni > 0, ∀i = 1, . . . , n. (17)

Moreover, the angle θ = ](w, N), verifies θ ∈ (0, π
2 ).
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Proof. Since wi > 0 and Ni > 0, ∀i = 1, . . . , n, it follows that 〈w, N〉 > 0. Then

w∗i =
〈w, N〉
‖N‖2 Ni > 0, ∀i = 1, . . . , n.

Moreover cos(θ) = 〈w,N〉
‖w‖‖N‖ , then θ ∈ (0, π

2 ).

Theorem 8. Let N = (N1, . . . , Nn) ∈ σ⊥, N 6= 0. If Ni < 0, ∀i = 1, . . . , n, then Weber’s
Inverse problem has a solution given by:

w∗i =
〈w, N〉
‖N‖2 Ni > 0, ∀i = 1, . . . , n. (18)

Moreover, the angle θ = ](w, N), verifies θ ∈ (π
2 , 3π

2 ).

Proof. Since wi > 0 and Ni < 0, ∀i = 1, . . . , n, it follows that 〈w, N〉 < 0. Then

w∗i =
〈w, N〉
‖N‖2 Ni > 0, ∀i = 1, . . . , n.

Moreover cos(θ) = 〈w,N〉
‖w‖‖N‖ , then θ ∈ (π

2 , 3π
2 ).

The following theorem shows that if there exist at least two components of N with
different sign, the Weber inverse problem has no positive real solutions.

Theorem 9. Suppose that Ni > 0, except some i0 ∈ {1, . . . , n}. Then:

w∗i0 < 0 and w∗i > 0, for i 6= i0. (19)

w∗i0 > 0 and w∗i < 0, for i 6= i0. (20)

Proof. Without loss of generality we can assume that i0 = 1, and

N1 < 0 and Ni > 0, ∀i = 2, . . . , n.

There are two cases:
If ∑n

i=1 wi Ni > 0, then 〈w, N〉 > 0. Therefore

w∗1 =
〈w, N〉
‖N‖2 N1 < 0, and w∗i =

〈w, N〉
‖N‖2 Ni > 0, ∀i = 2, . . . , n,

which proves (19).
If ∑n

i=1 wi Ni < 0 , then 〈w, N〉 < 0. Therefore

w∗1 =
〈w, N〉
‖N‖2 N1 > 0, and w∗i =

〈w, N〉
‖N‖2 Ni < 0, ∀i = 2, . . . , n,

which proves (20).

Next, using orthogonality properties, we obtain a vector orthogonal to two linearly
independent vectors in Rn.

Let X, Y ∈ Rn be linearly independent, σ = L({X, Y}) be the vector subspace gener-
ated by X and Y, σ⊥ the orthogonal complement to σ, w = (w1, . . . , wn) ∈ Rn, w /∈ σ. Then

w = wT + wN , (21)

where

• wT is the orthogonal projection of w onto σ,
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• wN is the orthogonal projection of w onto σ⊥.

Since {X, Y} is a basis of σ, then

wT = aX + bY, a, b ∈ R, (22)

and since wN ∈ σ⊥, then

〈wN , X〉 = 0, (23)

〈wN , Y〉 = 0, (24)

Theorem 10. Let X, Y ∈ Rn be linearly independent, w = (w1, . . . , wn) ∈ Rn, wT = aX + bY.
Then:

a = 〈w,
X<Y, Y>−Y<X, Y>

∆
, 〉, (25)

b = 〈w,
Y<X, X>− X<X, Y>

∆
, 〉, (26)

where
∆ = ‖X‖2‖Y‖2 − 〈X, Y〉2. (27)

Proof. From (23) we have 〈wN , X〉 = 0. Further from (21) we have wN = w− wT , then

wN = w− aX− bY.

Therefore, we have

0 = 〈wN , X〉 = 〈w− aX− bY, X〉 = 〈w, X〉 − a〈X, X〉 − b〈X, Y〉.

Then
a〈X, X〉+ b〈X, Y〉 = 〈w, X〉 (28)

Similarly, by (24) we obtain

a〈X, Y〉+ b〈Y, Y〉 = 〈w, Y〉 (29)

By (28) and (29) we obtain the matrix system(
〈X, X〉 〈X, Y〉
〈X, Y〉 〈Y, Y〉

)(
a
b

)
=

(
〈w, X〉
〈w, Y〉

)
. (30)

The determinant of the system (30) is

∆ = ‖X‖2‖Y‖2 − 〈X, Y〉2 6= 0.

Using Cramer’s rule we obtain

a = 〈w,
X<Y, Y>−Y<X, Y>

4 〉,

b = 〈w,
Y<X, X>− X<X, Y>

4 〉.

which proves the theorem.

Therefore, a normal vector to X and Y is given by:

wN = w− aX− bY.

