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Abstract: In the field of finance and insurance, addressing the optimal investment and reinsurance
issue is a focal point for researchers. This paper contemplates the optimal strategy for insurance
companies within a model where wealth dynamics adhere to a jump–diffusion process. The fractional
structure of the diffusion term is extremely interpretative. This model encompasses elements of
risky assets, risk-free assets, and proportional reinsurance. Based on this model and grounded in the
principles of stochastic control, the corresponding HJB equation is derived and solved. Consequently,
explicit expressions for the optimal investment and reinsurance ratios are obtained, and the solution’s
verification theorem is proven. Finally, through a numerical analysis with varying parameters, results
consistent with real-world scenarios are achieved.
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1. Introduction

Risk arises from uncertainty and can result in losses for financial institutions. With
societal advancement, humanity’s awareness of the perils of risk has gradually intensified,
leading to the emergence of the insurance industry. For insurance companies, their primary
responsibility is to compensate and safeguard the financial security of individuals, orga-
nizations, or other entities against unforeseen losses. Moreover, insurance companies are
profit-oriented financial institutions, and generating profits and expanding their scale are
their primary objectives.

In a fiercely competitive market, relying solely on premium collection to cover claims
and generate revenue is insufficient. So, how do insurance companies operate? On one
hand, they profit from the time difference between collecting premiums and paying claims.
On the other hand, insurance companies invest in financial markets using their accumulated
capital, such as purchasing securities, bonds, or depositing in banks, to earn additional
income for claims and other activities.

It is worth noting that as participants in the financial market, investing exposes them
to risks like asset depreciation and declining interest rates, which could lead to financial
losses. Additionally, in rare scenarios, insurance companies might face the risk of making
substantial claim payments in a short period. In the event of significant catastrophes, they
might find themselves unable to cover excessive claims. Therefore, reinsurance is a potent
tool for insurance companies to share some of their inherent risks, control their liability
scope, and mitigate the tail risks they bear.
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In summary, how insurance companies balance the reinsurance premiums paid, risky
asset investments, and risk-free investments to maximize profits and minimize risks is a
core proposition that needs exploration and research in their operational process. Assist-
ing insurance companies in formulating appropriate optimal investment strategies and
reinsurance methods has also become a pivotal issue in the field of risk theory.

The primary motivation of this paper is to combine the optimal reinsurance problem
with the optimal investment portfolio problem of risky and risk-free assets in a classic
continuous-time framework, aiming to derive a comprehensive optimal operational strat-
egy for insurance companies. Due to the well-defined properties of the model setup,
this paper presents an analytical solution for the insurance company’s optimal strategy
(see Theorem 1), which, along with the numerical simulation section, constitutes the core
contribution of this paper.

The remainder of this paper is organized as follows: Section 2 will discuss the relation-
ship between this paper and the literature on insurance company operations in continuous
time, as well as continuous-time asset pricing. Section 3 will introduce the specific assump-
tions and solutions of the model. In Section 4, we will showcase the numerical simulation
results based on a set of parameters to better help readers understand the specific properties
of the theoretical results. In the final section, we will summarize the model results and
explore their relationship with reality.

2. Literature Review

A systematic exploration of risk theory can be traced back to the pioneering work
of Filip Lundberg during his doctoral studies [1]. It was in this seminal paper that he
introduced the compound Poisson process, which has since played a pivotal role in non-life
insurance models. Subsequent extensions of this classic model by researchers like Carmer
led to the establishment of a myriad of stochastic risk models. The research building upon
Lundberg’s conclusions primarily bifurcated into two avenues: one focusing on model
extensions, such as the compound Poisson distribution risk model and jump–diffusion
models, and the other integrating stochastic control problems into risk theory, addressing
areas like reinsurance and dividend distribution.

In addressing optimal decision-making challenges, the field of economics has tradi-
tionally leaned on stochastic control as a paramount solution mechanism. Markowitz’s
1952 proposition [2] to measure stock risk through returns and volatility set the stage for
the mean–variance model, aiming to strike a balance between risk mitigation and profit
maximization. The foundational theories on stochastic integration by Kiyoshi Itô laid the
groundwork for dynamic stochastic control problems. The essence of stochastic control
methods is to identify optimal strategies that either maximize or minimize a given objec-
tive function. This often entails the formulation of an optimal control set and a partial
differential equation, specifically the HJB equation, for resolution. Merton’s application of
this methodology [3], by presuming a specific function for model coefficients, transformed
the original problem into an HJB equation, deriving optimal strategies under maximum
terminal expected utility. This paradigm shift in approach, introduced by Merton, paved
the way for modern dynamic portfolio research. Subsequent advancements in stochas-
tic control theory were meteoric, with deeper dives into various solutions for the HJB
equation. To address the potential degeneracy in the diffusion term of the HJB equation,
where classical solutions might not exist, Crandall and Lions [4] proposed a weak solution,
known as the viscosity solution, which is a non-smooth solution to partial differential
equations. Furthering this, J. Yong and X. Zhou [5] introduced the viscosity solution for the
HJB equation.

