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Abstract: We present a computational framework for modeling an inextensible single vesicle driven
by the Helfrich force in an incompressible, non-Newtonian extracellular Carreau fluid. The vesicle
membrane is captured with a level set strategy. The local inextensibility constraint is relaxed by
introducing a penalty which allows computational savings and facilitates implementation. A high-
order Galerkin finite element approximation allows accurate calculations of the membrane force with
high-order derivatives. The time discretization is based on the double composition of the one-step
backward Euler scheme, while the time step size is flexibly controlled using a time integration error
estimation. Numerical examples are presented with particular attention paid to the validation and
assessment of the model’s relevance in terms of physiological significance. Optimal convergence
rates of the time discretization are obtained.
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1. Introduction

Motivated by their biomedical applications and their great potential for improving
existing therapies, the development of accurate numerical tools to better understand the
functioning processes of biomemetic lipid vesicles remains a dynamic and stimulating area
of research [1]. They represent an attractif model system for a quantitative and predictive
understanding of red blood cells (RBCs), whose dynamics continue to pose a formidable
challenge to computational modeling [2]. Blood in the microvasculature is a complex fluid
whose physiological behavior is critically dependent on its major cellular components, the
RBCs. Although blood flow is generally assumed to be Newtonian fluid in the large vascular
system, it exhibits a non-Newtonian shear-thinning rheology that cannot be overlooked
at the microscopic scale, due to the complex mixture in the plasma [3–7]. Among several
existing constitutive laws, we consider the Carreau’s constitutive law, commonly used
for blood flow. That is, the viscosity exponentially decreases with increasing shear rates.
A major challenge in complex flows lies in deciphering the fluid/membrane space-time
interaction at the individual level [8]. Therefore, the simulation of such biomembranes
needs to gain in accuracy. This work is oriented towards the direct numerical simulation of
a deformable vesicle in a surrounding non Newtonian flow.

A variety of numerical methods have been developed for the vesicle problem by
tracking explicitly (e.g., boundary integral method [9–11], immersed boundary method [12],
penalty-immersed boundary method [13] lattice Boltzmann method [14], parametric finite
element method [15,16], etc.) or implicitly (e.g., level set method [17–21], phase field
approach [22,23], isogeometric phase field method [24], combined level set and phase field
methods [25], etc.) the vesicle’s membrane. However, most numerical studies have been
limited to Newtonian fluid models in the zero Reynolds limit. Nevertheless, an astonishing
change in the RBC behaviors under finite Reynolds regimes was first pinpointed in [18,26].
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To the best of our knowledge, the most relevant numerical study of the dynamics of a single
Newtonian vesicle in a non-Newtonian fluid is presented in [12], where an Oldroyd-B
viscoelastic model was used to model the surrounding fluid of the vesicle.

To model the mechanical properties of the membrane of vesicles (and of biological
membranes in general), a physiologically realistic model consists of the minimization of
the scalar energy functional known as the Helfrich energy. In this model, the main mode
of deformation is bending and the cost in bending is determined by the main curvatures
of the membrane. That results in a highly nonlinear membrane force with respect to the
shape. The model has been introduced in the early 1970s in separate works by Canham [27],
Helfrich [28,29] and Evans [30]. For a phospholipidic membrane Γ, the Helfrich energy is
expessed with respect to the mean curvature H as follows:

E(Γ) =
kb
2

∫
Γ

(
H(Γ)