Now, let pi = (xi, yi) ∈ R2, ∀i = 1, . . . , n be different non-collinear points, wi >
0, ∀i = 1, . . . , n the weights, and p∗0 = (x∗0 , y∗0) an interior point of the convex capsule of
the pi, i = 1, . . . , n.
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By (12) and (13) we have the vectors

X =

(
x1 − x∗0

d1
, . . . ,

xn − x∗0
dn

)
= (X1, . . . , Xn),

Y =

(
y1 − y∗0

d1
, . . . ,

yn − y∗0
dn

)
= (Y1, . . . , Yn),

where
di = di(p∗0 , pi), ∀i = 1, . . . , n.

Theorem 11. Let wN = (wN
1 , . . . , wN

n ) ∈ σ⊥, we have

wN
i > 0, ∀i = 1, . . . , n, if and only if wi > 〈w, Ri〉, ∀i = 1, . . . , n. (31)

where

Ri =
[X<Y, Y>−Y<X, Y>]Xi + [Y<X, X>− X<X, Y>]Yi

4 , ∀i = 1, . . . , n. (32)

Proof. If wN
i > 0, ∀i = 1, . . . , n, then wN

i = wi − aXi − bYi > 0, ∀i = 1, . . . , n

wi > aXi + bYi

= 〈w,
X<Y, Y>−Y<X, Y>

4 〉Xi + 〈w,
Y<X, X>− X<X, Y>

4 〉Yi,

= 〈w,
[X<Y, Y>−Y<X, Y>]Xi

4 〉+ 〈w,
[Y<X, X>− X<X, Y>]Yi

4 〉,

= 〈w,
[X<Y, Y>−Y<X, Y>]Xi

4 +
[Y<X, X>− X<X, Y>]Yi

4 〉.

Therefore
wi > 〈w, Ri〉, ∀i = 1, . . . , n,

where

Ri =
[X<Y, Y>−Y<X, Y>]Xi + [Y<X, X>− X<X, Y>]Yi

4 , ∀ i = 1, . . . , n.

Reciprocally, if wi > 〈w, Ri〉, ∀i = 1, . . . , n, then

<w, Ri> = 〈w,
[X<Y, Y>−Y<X, Y>]Xi

4 +
[Y<X, X>− X<X, Y>]Yi

4 〉>

= 〈w,
[X<Y, Y>−Y<X, Y>]Xi

4 〉+ 〈w,
[Y<X, X>− X<X, Y>]Yi

4 〉.

Then
wi > aXi + bYi, ∀i = 1, . . . , n.

Therefore, we have
wN

i = wi − aXi − bYi > 0, ∀i = 1, . . . , n.

Theorem 12. Let wi > 〈w, Ri〉, ∀i = 1, . . . , n, p0 the weighted geometric median of the Weber
function, then:

F(p) > 〈w,
n

∑
i=1

Ridi(p, pi)〉, ∀p ∈ R2. (33)

F(p0) > 〈w,
n

∑
i=1

Ridi(p0, pi)〉, (34)
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where Ri is given in (32).

Proof. As wi > 〈w, Ri〉 ,∀i = 1, . . . , n, then widi(p, pi) > 〈w, Ri〉di(p, pi), ∀i = 1, . . . , n,

following
n

∑
i=1

widi(p, pi) >
n

∑
i=1
〈w, Ri〉di(p, pi).

Therefore

F(p) > 〈w,
n

∑
i=1

Ridi(p, pi)〉, ∀p ∈ R2, which proves (33).

For (34), we see that if p0 is the weighted geometric median, then
F(p0) = minp∈R2 F(p) > 〈w, ∑n

i=1 Ridi(p0, pi)〉.

Note that the above theorem allows us to obtain lower bounds for the minimum of
the Weber function.

Theorem 13. Let pi = (xi, yi) ∈ R2, ∀i = 1, . . . , n be different non-collinear points, wi > 0, ∀i =
1, . . . , n the weights, and p∗0 = (x∗0 , y∗0) an interior point of the convex capsule of the pi.

If wi > 〈w, Ri〉, ∀i = 1, . . . , n, then the Inverse Weber problem in the plane has a solution
given by

w∗i = wi − aXi − bYi, ∀i = 1, . . . , n. (35)

where

Xi =
xi − x∗0

di(p∗0 , pi)
and Yi =

yi − y∗0
di(p∗0 , pi)

.

Proof. By using the points pi = (xi, yi) and p∗0 = (x∗0 , y∗0) we obtain the linearly indepen-
dent vectors

X =

(
x1 − x∗0

d1
, . . . ,

xn − x∗0
dn

)
and Y =

(
y1 − y∗0

d1
, . . . ,

yn − y∗0
dn

)
.

Moreover, by construction, the vector wN = w− aX− bY is orthogonal to the vectors
X and Y; and since wi > 〈w, Ri〉 ,∀i = 1, . . . , n, we have that

wN
i > 0, i = 1, . . . , n.

Therefore, a solution to Weber’s inverse problem is given by
w∗i = wN

i , ∀i = 1, . . . , n.

Theorem 14. With the assumptions of the previous theorem we have

R(p∗0) = 0 if and only if 〈w∗, X〉 = 0, 〈w∗, Y〉 = 0, (36)

Proof.