For optimal decision-making challenges, objective functions are typically constructed
to either maximize or minimize based on specific goals. Common optimization objectives
include bankruptcy probability minimization, expected utility maximization, and mean–
variance optimization. Ensuring a company’s operational continuity naturally prioritizes
minimizing bankruptcy probability. Hipp and Plum [6,7] proposed investing an insurance
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company’s residual profits in the financial market, striving to minimize the likelihood of
bankruptcy. Under this model, they demonstrated the existence of optimal investment
methods and optimal value functions. While minimizing bankruptcy probability ensures
survival, companies naturally aim to maximize their utility to expand their operational
scope. The expected utility theory, initially proposed by Neumann and Morgenstern in
1944, served as a cornerstone for economists addressing uncertainty and has since been
widely applied across various domains, including investment and reinsurance strategy
formulation. The mean–variance model, postulated by Markowitz [2], emerged as a pivotal
standard in risk measurement, particularly for portfolio research.

Revisiting the optimal investment strategy conundrum, the earliest research in this
domain can be attributed to Markowitz [2]. Samuelson subsequently expanded upon
Markowitz’s mean–variance model, refining it into a general dynamic model to address
optimal strategy problems in optimal consumption models. The expected utility theory,
initially proposed by Neumann and Morgenstern [8] in 1944, served as a cornerstone
for economists addressing uncertainty and has since been widely applied across various
domains, including investment and reinsurance strategy formulation. In 1995, Browne [9]
introduced an approximate diffusion model for the Cramer–Lundberg model, optimizing
scenarios where the C-L model often failed to provide explicit solutions. This pioneering
work initially addressed optimal investment methods targeting bankruptcy probability
minimization. Later, Schmidli [10] in 2002 explored scenarios where the surplus process,
under the classic risk model, could only invest in one type of risky asset, deriving numerical
algorithms for the value function of the HJB equation.

In recent years, the jump–diffusion model has emerged as a focal point in actuarial
mathematics. This model, initially proposed by Merton [11] in 1971, combined the jump
and diffusion processes to characterize the surplus process of premiums. Yang [12] in
2005 described the initial surplus process of an insurer using a jump–diffusion process,
without considering reinsurance, and provided optimal investment methods and analytical
solutions for this model’s value function in his paper. Wang [13] in 2007, targeting the
maximization of future reserve index utility, explored the insurance company’s optimal
investment strategy when the claim process is a pure jump process (not necessarily a
compound Poisson process) and multiple risky assets can be invested in. Most contempo-
rary research assumes that investments in financial market assets are based on a constant
interest rate. However, with the acceleration of marketization, interest rate fluctuations
pose significant risks to market investments.

Common reinsurance methods can be broadly categorized into three types: propor-
tional reinsurance, excess-of-loss reinsurance, and stop-loss reinsurance. Domestic and
international inquiries have predominantly focused on the first two, with foreign research
on the pricing issue of excess-of-loss reinsurance having an earlier start. Hipp and Vogt [14]
explored scenarios under excess-of-loss reinsurance, establishing the existence of smooth
solutions for the constructed HJB equation, verifying the solution’s theorem, and finally
providing numerical solutions for exponential claim distributions. Historically, research on
insurance companies adopting both investment and reinsurance strategies has been sparse.
Schmidli [15] made significant contributions in this area. Cao [16] and others utilized
the diffusion model, assuming the claim process followed a Brownian motion with drift,
allowing insurance companies to invest in a risk-free asset and a risky asset. Additionally,
insurance companies could purchase proportional reinsurance to reduce risk, deriving
optimal strategies for purchasing proportional reinsurance and investing in risk-free and
risky assets. Kaluszka [17] in his paper pointed out that based on the mean and variance
of the reinsurer’s share in the total claim amount, an appropriate reinsurance level was
derived, serving as a theoretical basis for studying global reinsurance and local reinsurance.
Zeng [18] and others focused on models optimized by the mean–variance criterion, where
the surplus process was approximately represented by Brownian drift motion, solving the
optimal time-consistent optimal investment and reinsurance strategy problem.
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This paper presents a closed form under a specific utility function, while another
branch of the literature provides numerical solutions for a broader range of utility functions,
such as those in references [19–21]. Overall, although numerical solutions can handle a
wider variety of utility function forms, the closed form offered by this paper allows for
insurance companies to directly substitute their own parameters to obtain the optimal
strategy. Hence, the analytical solution is characterized by its simplicity and ease of use.