)2
ds, (1)

with kb ≈ 10−20 kg m2 s−2 the bending rigidity modulus [31,32]. Moreover, a phospholipid
bilayer is purely fluidic interface characterized by the local inextensibility that constraints
the surface divergence of the velocity field to vanish on the membrane. Membrane in-
compressibility plays an important role in the dynamics of flowing vesicles and leads
to the preservation of the membrane surface (or perimeter in two-dimensional studies)
thanks to Reynolds’ lemma, see [18]. This constraint can be enforced, for example, via
an exact Lagrange multiplier localised on the membrane which can be thought of as a
position-dependent membrane tension [33] or an elastic force expressed in terms of mem-
brane stretching [17]. The fluid/membrane coupling remains challenging due to the highly
nonlinear membrane force with respect to the the shape of the vesicle. Instead of using a
body-fitted grid for the membrane description, we employ a level set Eulerian framework
for a straightforward representation of the sharp interface with a signed distance func-
tion [34–36]. Generally speaking, the level set method makes it possible to naturally handle
the topological changes of interfaces such as interface merging or breaking. On the contrary,
numerical problems related to the mesh distortion can raise when modeling the large
displacement of an interface or topological changes using Lagrangian approaches. Special
treatments and remeshing procedures are required in such situations, which generally
remain difficult. The mechanics of the membrane is introduced through a localized body-
force term [19]. The deflation of the vesicles is quantified by a dimensionless geometric
parameter: the reduced area

v =
(A/π)

(P/2π)2 6 1,

with P the perimeter of the vesicle and A the area of the enclosed subdomain.
We have arranged the remainder of the article as follows. Section 2 presents the

mathematical framework for an individual vesicle immersed in a non-Newtonian Carreau
fluid and the nonlinear coupled problem. It also introduces the penalty method and details
the variational formulation of the problem. Section 3 is devoted to the time discretization
scheme and provides the global algorithm used in the numerical simulations. In Section 4,
we report sample numerical simulations in the Newtonian and non-Newtonian cases with
some validation results to illustrate the accuracy of the method. The conclusion and future
research directions are presented in Section 5.

2. Problem Statement

The spatio-temporal deformations of the vesicle are driven by the bending force, ac-
tions of fluid forces and boundary conditions, requiring the balance equations of mass and
momentum. The fluid-membrane coupling is described through the balance of hydrody-
namic stress by the bending response of the membrane. The level set description of the
membrane obeys a Hamilton–Jacobi equation.
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2.1. Level Set Formulation

Let T > 0 and for any time t ∈ (0, T), consider a 2D vesicle Γ(t) = ∂Ω(t) immersed
in a non Newtonian fluid occupying both extracellular Λ\Ω(t) and enclosed Ω(t) spaces.
Here, Λ ∈ R2 is a bounded convex polygonal domain with Γ(t) ∩ ∂Λ = ∅. See Figure 1.
From now, the explicit dependence of Γ(t) and Ω(t) from time will be understood but will
be omitted.

Λ

ub = (+V, 0)

ub = (−V, 0)

Γ

Ω 0

ν

x−L

−L

L
y

n

L

Figure 1. Representation of a vesicle Γ immersed a computational domain Λ under simple shear
flow conditions.

The membrane is implicitely described as a zero-level set of a Lipschitz continuous
scalar function as follows

Γ = {(t, x) ∈ (0, T)×Λ : ϕ(t, x) = 0}.

We assume that the region with negative ϕ(t, .) represents the internal domain of the vesicle
Ω. Generally speaking, the main utility of an implicit representation of an interface is that
large deformations or changes in topology, such as merging or pinching, which frequently
occur when dealing, for example, with bubbles and drops, can be treated in a natural and
direct way without the need for meshing or local refinement of the mesh in the vicinity
of the complex interface; Authomatic meshing remains challenging especially in three-
dimensional setups. The level set function is initialized as a signed distance function ϕ0
with respect to the initial position of the vesicle Γ. It is given by

ϕ0(x) =


inf

y ∈ Γ(0)
‖y− x‖, if x /∈ Ω(0)

− inf
y ∈ Γ(0)

‖y− x‖, otherwise.
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Let I be the identity tensor. Geometric quantities, such that the unit normal outward
vector n = ∇ϕ/|∇ϕ|, the mean curvature H = div n, the surface projector πΓ = I− n⊗ n,
as well as the surface gradient ∇s = πΓ∇, the surface divergence ∇s· = tr(∇s) and the
surface Laplacian ∆s operators are encoded in terms of ϕ. These quantities are consequently
extended to the entire computational domain Λ. The Helfrich force requires a fourth-order
derivative of ϕ, yielding a numerically stiff problem with severe time-step limitations
needed for stability [33,37].