0 = R(p∗0) =
n

∑
i=1

w∗i (pi − p∗0)
d(p∗0 , pi)

=

(
n

∑
i=1

w∗i (xi − x∗0)
d(p∗0 , pi)

,
n

∑
i=1

w∗i (yi − y∗0)
d(p∗0 , pi)

)

= (
n

∑
i=1

w∗i Xi,
n

∑
i=1

w∗i Yi) = (0, 0)

Therefore, we have

〈w∗, X〉 = 0, 〈w∗, Y〉 = 0.

Reciprocally, if 0 = 〈w∗, X〉 =
n

∑
i=1

w∗i Xi =
n

∑
i=1

w∗i (xi − x∗0)
d(p∗0 , pi)

= Rx(p∗0), and 0 =

〈w∗, Y〉 =
n

∑
i=1

w∗i Yi =
n

∑
i=1

w∗i (yi − y∗0)
d(p∗0 , pi)

= Ry(p∗0).

Therefore R(p∗0) = (Rx(p∗0), Ry(p∗0)) = (0, 0).
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Theorem 15. Let F(p) =
n

∑
i=1

wid(p, pi) and F∗(p) =
n

∑
i=1

w∗i d(p, pi) the Weber functions,

and wN
i > 0, ∀i = 1, . . . , n, then

F∗(p) = F(p)− a
n

∑
i=1

Xid(p, pi)− b
n

∑
i=1

Yid(p, pi), (37)

F(p0) = min
p∈R2

F(p) >
n

∑
i=1

(aXi + bYi)d(p0, pi). (38)

Proof. We have that wN
i > 0, ∀i = 1, . . . , n, then

w∗i = wi − aXi − bYi,

w∗i d(p, pi) = wid(p, pi)− aXid(p, pi)− bYid(p, pi).
n

∑
i=1

w∗i d(p, pi) =
n

∑
i=1

wid(p, pi)− a
n

∑
i=1

Xid(p, pi)− b
n

∑
i=1

Yid(p, pi).

Therefore we have the proof of (37)

F∗(p) = F(p)− a
n

∑
i=1

Xid(p, pi)− b
n

∑
i=1

Yid(p, pi).

In order to prove (38), if p0 is the weighted geometric median of F, by (37) we have

F∗(p0) = F(p0)− a
n

∑
i=1

Xid(p0, pi)− b
n

∑
i=1

Yid(p0, pi) > 0.

Then F(p0) >
n

∑
i=1

(aXi + bYi)d(p0, pi).

Theorem 16. Let pi = (xi, yi) ∈ R2, ∀i = 1, . . . , n be different non-collinear points, p0 and p∗0
the weighted geometric median of the Weber functions F and F∗ respectively, and D the convex
capsule of the points pi.

If wN
i > 0, ∀i = 1, . . . , n, then

|F∗(p)− F(p)| ≤
(
|a|Sx + |b|Sy

)
diam(D), ∀p ∈ D, (39)

where

Sx =
n

∑
i=1
|Xi| , Sy =

n

∑
i=1
|Yi|, and diam(D) is the diameter of the set D.

Proof. Since wN
i > 0, ∀i = 1, . . . , n, then by (37) we have

|F∗(p)− F(p)| =
∣∣− a

n

∑
i=1

Xid(p, pi)− b
n

∑
i=1

Yid(p, pi)
∣∣

=
∣∣− n

∑
i=1

(aXi + bYi)d(p, pi)
∣∣

≤
n

∑
i=1

(|a||Xi|+ |b||Yi|)d(p, pi)

= |a|
n

∑
i=1
|Xi|d(p, pi) + |b|

n

∑
i=1
|Yi|d(p, pi).

Now, if p ∈ D, then d(p, pi) ≤ diam(D). Therefore

|F∗(p)− F(p)| ≤ (|a|Sx + |b|Sy)diam(D), ∀p ∈ D,
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where Sx =
n

∑
i=1
|Xi| and Sy =

n

∑
i=1
|Yi|.

Theorem 17. With the assumptions of the theorem (16) we have

|F∗(p∗0)− F(p0)| ≤ |F(p∗0)− F∗(p0)|+ 2diam(D)(|a|Sx + |b|Sy), ∀p ∈ D. (40)

Proof. By (37):

F∗(p) = F(p)− a
n

∑
i=1

Xid(p, pi)− b
n

∑
i=1

Yid(p, pi),

then

F∗(p∗0) = F(p∗0)− a
n

∑
i=1

Xid(p∗0 , pi)− b
n

∑
i=1

Yid(p∗0 , pi), (41)

F∗(p0) = F(p0)− a
n

∑
i=1

Xid(p0, pi)− b
n

∑
i=1

Yid(p0, pi). (42)

Using (42)

F(p0)) = F∗(p0) + a
n

∑
i=1

Xid(p0, pi) + b
n

∑
i=1

Yid(p0, pi). (43)

By (41) and (43):

F∗(p∗0)− F(p0) = F(p∗0)− F∗(p0)

−a
n

∑
i=1

[d(p∗0 , pi) + d(p0, pi)]Xi − b
n

∑
i=1

[d(p∗0 , pi) + d(p0, pi)]Yi,

= F(p∗0)− F∗(p0)−
n

∑
i=1

(aXi + bYi)(d(p∗0 , pi) + d(p0, pi)).