Our study is closely related to the work of Xu et al. [22] and Xu et al. [23]. The primary
distinction lies in our introduction of a diffusion term form that, while slightly different, is
broader in scope and accompanied by the results of a numerical simulation. Compared
to Zhou et al. [24], we have considered a more extensive range of processes for the price
movement of risky assets. In contrast to the approach by Belkina et al. [25], our paper
presents a trade-off process between investing in risky and risk-free assets as opposed
to solely in risk-free assets. Overall, our work adheres to the classic solution approach
and framework of this strand of the literature. However, we contribute to the field by
offering an equilibrium result for investing in risky assets based on a diffusion process with
a fractional diffusion term. A similar process was first proposed by Cox and Ross [26] for
pricing derivative securities. Moreover, we provide optimal investment and reinsurance
strategies. These findings are of substantial practical value to the planning departments of
insurance companies.

3. Model

The primary mission of insurance companies is to market insurance contracts and
provide risk protection to policyholders. However, with the continuous evolution of the
economy and the subsequent accumulation of wealth, there are dual implications for
insurers. On one hand, the demand for insurance contracts escalates, and on the other, the
potential losses from significant incidents rise proportionally. As a result, insurers face
a surge in premiums due to the aggregation of risks. In the face of major calamities, the
resultant claims can exceed the financial capacity of an insurance company.

To mitigate such scenarios, insurers often resort to reinsurance to manage their liability
exposure. However, this strategy comes at a cost, as the payment of reinsurance premiums
can erode the insurer’s premium income. Furthermore, insurance companies, operating as
financial institutions, channel their capital and premium accumulations into the financial
markets, seeking returns from investments in stocks, bonds, and other securities. Yet, in-
vestments inherently carry risks. Thus, determining an investment strategy that maximizes
returns while minimizing risks remains a focal point for insurance companies.

In the subsequent sections, we will employ a classic risk model, integrating both
securities investment and fixed-income ventures. We will also consider proportional
reinsurance to devise optimal investment and reinsurance strategies.

3.1. Model Establishment and Solution

Based on the assumptions of the classical risk model [7], the surplus process X(t) of
an insurance company is defined as follows:

dX(t) = cdt − dP(t)

where c represents the premium rate per unit of time for the insurance company and

P(t) represents the total claim amount at time t. P(t) =
N(t)
∑

k=1
Yk is a compound Pois-

son process. N(t) represents the number of claims within time (0, t]. It follows a ho-
mogeneous Poisson process with a positive parameter λ. {Yk, k = 1, 2, · · · } represents
a sequence of non-negative, independent, and identically distributed random variables.
Yk(k ≥ 1) denotes the compensation amount for the insured person on the k claim, which
follows the distribution F(y) with a mean of E(Yk) = m and a moment-generating function
MY(u) = E[euY] =

∫ ∞
k=1 euydF(y).
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Taking into account the inclusion of proportional reinsurance, let us assume that the
proportion of risk retained by the company is qt ∈ [0, 1]. Based on Kaas’s [27] principle of
expected value, the premium rate charged by the insurance company is (1 + θ)λm, where
θ > 0 is the safety loading of the insurance company. Similarly, the premium rate paid to
the reinsurance company is (1 + η)(1 − qt)λm, with η > 0 being the safety loading of the
reinsurance company.

After purchasing reinsurance, the surplus process of the insurance company can be
represented as:

dX(t) = λm[(1 + θ)− (1 + η)(1 − qt)]dt − qtdP(t). (1)

Next, we consider the company’s investment strategy for its surplus. B(t) represents
the price process of a risk-free asset, which follows dB(t) = rB(t)dt. Here, r is a constant
denoting the risk-free interest rate. The price process of the risky security, S(t), adheres to
the CEV (Constant Elasticity of Variance) process, dS(t) = µS(t)dt + σS

α
2 (t)dW(t).

Insurance companies have two types of investments at time t: risky assets (such as
securities or funds) and risk-free assets (fixed-rate income investments). Here, π(t) denotes
the amount the insurance company invests in risky securities, while πB(t) represents the
amount invested in fixed-rate income investments. According to Browne’s [9] assumption,
the investment amount can be either positive or negative, that is, −∞ < π(t), πB(t) < +∞.
A negative investment amount indicates a short position, while a positive amount indicates
a long position. N(t) and NB(t) represent the number of units held in risky securities
and fixed-income investments, respectively. Using {X(t), 0 ≤ t ≤ T} to represent the
company’s wealth process, the following relationship holds:

π(t) = N(t)S(t),

πB(t) = NB(t)B(t),

π(t) + πB(t) = X(t).

(2)

From Equations (1) and (2), it can be inferred that the wealth process X(t) satisfies the
following stochastic differential equation (SDE) form:

dX(t) = NB(t)dB(t) + N(t)dS(t) + λm[(1 + θ)− (1 + η)(1 − qt)]dt − qtdP(t)

= πBrdt + (x − πB)[µdt + σS
α
2 −1dW(t)] + λm[(1 + θ)− (1 + η)(1 − qt)]dt − qdP(t)

= {µx + πB(r − µ) + [qt(1 + η)− (η − θ)]λm}dt + (x − πB)σS
α
2 −1dW(t)− qdP(t).