2.2. Fluid Constitutive Equations

Let u and p be the fluid velocity and pressure fields. Consider a quasi Newtonian
constitutive law, where the Cauchy stress

σ = 2η
(
|D(u)|2

)
D(u)− pI

is expressed with respect to the rate-of-strain

D(u) =
1
2
(∇u +∇uT).

Let us consider the Euclidean norm of tensors |τ| = ( 1
2 τ : τ)1/2. The shear rate is then

given by |2D(u)|. The shear-rate dependent viscosity follows the Carreau’s law

η(γ) = η∞ + (η0 − η∞)(1 + κγ)

ς− 1
2 ,

with γ ∈ R+, η0 > η∞ > 0; See ([38] Section 2.1, Definition 2.3). Note that we followed the
notations in ([38] Definition 2.5), where the viscosity function is expressed with respect
to the square of the shear rate γ = |2D(u)|2, instead of the shear rate directly. Blood flow
features a shear thinning behavior, that is ς < 1, which implies that the viscosity decreases
with the shear rate. We consider the physiological parameters of human blood (assuming
a hematocrit concentration 45% at an ambient temperature 37◦), obtained by fitting data
from normal blood samples in [4]. We assume piecewise constant zero-shear viscosity
η0 = µi and η0 = µo = 0.16 Pa s in the enclosed Ω and surrounding Λ\Ω subdomains,
respectively. The latter correspond to the viscosities in the Newtonian case ς = 1. Without
loss of generality, we assume equal infinite shear viscosities η∞ = 0.0035 Pa s of the inner
and outer fluids.

A linear shear flow is characterized by the imposition of a no-slip condition with
constant opposing velocity u = ub on the horizontal boundaries ΣD of a square domain,
while stress-free boundary conditions are prescribed elsewhere on ΣN = ∂Λ\ΣD [39].

Although ϕ is initialized as a signed distance function with respect to the membrane
of the vesicle, the advection of the level set function degenerates its initial signed distance
property and the norm of the level set gradient may locally vanish or blow up, resulting in
numerical singularities. This issue is worked around by solving an auxiliary redistancing
equation which helps recover the original signed distance behavior [34,40]. Only a few
redistancing iterations are usually done on a regular basis, as the level set function must be
kept close to a signed distance map and not necessarily an exact distance, see, e.g., [37].

Three dimensionless physical parameters arise: The Reynolds number Re compares
the strength of inertial forces to the viscosity effect. The bending number Bn relates the
force of the imposed flow to the characteristic membrane bending strength. The viscosity
contrast µ̄ = µi/µo varies by changing the viscosity of the inner fluid and is relevant for
the vesicle’s dynamics. Equal densities are assumed in inner and outer domains as this
has no effect on the dynamics of the BRC [41]. We introduce the smoothed Heaviside
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Hε(·) and Dirac δε(·) functions within a banded strip of width 2ε > 0 around Γ for easy
approximations of integrals. They regularized functions are given by

Hε(ϕ) =



0, if ϕ < −ε

1
2

1 +
ϕ

ε
+

sin
(πϕ

ε

)
π

, if |ϕ| 6 ε

1, otherwise

,

δε(ϕ) =
dHε

dϕ
(ϕ) =


1
2ε

(
1 + cos

(πϕ

ε

))
, if |ϕ| 6 ε

0, otherwise
.

The standard finite element approximation would result in suboptimal convergence
due to the level set regularization. See for example [42] for more details on this issue.

From now, all quantities are non-dimensionalized. The same notations will be used
for ease of exposition. The normalized regularized viscosity is expressed as

ηε(γ, ϕ) = η∞ +
((

Hε(ϕ) + µ̄(1−Hε(ϕ))
)
− η∞

)
(1 + κγ)

ς− 1
2 , withγ > 0.