Then

|F∗(p∗0)− F(p0)| ≤ |F(p∗0)− F∗(p0)|+
n

∑
i=1

(|a||Xi|+ |b||Yi|)(d(p∗0 , pi) + d(p0, pi)).

Now since p0 and p∗0 ∈ D, then d(p0, pi) ≤ diam(D) and d(p∗0 , pi) ≤ diam(D), we have

|F∗(p∗0)− F(p0)| ≤ |F(p∗0)− F∗(p0)|+ 2diam(D)
(
|a|Sx + |b|Sy

)
, ∀p ∈ D,

where Sx =
n

∑
i=1
|Xi| y Sy =

n

∑
i=1
|Yi|

5. Weber’s Inverse Problem on the Sphere

In this section we extend Weber’s inverse problem to the unit sphere. Let n + 1 points
Xi = X(φi, θi) ∈ D

(
p0, π

4
)
⊂ S2, and positive weights wi ∈ R, ∀i = 1, . . . , n.

The weights wi of the points Xi must be modified to obtain new weights w∗i > 0, so
that the point X0 is the weighted geometric median.

From (6), Weber’s function is

F(φ, θ) =
n

∑
i=1

widS2(X(φ, θ), X(φi, θi)).

Theorem 18. Letp0 ∈ S2, F : D
(

p0, π
4
)
→ R the Weber function. Then the gradient
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∇F(φ, θ) =

(
n

∑
i=1

wi(sin φ cos φi cos(θ − θi)− cos φ sin φi)

cos( αi
2 )‖X− Xi‖

,
n

∑
i=1

wi cos φ cos φi sin(θ − θi)

cos( αi
2 )‖X− Xi‖

)
. (44)

Proof. It has

X(φ, θ) = (cos φ cos θ, cos φ sin θ, sin φ),

X(φi, θi) = (cos φi cos θi, cos φi sin θi, sin φi).

Then
‖X− Xi‖ =

√
2− 2 sin φ sin φi cos(θ − θi). (45)

Then, partially deriving with respect to φ and θ in (45), we obtain

∂

∂φ
‖X− Xi‖ =

sin φ cos φi cos(θ − θi)− cos φ sin φi
‖X− Xi‖

, (46)

∂

∂θ
‖X− Xi‖ =

cos φ cos φi sin(θ − θi)

‖X− Xi‖
. (47)

By (8), we have

sin
(αi

2

)
=
‖X(φ, θ)− X(φi, θi)‖

2
, ∀i = 1, . . . , n. (48)

Partially deriving with respect to φ and θ in (48), we have

∂αi(φ, θ)

∂φ
=

1
cos
( αi

2
) ∂

∂φ
‖X− Xi‖. (49)

By (46), we have

∂αi(φ, θ)

∂φ
=

1
cos
( αi

2
)( sin φ cos φi cos(θ − θi)− cos φ sin φi)

‖X− Xi‖

)
. (50)

Analogously, we have

∂αi(φ, θ)

∂θ
=

1
cos
( αi

2
)(cos φ cos φi sin(θ − θi)

‖X− Xi‖

)
. (51)

By (50) and (51), we obtain ∇F(φ, θ).

∇F(φ, θ) =

(
n

∑
i=1

wi(sin φ cos φi cos(θ − θi)− cos φ sin φi)

cos( αi
2 )‖X− Xi‖

,
n

∑
i=1

wi cos φ cos φi sin(θ − θi)

cos( αi
2 )‖X− Xi‖

)
.

Let Xi = X(φi, θi) ∈ D
(

p0, π
4
)
, p0 ∈ S2, ∀i = 0, 1, . . . , n, weights wi > 0, ∀i = 1, . . . , n.

If X0 6= Xi, ∀i = 1, . . . , n, for (3), the resultant force R(X0) at X0 is given by

R(φ, θ) = −∇F(φ, θ) (52)

Then

R(φ, θ) =

(
n

∑
i=1

wiCi,
n

∑
i=1

wiDi

)
, (53)



Mathematics 2023, 11, 5000 13 of 23

where

Ci =
− sin φ cos φi cos(θ − θi) + cos φ sin φi

sin αi
,

Di =
− cos φ cos φi sin(θ − θi))

sin αi
.

Theorem 19. Let Xi = X(φi, θi) ∈ D
(

p0, π
4
)
, p0 ∈ S2, ∀i = 1, . . . , n, weights wi > 0, ∀i =

1, . . . , n, X∗0 = X(φ∗0 , θ∗0 ) ∈ D
(

p0, π
4
)
, X∗0 6= Xi, ∀i = 1, . . . , n.