Let ζ(t) = {q(t), π(t)}t∈[0,T] represent the insurance company’s strategy portfolio at
time t. Then, the above equation can be succinctly written as:

dX(t; ζ) = {µx + πB(r − µ) + [qt(1 + η)− (η − θ)]λm}dt + (x − πB)σS
α
2 −1dW(t)− qdP(t).

When ζ(t) = {q(t), π(t)}t∈[0,T] is F-measurable and satisfies:

∀t ∈ [0, 1], q(t) ∈ [0, 1]; P
{∫ T

0
[(x − πB)σS

α
2 −1]

2
dt < ∞

}
= 1.

Then, the strategy combination ζ is considered feasible. The set of all feasible strategy
combinations for the insurance company is denoted as Λ.

The objective of this article is to find an appropriate strategy to maximize terminal
wealth. Therefore, at the terminal time T and state X(t) = x, for any strategy ζ ∈ Λ, the
expected utility of wealth is defined as:

J(t, x; ζ(·)) = Et[u(xT)|xt = x],

where u(t) is the utility function, which satisfies u′ > 0, u′′ < 0 as u(t) is a strictly increasing
and strictly concave function.
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To achieve the maximum utility, the value function must satisfy the following form:

V(t, x) = sup
ζ∈Λ

J(t, x; ζ(·)).

Then, the optimal strategy ζ∗(t) = {q∗(t), π∗(t)} must satisfy Vζ∗(t, x) = V(t, x).
If the value function V(t, x) and its partial derivative Vt, Vx, Vxx are continuous, then

V(t, x) satisfies the following equation:
Vt + sup

α∈Λ
{µx + πB(r − µ) + [qt(1 + η)− (η − θ)]λm]Vx

+ 1
2 [(x − πB)σS

α
2 −1]

2
Vxx + λE[V(t, x − qY)− V(t, x)]} = 0

V(T, x) = u(x).

(3)

Next, we assume that the insurance company’s utility function u(·) is of the exponen-
tial type:

u(x) = λ1 −
c
v

e−vx,

where λ1, c are constants, and v is used to measure the investor’s degree of risk aversion.
Based on the above equation, the conjectured value function is:{

V(t, x) = λ1 − c
v e[−vx+h(T−t)], t < T

V(T, x) = λ1 − c
v e−vx.

where h(·) is an appropriate functional form, ensuring that, when the aforementioned
value function is substituted back into Equation (3), the equality holds. Moreover, from the
boundary conditions, we know h(0) = 0.

Next, we will take the partial derivatives of V(t, x) with respect to t,x:
Vt = [V(t, x)− λ1][−h′(T − t)],
Vx = [V(t, x)− λ1][−v],
Vxx = [V(t, x)− λ1](v2),
E[V(t, x − qY)− V(t, x)] = [V(t, x)− λ1][MY(vq)− 1].

(4)

After substituting Equation (4) into (3) and simplifying, we obtain the following
equation:

inf
α
{−h′(T − t)− [µx + πB(r − µ) + (qt(1 + η)− (η − θ))λm]v

+ 1
2 [(x − πB)σS

α
2 −1]

2
v2 + λ[MY(vq)− 1]

}
= 0.

(5)

Let

f (q, πB) = −h′(T − t)− [µx + πB(r − µ) + (qt(1 + η)− (η − θ))λm]v

+ 1
2 [(x − πB)σS

α
2 −1]

2
v2 + λ[MY(vq)− 1].

(6)

Thus, Equation (5) can be transformed into finding the minimum value of the function
f (q, πB). To find the appropriate q∗, πB

∗, we first take the partial derivative of πB with
respect to the first order and set it to zero, yielding:

πB = x +
r − µ

σ2Sα−2v
.

By further taking the second-order partial derivative of πB, we obtain:

∂2 f (q, πB)

∂2πB
= v2σ2Sα−2 > 0
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Thus, the function f (q, πB) is convex with respect to πB. Based on the properties of
convex functions, the optimal investment strategy is given by:

πB
∗ = x +

r − µ

σ2Sα−2v
. (7)

Taking the first partial derivative of q with respect to its variable and setting it to zero,
we obtain:

m(1 + η) = E[YevqY] := MY
′(vq),

letting a = vq, so we deduce that:

m(1 + η) = MY
′(a). (8)

To further solve Equation (8), we assume it has a unique positive root denoted as ρ.
Let q1 represent the parameter that minimizes the value in R+ for Equation (8). Given this,
we have ρ = q1v, i.e., q1 = ρ

v . Additionally, due to

∂2 f (q, πF)

∂2q
= λv2M′′ (vq) = λv2E(Y2evqY) > 0.

The optimal strategy q∗ can be expressed as:

q∗ = q1 ∧ 1 = (
ρ

v
) ∧ 1.

Next, by categorizing q∗, we can obtain the solution for h(T − t). When q∗ = ρ
v < 1,

substituting q∗ and πB
∗ into Equation (5) yields:

−h′(T − t)− [rvx +
(r − µ)2

σ2Sα−2 + λmρ(1 + η)− λmv(η − θ)] +
1
2
(r − µ)2

σ2Sα−1 + λ[MY(vq)− 1] = 0.