2.3. Statement of the Fluid-Vesicle Interaction Problem

Assume fluid incompressibility (mass conservation (2c)). Completed with the condi-
tions of continuity and mechanical equilibrium at the interface, the normalized coupled
fluid/membrane problem takes the form: Find ϕ, u, p and λ such that

∂ϕ

∂t
+ u.∇ϕ = 0, (0, T)×Λ, (2a)

Re
(

∂u
∂t

+ u.∇u
)
−∇ ·

(
ηε

(
|2D(u)|2, ϕ

))
+∇p = 0, (0, T)×Λ, (2b)

∇.u = 0, (0, T)×Λ, (2c)

∇s. u = 0, (0, T)× Γ. (2d)

Let [[·]] be the discontinuity jump of a given field across the vesicle membrane Γ in its
normal direction n. The system (2a–2d) is endowed with the conditions of continuity and
mechanical equilibrium at the interface

[[u]] = 0, (3)

[[σn]] = ∇sλ− λHn +
1

Bn

(
2∆s H +

H3

2

)
n. (4)

The latter is transferred as a source term in the momentum equation. We refer to [18] for
more details on the total stress jump across the vesicle and the derivation of the membrane
bending force. Moreover, we consider the boundary conditions ϕ = ϕb and u = ub on
(0, T)× Σ−, and σ · n = 0 on (0, T)× ΣN . Here Σ−(t) = {x ∈ ∂Λ : u(t, x) · ν(x) < 0} is
the inflow and ν is the outward-pointing unit normal to Λ, see Figure 1.

2.4. Panalty Approach

For the shear flow setups, we introduce V(ub) = {v ∈ (H1(Λ))2 : v = ub on ΣD}.
Hence, the admissible velocities belong to the constrained space

K(ub) =

{
v ∈ V(ub) :∇.v = 0 in Λ,∇s.v = 0 in Γ

}
.



Mathematics 2023, 11, 1950 6 of 18

Analogously to the pressure p introduced to impose the incompressibility of the fluid, the
zero surface divergence constraint (2d) is imposed by an exact local Lagrange multiplier
λ on Γ [33]. Targeting reduced computational load and simple implementation using
standard fluid solvers, a penalty method relaxes the inextensibility constraint. For ease of
presentation, the penalized problem is presented for vanishing inertia. The unsteady case
can be written after time discretization, see a detailed presentation for a different problem
in [43]. Let us introduce the dimensionless sharp function:

η∗0 (t, x) =
{

µ̄ when x ∈ Ω(t),
1 otherwise for Λ\Ω(t).

The problem (2) is first witten as a minimization under constraint:

(u, Ω) = arg inf
v∈K(t,ub),

ω⊂Λ

J(v, ω), (5)

with a total energy functional

J(v, ω) =
∫

Λ
J
(
|2 D(u)|2

)
dx +

1
2 Bn

∫
∂ω

H2(ω)ds. (6)

Here, the scalar differentiable energy of dissipation reads

J (γ) =
η∞

2
γ +

(η∗0 − η∞)

κ(ς + 1)

(1 + κγ)

ς− 1
2 − 1

.

Note that the Helfrich energy term depends indirectly on the velocity field u, since the
function ϕ describing the shape, is advected by u. The optimality system results from
a saddle-point formulation. To alleviate the inextensibility, we introduce the space of
unconstrained incompressibility

K̃(ub) = {v = ub :∇ · v = 0 in Λ}

For a small penalty parameter ε, the minimization problem (5) is approached by another
minimization problem penalizing (2d):

(u, Ω) = arg inf
v∈K̃(t,ub)

ω⊂Λ

Jε(v) = J(v) +
1
ε

∫
∂ω
(∇s · v)2 ds.

Using a saddle point formulation, the optimality system produces a penalty term in the
momentum equation. The level set advection equation is solved by the Streamline Upwind
Petrov-Galerkin method, with a stabilisation term S(ϕ, ψ) introducing diffusion in the
streamline direction [19].