If wi > 〈w, Ri〉, ∀i = 1, . . . , n. Then Weber’s inverse problem on the Sphere has a solution
given by

w∗i = wi − aCi − bDi, ∀i = 1, . . . , n, (54)

where

Ri =
[C<D, D>− D<C, D>]Ci + [D<C, C>− C<C, D>]Di

4 , ∀i = 1, . . . , n.

Ci =
− sin φ∗0 cos φi cos(θ∗0 − θi) + cos φ∗0 sin φi

sin αi
,

Di =
− cos φ∗0 cos φi sin(θ∗0 − θi)

sin αi
,

a = 〈w,
C<D, D>− D<C, D>

4 〉,

b = 〈w,
D<C, C>− C<C, D>

4 〉,

and4 = ‖C‖2‖D‖2 − 〈C, D〉2 6= 0.

Proof. Since X∗0 is the weighted geometric median, then the resultant force given by (53) is

R(φ∗0 , θ∗0 ) =

(
n

∑
i=1

wiCi,
n

∑
i=1

wiDi

)
,

where

Ci =
− sin φ∗0 cos φi cos(θ∗0 − θi) + cos φ∗0 sin φi

sin αi
,

Di =
− cos φ∗0 cos φi sin(θ∗0 − θi)

sin αi
.

Next, consider the vectors

w = (w1, . . . , wn),

C = (C1, . . . , Cn),

D = (D1, . . . , Dn).

Moreover, as wi > 〈w, Ri〉, ∀i = 1, . . . , n, then wN
i = wi − aCi − bDi > 0, ∀i = 1, . . . , n.

Let w∗i = wN
i , i = 1, . . . , n. It is verified that 〈w∗, C〉 = 0 and 〈w∗, D〉 = 0.

Therefore, w∗ is a solution of Weber’s inverse problem on the Sphere.

Next, we present the following algorithms to find a solution to Weber’s inverse
problem in the plane and on the unit sphere.

6. Numerical Examples

In this section we present some examples of Weber’s inverse problem in the plane and
on the unit sphere.
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Algorithms 1 and 2 were coded and executed in MATLAB R2015a, running on Win-
dows OS. The examples were carried out with AMD A12-9720P RADEON R7, 12 Compute
Core 4C+8G 2.70 GHz and 12 GB RAM.

Algorithm 1 Pseudocode for solving the inverse Weber problem in the plane

Input:
Different and non-collinear points pi = (xi, yi) ∈ R2, ∀i = 1, . . . , n,
Vector of positive weights w = (w1, . . . , wn),
Weighted geometric median point p∗0 = (x∗0 , y∗0).

Ouput:
New weights w∗ = (w∗1 , . . . , w∗n).

Compute the vectors
X = (

x1−x∗0
d1

, x2−x∗0
d2

, . . . , xn−x∗0
dn

), Y = (
y1−y∗0

d1
, y2−y∗0

d2
, . . . , yn−y∗0

dn
)

Where di =
√
(xi − x∗0)

2 + (yi − y∗0)
2, ∀ i = 1, . . . , n.

∆ = ‖X‖2‖Y‖2 − 〈X, Y〉2,
a = 〈w, X<Y,Y>−Y<X,Y>

4 〉
b = 〈w, Y<X,X>−X<X,Y>

4 〉
wN

i = wi − aXi − bYi, ∀i = 1, . . . , n.
if wN

i > 0 ∀i = 1, . . . , n then
A solution to Weber’s inverse problem in the plane is given by
w∗i = wN

i , ∀i = 1, . . . , n
end if
Stop

Algorithm 2 Pseudocode for solving the inverse Weber problem on unit sphere

Input:
Different points Xi = X(φi, θi) ∈ S2, ∀i = 1, . . . , n,
Vector of positive weights w = (w1, . . . , wn),
Weighted geometric median point X∗0 = X(φ∗0 , θ∗0 ) = (X1

0 , X2
0 , X3

0).
Ouput:

New weights w∗ = (w∗1 , . . . , w∗n).
Compute the vectors

C = (C1, . . . , Cn), D = (D1, . . . , Dn),
Where
αi = a cos

(
X1

0 cos(φi) cos(θi) + X2
0 cos(φi) sin(θi) + X3

0 sin(φi).
)

Ci =
− sin φ∗0 cos φi cos(θ∗0−θi)+cos φ∗0 sin φi

sin αi
,

Di =
− cos φ∗0 cos φi sin(θ∗0−θi)

sin αi
.