Integrating with respect to h′(T − t) and using the condition h(0) = 0, we obtain:

h(T − t) = Q1(v)(T − t),

where

Q1(v) = −rvx − 1
2
(r − µ)2

σ2Sα−2 − λmρ(1 + η) + λmv(η − θ) + λ[MY(vq)− 1].

When q∗ = 1, we can also deduce:

h(T − t) = Q2(v)(T − t),

where

Q2(v) = −rvx − 1
2
(r − µ)2

σ2Sα−2 − (1 + θ)λmv + λ[MY(vq)− 1].

Theorem 1. Assuming that the tail distribution 1 − F(y) decays exponentially, let ρ be the unique
positive root of (8). We present the optimal strategy to maximize the expected utility of terminal
wealth when the terminal time is T:

q∗ =
ρ

v
∧ 1, πB

∗ = x +
r − µ

σ2Sα−2v
.

And the value function is:

V(t, x) = λ1 −
c
v

exp[−vx + h(T − t)],
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where

h(T − t) =
{

Q1(v)(T − t), q∗ < 1,
Q2(v)(T − t), q∗ = 1.

3.2. Verification Theorem

In the previous subsections, we obtained an explicit solution for the HJB Equation (3).
However, to determine whether the value function is a smooth solution to the HJB equation,
it needs to be proven through a verification theorem.

Theorem 2. Let H(t, x) and g(t, x) satisfy the following:

(i) H(t, x) is integrable and is a solution to the following system of equations:− ∂H
∂t (t, x)− sup

α∈Λ
Lα(t,x)H(t, x) = 0 ∀(t, x) ∈ [0, T]× R,

H(T, x) = u(x) ∀x ∈ R.
(9)

where

Lα(t,x)H(t, x) = µx + πB(r − µ) + [qt(1 + η)− (η − θ)]λm]Hx +
1
2
[(x − πB)σS

α
2 −1]

2
Hxx.

(ii) g(t, x) is a control rule that, for every fixed point (t, x), allows for us to find an upper bound
for the HJB equation by letting α = g(t, x) vary.

We have the following:

(i) The value function V(t, x) = H(t, x).
(ii) There exists an optimal control rule α̂ such that α̂(t, x) = g(t, x).

Proof. For any α ∈ Λ with a fixed (t, x), the process Xα defined on [t, T] is a solution to the
following equation:{

dXα
s = {µx + πB(r − µ) + [qs(1 + η)− (η − θ)]λm}ds + (x − πB)σS

α
2 −1dWs − qdPs.

Xt = x

Applying the Itô Lemma to H(T, Xu
T), we obtain:

H(T, Xu
T) = H(t, x) +

∫ T

t

∂H
∂t

(s, Xα
s ) + Lα(s, Xα

s )ds +
∫ T

t
Hx · A(Xα

s , α)dWs

where A(Xα
s , α) = (x − πB)σS

α
2 −1.

From (9), it is known that for any s, the following holds:

∂H
∂t (s, Xα

s ) + Lα H(s, Xα
s ) ≤ 0, α ∈ Λ(t, x), (10)

and furthermore, from the boundary conditions of the HJB equation, we have:
H(T, Xα

T) = u(Xα
T).

Then, we deduce:

H(t, x) +
∫ T

t

∂H
∂t

(s, Xα
s ) + Lα(s, Xα

s )ds +
∫ T

t
Hx · A(Xα

s , α)dWs = u(Xα
T).

By using the above equation along with (10), we obtain the inequality:

H(t, x) ≥ u(Xα
T)−

∫ T

t
Hx · A(Xα

s , α)dWs.
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Taking expectations on both sides:

H(t, x) ≥ E[u(Xα
T)].

And we have the value function:

V(t, x) = sup
Λ

E[u(Xα
T)],

Then, in [0, T]× R, ∀α ∈ Λ(t, x), we have:

H(t, x) ≥ V(t, x).

To obtain the equality H(t, x) = V(t, x), we need to prove the reverse inequality.
We choose a specific control function to make H(t, x) = V(t, x), and according to the
assumptions on g(t, x) in the theorem:

−∂H
∂t

(t, x)− sup
α∈Λ

Lα(t,x)H(t, x) = −∂H
∂t

(t, x)− Lg(t,x)H(t, x) = 0.

Through a similar derivation as in the previous part, we can obtain the following:

H(t, x) = E[u(Xg
T)] = J(t, x; g).

Then, we have
H(t, x) = J(t, x; g) ≤ V(t, x),

In [0, T]× R we have H(t, x) ≥ V(t, x), and we deduce that:

W = V,

and g(·) is the optimal control policy. We have completed the proof of the theorem. □

3.3. Hypotheses

Following our theoretical analysis, we have identified the optimal investment ratio
and reinsurance ratio for insurance companies. Next, we will discuss several intuitive
hypotheses based on numerical simulations, which are prevalent in real-world scenarios.