Spatial discretization is carried out by finite elements. To reduce spurious oscillations
and errors due to multi-space projections for lower degree polynomials and accurately
calculate the bending term, higher order finite elements are considered using Lagrange
polynomials of degrees k + 1, k and k + 1 for u, p and ϕ, respectively, with k = {1, 2, 3}.
Considering the total derivative term, the variational formulation of the panalized prob-
lem writes:
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Find u ∈ C0((0, T),V(ub)), p ∈ L2((0, T), L2
0(Λ)) and ϕ ∈ C0((0, T), W1,∞(Λ) ∩

H1(Λ)) such that

Re
∫

Λ

(
∂u
∂t

+ u · ∇u
)
· v +

∫
Λ

2ηε

(
|2D(u)|2, ϕ

)
D(u) : D(v)−

∫
Λ

p∇.v

+
1
ε

∫
Λ
|∇ϕ|δε(ϕ) (∇s.u)(∇s.v)−

1
Bn

∫
Λ
|∇ϕ|δε(ϕ)

(
Ψ +

H3

2

)
n · v = 0, (7a)∫

Λ
q ∇.u = 0, (7b)∫

Λ
|∇ϕ|Ψξ +

∫
Λ
|∇ϕ| (∇sH) · (∇sξ) = 0, (7c)∫

Λ

∂ϕ

∂t
ψ +

∫
Λ
(u ·∇ϕ)ψ +

∫
Λ

S(ϕ, ψ) = 0, (7d)

∀v ∈ V(0), ∀q ∈ L2
0(Λ), ∀ξ ∈ H1(Λ) and ∀ψ ∈ H1(Λ).

3. Time Discretization

We consider a first order backward Euler scheme, referred to as BE, usually used for
the vesicle’s problem, and rely on the flow composition technique to raise the order of the
time integration scheme [44]. An adaptive time-stepping will be introduced afterwards.

3.1. Error Estimation

Henceforth, we focus on the time discretization of the system of first-order differential
equations obtained by finite element discretization. It is simply denoted by

y′ = f (t, y(t)), with y(0) = y0 and t ∈ R. (8)

Assume f is an analytic function. Let tn, 0 6 n 6 N be a partition of the time
interval [0, T] with time step δt = tn+1 − tn. and yn be the approximations of the solution
y(tn). Let Y t : R → R be the exact t-flow of the above differential equation so that with
Y t(y0) = y(t). A basic integrator, such that yn+1 = Yδt(yn), is said of order p if the
following equation holds

Y δt(y0)− Yδt(y0) = O
(

δtp+1
)

.

The order p of a one-step method can be raised by composition Y a1δt ◦ . . . ◦ Y asδt with step
sizes a1δt, · · · , asδt to at least an order p + 1 if the conditions

a1 + · · ·+ as = 1 and ap+1
1 + · · ·+ ap+1

s = 0

are satisfied [44]. No real solutions hold for odd p; This can be circumvented by considering,
for instance, an analytic continuation off the real axis by using complex coefficients ai’s [45].
For a thorough description of the composition of multi-step methods and the choice of
parameters a1, · · · , as for any general order p and step number s, we refer to the book ([44]
Section II.4).

In what follows, we limit our approach to the double composition (i.e., we set s = 2)
of the numerical flow Yδt associated with the backward Euler scheme, that is

Yδt(yn) = yn + δt f (tn, yn).

The aforementioned algebraic conditions provide the coefficients 2a1 = 2a2 = 1 + i .
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Theorem 1. For n > 0, consider the first order differential equations in [tn, tn+1]. Let us denote
yn+1,0 = yn, yn+1,1 = Y a1δt

(
yn+1,0

)
and yn+1,2 = Y a2δt

(
yn+1,1

)
= Y a2δt ◦ Y a1δt(yn). The

composed method defined by the real part yn+1 = Re
(

yn+1,2

)
is a numerical method of order 2.