Compute
∆ = ‖C‖2‖D‖2 − 〈C, D〉2,
a = 〈w, C<D,D>−D<C,D>

4 〉
b = 〈w, D<C,C>−C<C,D>

4 〉
wN

i = wi − aCi − bDi, ∀i = 1, . . . , n.
if wN

i > 0 ∀i = 1, . . . , n then
A solution to Weber’s inverse problem on the sphere is given by
w∗i = wN

i , ∀i = 1, . . . , n.
end if
Stop

Example 1. Consider 10 points in the plane, whose coordinates and associated weights are shown
in Table 1.
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Table 1. Coordinates of the points and associated weights.

i wi xi yi
1 3.5 −5 2

2 2.2 −3 6

3 1.9 −2 4

4 2.8 2 3

5 3.7 6 4

6 2.7 5 1

7 3.3 7 −1

8 2.9 4 −3

9 3.6 1 −4

10 2.3 −1 −1

For the inverse Weber problem, we consider the point p∗0 = (x∗0 , y∗0) = (3, 2) as the weighted
geometric median given a priori. Using Algorithm 1, we obtain:

Vector X

[−1.0000 −0.8321 −0.9285 −0.7071 0.8321 0.8944 0.8000 0.1961 −0.3162 −0.8000]

Vector Y

[0.0000 0.5547 0.3714 0.7071 0.5547 −0.4472 −0.6000 −0.9806 −0.9487 −0.6000]

The value of the parameters

4 = 22.7754, a = −0.8367, b = −1.4423.

The components of the normal vector wN :

wN
i = wi − aXi − bYi , ∀ i = 1, . . . , 10.

Vctor wN[
2.6633 2.3039 1.6588 3.2283 5.1962 2.8033 3.1039 1.6498 1.9671 0.7653

]
Since wN

i > 0, ∀ i = 1, . . . , 10, a solution for Weber’s inverse problem is:

w∗ = wN .

Now, using the new weights w∗ obtained and the sequence (2) given by Weiszfeld’s algorithm
(1937) [12], we obtain the weighted geometric median of Weber’s classical or direct problem, whose
coordinates are (3, 2).

Furthermore, using the data in Table 1, and the Weiszfeld sequence (2), the coordinates of the
weighted geometric median for the Weber problem are (2.257920, 0.868847).

The following Figure 2 shows the 10 fixed points together with the weighted geometric medians
(2.257920, 0.868847) and (3, 2), of the classical and inverse Weber problem, respectively.

Analogously, the point p∗0 = (x∗0 , y∗0) = (−1, 3) is considered as the weighted geometric
median given a priori (Figure 3). Using the Algorithm 1, the new weights w∗i obtained are:

Vector w∗

[4.20025 3.86680 3.56352 1.75205 2.84708 1.29327 1.77924 1.22688 2.05769 0.99539]
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Figure 2. The point (3, 2) is the weighted geometric median for the inverse Weber problem.

Figure 3. The point (−1, 3) is the weighted geometric median for Weber’s inverse problem.

Example 2. Now, we consider the example given by Burkard et al. (2010) [7] in their paper, whose
points, weights, and bounds are given in Table 2.

Table 2. Points, weights, and bounds in the example given by Burkard et al. [7]

i wi wi wi pi(xi, yi)

1 50
7 5 8 p1 =

(
− 7

25 ,− 24
25

)
2 2

√
2 1 3 p2 =

(
1√
2

,− 1√
2

)
3 4 3 5 p3 =

(
3
5 , 4

5

)
4 3 3 4 p4 =

(
− 4

5 , 3
5

)

In their paper, Burkard et al. [7] chose the point p∗0 = (0, 0) as the weighted geometric median,
determining that the new weights w∗i given by:

Vector w∗ [
w∗1 = 5 w∗2 = 31

35

√
2 w∗3 = 34

7 w∗4 = 3
]

By choosing the point p∗0 = (0, 0) as the weighted geometric median given a priori, and using
Algorithm 1, we obtain:
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Vector X [
−0.2800 0.7071 0.6000 −0.8000

]
Vector Y [

−0.9600 −0.7071 0.8000 0.6000
]

The value of the parameters

4 = 3.7688, a = −0.2366, b = −1.6154.

The components of the normal vector wN :

wN
i = wi − aXi − bYi, ∀ i = 1, 2, 3, 4.

[
wN

1 = 5.5258 wN
2 = 1.8535 wN

3 = 5.4343 wN
4 = 3.7799

]
Since wN

i > 0, ∀ i = 1, 2, 3, 4, a solution for Weber’s inverse problem is:

w∗ = wN .

Note that the weights obtained by Burkard et al. and ours are different, which indicates that in
this problem the solution is not unique. Figure 4 shows the fixed points and the weighted geometric
median point.

Figure 4. The point (0, 0) is the weighted geometric median for Weber’s inverse problem given by
Burkard et al. [7].

Example 3. Inspired by the example of Drezner, Z. and Wesolowsky, G.O.(1978) [16], in Service
Location theory on the surface of the sphere, we consider the problem of distributing a product in
15 cities through air routes (Figure 5), whose information is given in Table 3.

For the inverse Weber problem on the unit sphere, we a priori specify a city in which the Weber
function must reach a minimum, necessitating the modification of the given weights wi.