Drawing on the classical findings of Markowitz, the proportion of investment in risky
and risk-free assets is directly proportional to their respective rates of return. Therefore, we
begin our discussion with a hypothesis that aligns with this classic conclusion.

Hypothesis 1 (H1). The optimal decision for insurance companies regarding the proportion of
investment in risky and risk-free assets is directly proportional to their rates of return.

For asset management companies within insurance firms, managing the risk of the
assets is a crucial responsibility. Consequently, insurance companies opt for a more conser-
vative approach when market risk escalates.

Hypothesis 2 (H2). The proportion of insurance companies’ investment in risk-free assets is
inversely proportional to the variance of risky assets.

Contrary to traditional investment models, the distinctive feature of this paper is
the discussion of reinsurance strategies in relation to insurance wages. Considering the
heterogeneous behaviors of insurance companies, we propose the following assumption.

Hypothesis 3 (H3). The higher the risk aversion coefficient of an insurance company, the more
conservative its Optimal Proportional Reinsurance Strategy.
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4. Numerical Simulation

In this section, by comparing the numerical results of different parameters and visual-
izing them graphically, we analyze the impact of these crucial parameters. Assuming that
the claim size follows an exponential distribution under the classical risk model, we can
directly obtain the following results:

Lemma 1. Assuming that the claim size follows an exponential distribution, the positive solution
to Equation (8) is given by [28]:

ρ =
1
m
(1 −

√
1

1 + η
).

Lemma 2. Assuming that the claim size follows an exponential distribution, we can derive the
optimal strategy and the optimal value function that maximize the expected utility of terminal wealth:

q∗ = [
1

mv
(1 −

√
1

1 + η
)] ∧ 1, (11)

and
V(t, x) = λ1 −

c
v

exp[−vx + h(T − t)], (12)

where

Q(v) =

−rvx − (r−µ)2

σ2Sα−2 + λmv(η − θ) + 1
2
(r−µ)2

σ2Sα−1 + λ[2
√

1 + η − (2 + η)], q∗ < 1,

−rvx − (r−µ)2

σ2Sα−2 + λmv(1 + θ) + 1
2
(r−µ)2

σ2Sα−1 +
λmv

1−mv q∗ < 1.

4.1. Relationship between Terminal Wealth Expected Utility, Time, and Initial Assets

In our model, λ represents the expected frequency of claim events per unit of time. v
is the risk aversion coefficient, quantifying the investor’s degree of risk aversion. λ1, c are
coefficients within the investor’s utility function, which measure the utility function’s scale.
µ signifies the expected rate of return on risky assets, whereas σ indicates the volatility
of risky asset prices. θ and η denote the safety loading for the insurance and reinsurance
companies, respectively, reflecting their tolerance for risk. m describes the dimensionality
of Brownian motion. T marks the terminal point of the time horizon considered in the
model, and S represents the price of the risky asset at the decision point. α is the coefficient
measuring the impact of the diffusion term on the price of the risky asset.

To simplify the calculations, we first assume the values of several parameters.
Letting λ1= 3, c = 0.5, v = 0.5, r = 0.05, µ= 0.12, σ= 0.4, α= 1, λ= 3, m = 1, θ= 0.3,

η= 0.2, S = 5, T = 3 into Equation (12), we can determine the impact of variable v, x on
the value function. The results are visualized in Figure 1 using MATLAB 2023 software
(MathWorks, Natick, MA, USA).

From Figure 1, it is evident that the utility of terminal wealth decreases with the
passage of time, yet it is positively correlated with the initial capital.

4.2. The Optimal Proportional Reinsurance Strategy in Relation to Risk Aversion Coefficient and
Safety Loading

Based on the proportional reinsurance strategy (11) and assuming parameter m = 1,
we investigate the impact of the safety loading η and risk aversion coefficient v on the
optimal level of proportional reinsurance q∗.

As depicted in Figure 2, q∗ is inversely related to v. This suggests that the greater
the insurance company’s aversion to risk, the smaller the proportion of risk it retains. In
terms of the safety loading for the reinsurance company, with a consistent risk aversion
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coefficient, η is directly proportional to q∗. This indicates that as the reinsurance company’s
unit premium rate increases, the primary insurance company opts to bear a larger portion
of the risk itself.
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4.3. The Relationship between Optimal Investment Strategy, Risk-Free Interest Rate, and
Expected Return

Given the optimal investment amount πB
∗ = x + r−µ

σ2Sα−2v , allocated by the insurance
company to fixed interest income investments, and assuming σ= 0.4, S = 5, v = 0.5, α= 1,
we examine the impact of the risk-free interest rate r on πB

∗ under different values of the
expected return on risky assets µ.