Furthermore, the imaginary part, referred to as Im
(

yn+1,2

)
, represents an error estimate of the

approximation to within O
(

δt3
)

.

Proof. For n > 1 and k = 1, 2, we shall expand f (tn + akδt, yn+1,k) into a Taylor series
around (tn, yn+1,k−1). We have

yn+1,1 = yn+1,0 + a1δt f
(

tn, yn+1,0

)
and

yn+1,2 = yn+1,1 + a2δt f
(

tn + a1δt, yn+1,1

)
.

Considering yn+1,2, we expand the right-hand expression into a Taylor series and truncate

yn+1,2 = yn+1,1 + a2δt f
(

tn + a1δt, yn+1,1

)
= yn + a1δt f (tn, yn) + a2δt f (tn + a1δt, yn + a1δt f (tn, yn))

= yn + a1δt f (tn, yn)

+ a2δt

[
f (tn, yn) + a1δt

(
f t + f f y

)
(tn, yn)

+
1
2

a2
1δt2

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn) +O

(
δt3
)]

= yn + (a1 + a2)δt f (tn, yn) + (a1a2)δt2
(

f t + f y f
)
(tn, yn)

+
1
2

a2a2
1δt2

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn) + a2δtO

(
δt3
)

.

The subscript refers to the partial derivatives with respect to the given variable. Using the
expression of y(2), we get

yn+1,2 = yn + (a1 + a2)δty′(tn) + (a1a2)δt2y′′(tn)

+
1
2

a2a2
1δt2

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn) +O

(
δt4
)

.

The coefficients a1 and a2 satisfy a1 + a2 = 1 and 2a1a2 = 1. Thus, one can write yn+1,2 =

Re
(

yn+1,2

)
+ i Im

(
yn+1,2

)
. The real part of the approximated solution reads

Re
(

yn+1,2

)
= Re

(
yn + δty′(tn) +

1
2

δt2y′′(tn) +
1
4

δt3a1

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn)

+O
(

δt4
))

= Re
(

yn + δty′(tn) +
1
2

δt2y′′(tn)

)
+ Re(a1)

δt3

4

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn) + Re

(
O
(

δt4
))

= yn + δty′(tn) +
δt2

2
y′′(tn) +

δt3

8

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn)

+ Re
(
O
(

δt4
))

.
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By using the Taylor expansion of the exact solution y(tn+1) at the vicinity of tn and the
expressions of the higher derivatives of the solution, we evaluate the error between the
exact solution and Re

(
yn+1,2

)
as follows

e(tn + δt) = y(tn+1)− Re
(

yn+1,2

)
=

δt3

24
y(3)(tn) +

δt3

8

(
f t f y + f 2

y f
)
(tn, yn) + Re

(
O
(

δt4
))

. (9)

As a consequence, the composed scheme is indeed convergent and of second-order, pro-
vided f and its derivatives are bounded. Furthermore, the imaginary part of yn+1,2 is
expressed as follows:

Im
(

yn+1,2

)
= Im(a1)

δt3

4

(
f t,t + 2 f t,y f + f y,y f 2

)
(tn, yn) + Im

(
O
(

δt4
))

= − δt3

8
y(3)(tn) +

δt3

8

(
f t f y + f 2

y f
)
(tn, yn) + Im

(
O
(

δt4
))

.

By taking the difference between the error in (9) and the imaginary part of yn+1,2, we end
up with

e(tn + δt)− Im
(

yn+1,2

)
=

δt3

6
y(3)(tn) +O

(
δt4
)

,

As a matter of fact, the imaginary part denoted in the sequel by ζn+1 = Im
(

yn+1,2

)
, is

an approximation of the error up to third order and represents an error estimate of the
approximated solution yn+1 = Re

(
yn+1,2

)
.