The following Figure 5 shows the distribution of cities over the surface of the unit sphere.
Table 4 shows four cities with their respective geographic coordinates in radians. Each of these

cities will be considered as the weighted geometric median given a priori.
Using the data in Tables 3 and 4 we have the following:
Columns 5 and 6 of Table 3 contain the geographic coordinates in radians of the 15 cities,

and using spherical coordinates the points on the unit sphere are obtained.
Column 7 contains the weights associated with these cities.
From Table 4, the geographical coordinates of the city of Milan in radians are (φ∗0 , θ∗0 ) =

(0.79350, 0.1603872). Then, the point that will be the weighted geometric median given a priori is:
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X∗0 = X(φ∗0 , θ∗0 ) = X(0.79350, 0.1603872) = (0.6924, 0.1120, 0.7128) ∈ S2,

where X(φ, θ) = (cos φ cos θ, cos φ sin θ, sin φ) is the parameterization of the sphere given in
spherical coordinates. Using Algorithm 2, we obtain the coordinates of the vectors C and D, Table 5:

Figure 5. Distribution of cities on the surface of the sphere.

Table 3. Geographical coordinates of the cities and their respective initial weights.

I Cities
Decimal
Degree

Latitude

Decimal
Degree

Longitude

Radian
Laitude

Radian
Longitude Weights wi

1 Paris 48.8534 2.3488 0.85265 0.040994 1.0

2 Amsterdam 52.3740 4.8896 0.91410 0.085340 1.0

3 Toulouse 43.60426 1.44367 0.76104 0.025197 1.0

4 Ginebra 46.20222 6.14569 0.806386 0.107263 1.0

5 Florence 43.78645 11.24892 0.76422 0.196331 1.0

6 Heidelberg 49.40768 8.69079 0.86233 0.151683 1.0

7 Rome 41.89193 12.51133 0.73115 0.218364 1.0

8 Berlin 52.52437 13.41053 0.91672 0.234058 1.0

9 Athens 37.98376 23.72784 0.66294 0.414129 1.0

10 Ankara 39.91987 32.85427 0.69673 0.573415 1.0

11 Warsaw 21.01178 52.22977 0.36672 0.911581 1.0

12 Prague 50.08804 14.42076 0.87420 0.251690 1.0

13 Bucarest 44.43225 26.10626 0.77549 0.455640 1.0

14 Sarajevo 43.84864 18.35644 0.76530 0.320380 1.0

15 Budapest 47.49835 19.04045 0.82900 0.332319 1.0

Table 4. Geographical coordinates of the cities given in radians.

I City Latitude: φ∗
0 Longitude: θ∗0

1 Milan 0.79350 0.1603872

2 Saarbrücken 0.86005 0.1216543

3 Bern 0.81940 0.1299823

4 Vienna 0.84140 0.2857467
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Table 5. Coordinates of the vectors C and D.

i Ci Di

1 0.623210 −0.548498

2 0.935825 −0.247203

3 −0.273447 −0.674624

4 0.346511 −0.657903

5 −0.744649 0.468123

6 0.996628 −0.057545

7 −0.818345 0.403088

8 0.940616 0.238091

9 −0.493282 0.610087

10 −0.162344 0.692051

11 −0.345873 0.658068

12 0.815793 0.405625

13 0.019325 0.701224

14 −0.185022 0.689245

15 0.345762 0.658097

The value of the parameters

4 = 24.442, a = 0.55258, b = 0.89646.

The components of the normal vector wN

wN
i = wi − aCi − bDi, ∀ i = 1, . . . , 15.

Vector wN[
1.14734 0.70449 1.75588 1.39831 0.99182 0.50088 1.09084 0.26680

0.72565 0.46931 0.60119 0.18559 0.36070 0.48435 0.21898
]

Since wN
i > 0, ∀ i = 1, . . . , 15, a solution for Weber’s inverse problem is:

w∗ = wN .

The same procedure applies to the other cities: Saarbrücken, Bern, and Vienna.
In Table 6, the results of applying Algorithm 2 to determine the new weights w∗i in Weber’s

inverse problem are presented.
Figure 6 shows the 15 cities with red dots and the 4 cities that correspond to the points that will

be the weighted geometric medians (blue dots). The city with number 1 corresponds to Milan, number
2 corresponds to Saarbrücken, number 3 to Bern, and number 4 to Vienna. In these cities, the Weber
function with its respective weights reaches a minimum.
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Table 6. New weights for the inverse Weber problem.

I/City w∗
i —Milan w∗

i —Saarbrücken w∗
i —Bern w∗

i —Vienna

1 1.14734 1.59345 1.52396 0.65506

2 0.70449 1.73660 1.13560 1.01267

3 1.75588 0.95590 1.53783 0.33283

4 1.39831 0.60002 1.51823 0.39293

5 0.99182 0.21625 0.60894 0.15474

6 0.50088 0.41788 0.76234 0.75257

7 1.09084 0.21651 0.64668 0.15620

8 0.26680 0.85426 0.62411 1.48199

9 0.72565 0.15925 0.47595 0.61784

10 0.46931 0.21788 0.38543 1.06044

11 0.60119 0.19635 0.41636 1.03481

12 0.18559 0.47391 0.46571 1.33973

13 0.36070 0.24256 0.36844 1.10895

14 0.48435 0.16779 0.40806 0.46715

15 0.21898 0.27864 0.36446 1.18350

Figure 6. Cities: 1—Milan, 2—Saarbrücken, 3—Bern, and 4—Vienna, are the weighted geometric
medians. (Source: Figure created by the authors based on a map obtained from Google Maps).