As illustrated in Figure 3, the optimal investment strategy for fixed interest income
investments is positively correlated with the risk-free interest rate. Specifically, as the
risk-free rate increases, the returns from investing in risk-free assets also rise, prompting
insurance companies to allocate more funds to these assets. Concurrently, for a given
risk-free rate, the investment amount in risk-free assets decreases as the expected return on
risky assets increases. This suggests that when returns from risk-free assets remain constant
and the expected returns from risky assets grow, investors will inevitably increase their
investments in risky securities.
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4.4. The Relationship between Optimal Investment Strategy, Volatility, and Risk
Aversion Coefficient

Based on Equation (7) and assuming S = 5,α= 1, r = 0.05, µ= 0.12, we aim to inves-
tigate the impact of the volatility of the risky asset σ and the risk aversion coefficient v
on πB

∗.
As illustrated in Figure 4, the investment in risk-free assets increases with the rising

volatility of the risky asset. Specifically, as the risk intensifies, insurance companies tend
to allocate a larger portion of their funds to risk-free assets, thereby increasing their long
positions in such assets. On the other hand, for a given level of volatility in the risky
asset, a higher risk aversion coefficient indicates a deeper aversion to risky investments.
Consequently, a greater amount will be invested in risk-free assets.
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Figure 4. The impact of risky asset volatility and risk aversion coefficient on the optimal investment
amount in risk-free assets.

4.5. The Relationship between Optimal Investment Strategy, Volatility, and Expected Return

Based on Equation (7), let us assume S = 5,α= 1, r = 0.05, v = 0.3. The relationship
among the three variables can be visually represented through a graphical illustration.
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The investment amount in risk-free assets, πB
∗, decreases as the volatility increases, as

analyzed in Figure 4. As observed from Figure 5, for a given level of volatility, the higher the
expected return µ of the risky asset, the smaller the amount the company chooses to invest
in risk-free assets. However, when the volatility is around 0.6, the optimal investment
amount in risk-free assets remains almost unchanged. This is because the risk associated
with investing in securities becomes excessively high at this point. Even with a higher
return, the insurance company would refrain from investing under such circumstances.
Given real-world scenarios, this behavior is quite intuitive.
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Figure 5. The impact of risky asset volatility and expected return on the optimal investment amount
in risk-free assets.

5. Managerial Applications

We have calculated the risk aversion coefficients for insurance companies in the United
States and China using real S&P 500 and Shanghai Stock Exchange Index data. The risk-free
rates are based on the ten-year government bond data from the U.S. and China. The data
for the index returns and risk-free returns span from July 2008 to October 2023. The index
and bond data were sourced from the CEIC database. The annual returns for the U.S. risky
assets and risk-free assets µ and r are 0.1359 and 0.0244, respectively, while for China they
are 0.05674 and 0.03387, respectively. The variances of the risky assets σ2 are 0.02078 for the
U.S. and 0.06678 for China. It is evident that, in comparison to the Chinese stock market,
the U.S. stock market has lower risk and higher excess returns.

We utilized data from the last decade from the BVD database consisting of 8920 U.S.-
based insurance-related companies and 133 listed insurance-related companies from the
CSMAR database in China.

Figure 6 displays the density distribution of the risk aversion coefficients for the U.S.
insurance companies, with a concentration in the lower section of the distribution. As the
aversion coefficients increase, the density gradually decreases. Next, we will present the
risk aversion coefficients for the Chinese insurance companies.

According to Figure 7, the distribution shape of the risk aversion coefficients for
Chinese insurance companies is similar to that of U.S. companies. However, the coefficients
for Chinese companies are significantly higher, indicating that Chinese insurance companies
have a higher preference for investing in risky assets compared to their U.S. counterparts
based on actual data. Next, we will show how the reinsurance ratio of insurance companies
changes with the risk aversion coefficient.
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As shown in Figure 8, similar to Figure 2, the safety loading on the Optimal Propor-
tional Reinsurance Strategy is inversely proportional to the risk aversion coefficient. The
difference is that due to a higher risk aversion coefficient, U.S. insurance companies have
a lower retention risk ratio. Next, we will demonstrate the impact of the risk aversion
coefficient of Chinese insurance companies on the risk borne by the companies.

According to Figure 9, similar to Figures 2 and 8, the safety loading on the Optimal
Proportional Reinsurance Strategy gradually increases with the rise in the risk aversion
coefficient. Compared to the U.S. results in Figure 8, due to a lower risk aversion coefficient,
Chinese insurance companies opt to assume a significantly higher proportion of risk. This
also explains why the reinsurance development in China is not as large-scale and mature
as in the United States.

The findings illustrated in Figure 1 articulate a general managerial concept: for share-
holders, allowing for a longer growth period for the company translates into greater utility
returns. Similarly, injecting more initial capital also yields higher utility.
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To clarify the optimal investment strategies for insurance companies under varying
market conditions, Figure 3 delineates the relationship between the return rates of risk-free
assets and the optimal investment volume under different risky asset returns. Notably,
Figure 3 provides a meaningful insight: there is a linear relationship between the risk-free
rate of return and the optimal investment in risk-free assets. This implies that insurance
companies could linearly adjust their portfolios in response to changes in monetary policy
interest rates.