Example 4. In this example, new weights are considered for the inverse Weber problem, (Table 7).
Table 8 shows four cities with their respective geographic coordinates. Each of these cities will

be considered as the weighted geometric median given a priori.
Table 9 shows the results of the application of our method to determine the new weights w∗i in

Weber’s inverse problem.
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Table 7. Geographical coordinates of the cities and new weights.

I Cities Decimal Degree
Latitude

Decimal Degree
Longitude

Radian
Latitude

Radian
Longitude Weights wi

1 Paris 48.8534 2.3488 0.85265 0.040994 0.90

2 Amsterdam 52.3740 4.8896 0.91410 0.085340 0.89

3 Toulouse 43.60426 1.44367 0.76104 0.025197 1.14

4 Ginebra 46.20222 6.14569 0.80638 0.107263 1.37

5 Florence 43.78645 11.24892 0.76422 0.196331 0.95

6 Heidelberg 49.40768 8.69079 0.86233 0.151683 0.86

7 Rome 41.89193 12.51133 0.73115 0.218364 0.74

8 Berlin 52.52437 13.41053 0.91672 0.234058 1.30

9 Athens 37.98376 23.72784 0.66294 0.414129 1.21

10 Ankara 39.91987 32.85427 0.69673 0.573415 0.93

11 Warsaw 21.01178 52.22977 0.36672 0.911581 1.52

12 Prague 50.08804 14.42076 0.87420 0.251690 1.13

13 Bucharest 44.43225 26.10626 0.77549 0.455640 0.92

14 Sarajevo 43.84864 18.35644 0.76530 0.320380 0.83

15 Budapest 47.49835 19.04045 0.82900 0.332319 1.00

Table 8. Geographical coordinates of the cities given in radians.

i City Latitude: φ∗
0 Longitude: θ∗0

1 Milan 0.79350 0.1603872

2 Munich 0.84016 0.2020304

3 Bern 0.81940 0.1299823

4 Venice 0.79303 0.2152453

Table 9. New weights for the inverse Weber problem.

í / City w∗
i —Milan w∗

i —Munich w∗
i —Bern w∗

i —Venice

1 1.0314 1.1528 1.4529 0.9761

2 0.5654 1.2425 1.0687 0.7802

3 1.9111 1.1784 1.6594 1.4463

4 1.7627 1.4290 1.8677 1.5624

5 0.9625 0.6710 0.5217 1.3297

6 0.3280 1.1942 0.6601 0.7374

7 0.8546 0.4285 0.3479 1.0262

8 0.5331 1.5312 0.9556 0.9809

9 0.9466 0.8601 0.6570 1.1816

10 0.3985 0.6363 0.2987 0.7413

11 1.1268 1.2104 0.9141 1.3976

12 0.2846 1.2051 0.6145 0.7731

13 0.2737 0.6473 0.2772 0.6638

14 0.3143 0.4865 0.2170 0.6743

15 0.2014 0.7729 0.3624 0.6341
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Figure 7 shows the 15 cities with red dots and the 4 cities that correspond to the points that
will be the weighted geometric medians (blue dots). The city with number 1 corresponds to Milan,
with number 2 corresponds to Munich, with number 3 to Bern, and with number 4 to Venice.
In these cities, the Weber function with their respective weights reaches a minimum.

Figure 7. Cities: 1—Milan, 2—Munich, 3—Bern, and 4—Venecia, are the weighted geometric median.
(Source: Figure created by the authors based on a map obtained from Google Maps.)

7. Conclusions

In this study, we present a new method based on the concepts of orthogonality to
solve the inverse Weber problem in the plane and on the sphere.

In this paper we assume that the weighted geometric median given a priori is different
from the fixed points, and that it lies inside the convex capsule of points.

Using the fixed points and the weighted geometric median given a priori, we obtain
the vectors X and Y in the plane: Equations (12) and (13); and the vectors C and D in the
case of the unit sphere (Theorem 19); and we conclude that the solution to Weber’s inverse
problem is found in the vector subspace orthogonal to the vectors X and Y in the case of
the plane, and to the vectors C and D in the case of the unit sphere.

If the initial weights wi > <w, Ri>, ∀ i = 1, . . . , n, then from Theorems 13 and 19, it
is concluded that Weber’s inverse problem has a solution.

Moreover, if the initial weights verify wi > <w, Ri>, ∀ i = 1, . . . , n, from Theorem 12,
we conclude the existence of a lower bound for the minimum of the Weber function.

Another interesting result of our research is the determination of an upper bound for
the difference between the minima of the direct and inverse Weber problems (40).
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