Figure 4 concurrently presents the relationship between the optimal investment in risk-
free assets and the volatility of risky assets when considering the heterogeneity in investors’
risk aversion coefficients. Our model attributes two types of heterogeneity to insurance
firms: in their risk aversion and initial capital. While Figure 1 has already discussed how a
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company’s utility changes with varying initial capital, Figure 4 reveals how the optimal
investment strategy alters under the other heterogeneity.

Lastly, Figure 5 displays the relationship between the optimal investment in risk-free
assets and the volatility of risky assets when the drift rate of risky asset prices assumes
different values, showing how the optimal decisions of insurance companies change in the
face of varying market scenarios. This may also represent the optimal strategy differences
across insurance industries in different countries.

Based on Figure 3, we can accept Hypothesis 1. That is, the investment ratio between
risk-free and risky assets is directly proportional to their rates of return. This indicates
that, even when considering reinsurance and insurance claims, the classic investment
conclusions remain valid.

According to Figures 4 and 5, we can observe that Hypothesis 2 is not rejected under
various circumstances. Specifically, as the variance of the risky assets increases, insurance
companies invest more in risk-free assets.

From Figures 8 and 9, we understand that Hypothesis 3 is acceptable for insurance
companies in both the United States and China. That is, as the degree of risk aversion
increases, insurance companies will choose a more conservative reinsurance strategy.

6. Conclusions

In this study, we construct an intricate surplus process for insurance companies,
incorporating elements of risky investments, risk-free investments, and reinsurance, all
grounded in the foundational risk model. A strategic allocation of the company’s surplus
is directed toward the acquisition of proportional reinsurance, serving as a mechanism
for risk transference. Concurrently, the residual surplus is channeled into the financial
market, bifurcating into securities investment and fixed-income ventures. Notably, the price
trajectory of the securities aligns with the CEV (Constant Elasticity of Variance) process,
whereas the fixed-income segment is delineated by the risk-free asset price dynamics.

Leveraging the tenets of stochastic control theory, our model is sculpted with an
overarching objective: the maximization of terminal wealth utility. This model subsequently
undergoes a transformation, aligning with the structure of the pertinent HJB (Hamilton–
Jacobi–Bellman) equation. Our rigorous approach yields explicit solutions delineating
the optimal investment strategies and reinsurance proportions. Through a meticulous
verification theorem, we affirm that the derived value function stands as a seamless solution
to the HJB equation.

The research encapsulates a pivotal managerial tenet: extending the growth horizon
of a company affords shareholders enhanced utility returns, akin to the benefits reaped
from augmenting initial capital. Elucidating optimal investment strategies for insurers,
the analysis identifies a direct correlation between risk-free asset returns and ideal invest-
ment levels across diverse returns on risky assets, suggesting that insurers can adjust their
portfolios linearly in response to monetary policy shifts. The study further explores how
variances in risk aversion and initial capital—two distinct forms of heterogeneity within
insurance firms—affect investment decisions. It is demonstrated that companies’ utilities
are contingent on initial capital provisions, while a separate dimension of heterogeneity
significantly influences optimal investment strategies. Moreover, the dynamic interplay
between risk-free investment decisions and the volatility of risky assets is mapped, particu-
larly as the drift rate of risky asset prices varies, highlighting the adaptability required of
insurance companies’ strategic choices amidst fluctuating market conditions, potentially
reflecting divergent optimal strategies in the insurance sectors of different nations.

In the concluding segments, we juxtapose numerical outcomes across a spectrum
of parameters, supplemented with illustrative visualizations. This comparative analy-
sis sheds light on the nuanced influence of these parameters on both investment and
reinsurance strategies.

Our paper preliminarily investigates optimal investment and reinsurance strategies
within the classic risk model framework. Nonetheless, recognizing the operational realities
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of insurance companies, there are several avenues for refinement: Interest rates in actual
markets are variable, not fixed, so employing stochastic rates could more accurately depict
asset price processes. Given that investments are a key revenue stream for insurers, their
foray into risky assets need not be confined to securities alone. Options, increasingly
indispensable for diversifying income and hedging risks, could be incorporated into future
studies to identify a balanced investment approach across stocks, bonds, and options.
Lastly, while the current study utilizes an exponential utility function indicative of absolute
risk aversion, alternative utility functions like logarithmic or power functions might be
used to explore how varying risk preferences affect investment strategies.

Due to the limitations of our computational capacity, there are some factors that
our model has not incorporated. For instance, we assume that the price of the risky
asset in the model is an exogenous stochastic process rather than the result of general
equilibrium clearing. We have also not taken into consideration the auxiliary role that
financial derivatives, such as options and futures, play in the asset management of insurance
companies. We plan to address these issues gradually in our future research.
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