3.2. Time-Stepping Strategy

The vesicle can undergo more or less rapid dynamics or deformations over time.
Although using a uniformly large time step can produce unphysical solutions and nu-
merical instabilities, using larger time steps for some slow dynamics (e.g., around the
horizontal position during tumbling) improves the computational efficiency. In [33], a
manual adjustment is introduced to improve the quadratic convergence of the Newton’s
algorithm. In this work, we adopt an adaptive time stepping scheme where the time step
size is flexibly controlled such that the time integration error, estimated by ζn at tn, does not
exceed a prescribed threshold value. Let δtmax and δtmin be the upper and lower bounds of
δt, generally chosen as 10−1 and 10 −3 for the vesicle problem. Let C be a predefined param-
eter introduced to calibrate the level of adaptability, while 10−α with α > 0 is the desired
precision and p represents the order of the method. The variable time step δtn+1 reads:

δtn+1 = δtn

(
10−k

C‖ζn+1‖L2(Λ)

)1/p

.

Following [46], we also perform a comparison with a known criterion based on the the
change rate of two consecutive numerical solutions ∂δt ϕn. For a predetermined constant
C = 103, the adapted step size is given by:

δtn+1 = max

δtmin,
δtmax√

1 + C ‖∂δt ϕn‖2
L2(Λ)

.

3.3. Overall Algorithm

The membrane and fluid problems are first solved iteratively, while a fixed-point loop
allows a strongly coupled approach for better numerical stability. Indeed, the level set
problem is first solved using the velocity in the previous iteration; the fluid problem is
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subsequently solved using the updated level set function in the membrane force calculation.
Fixed point convergence is reached when the absolute error between two subsequent
iterates is less than a prescribed tolerance, set tol = 10−6 in the calculations. The overall
coupling approach is detailed in Algorithm 1.

Algorithm 1 Fluid/vesicle coupling algorithm

1: Set fixed-point tolerance tol and time step δt0
2: Set initial conditions (n = 0): u0 and ϕ0 are known values
3: for n = 0, . . . , nmax do
4: Update time tn+1 = tn + δtn
5: Set, from known values, u0

n+1 = un and ϕ0
n+1 = ϕn

6: for k = 0, . . . , kmax do
7: Compute ϕk+1

n+1 from (7d), advected with velocity uk
n+1

8: Compute the mixed variable Ψ (7c) and membrane force in (7a) with ϕk+1
n+1

9: Compute uk+1
n+1 and pk+1

n+1 by solving the linear generalised Stokes subproblem (7a) and (7b)

10: Compute absolute error errk+1 :=
∥∥∥Hε

(
ϕk+1

n+1

)
−Hε

(
ϕk

n+1

)∥∥∥
L2(Ω)

11: if errk+1 < tol then
12: Update solution un+1 = uk+1

n+1, pn+1 = pk+1
n+1 and ϕn+1 = ϕk+1

n+1
13: break
14: end if
15: end for
16: if tn+1 > T then
17: break
18: end if
19: Compute the adapted time step δtn+1 with ϕn+1
20: end for

4. Numerical Results and Discussion

We provide several validation tests to illustrate the accuracy in terms of spatial and
temporal convergence and the ability of the model to predict experimentally observed
outcomes, including vesicle regimes under simple shear flow in purely Newtonian flow.

The simulations have been run using the C++ library for scientific computing Rhe-
olef [47], with particular emphasis on finite elements and parallel computing. The cal-
culations were performed on non-regular meshes generated using Gmsh (GMSH– http:
//www.geuz.org/gmsh (accessed on 28 March 2023)). Figures are generated using Par-
aview (Paraview–http://www.paraview.org (accessed on 28 March 2023)) and Gnuplot
(Gnuplot–http://www.gnuplot.info (accessed on 28 March 2023)).

4.1. Verification of the Method–Time Convergence

In this test case, we use numerical simulations to verify the above analytical results,
mainly in terms of convergence behavior. We first test the accuracy of the time integration
scheme and the composition method by solving the following initial value problem

y′ + tan(t− 2)y =
2a(t− 2) cos(t− 2)
(a(t− 1)(t− 3))2 + 1

, y(0.5) = y0.

The exact solution
y(t) = cos(t− 2) arctan(a(t− 1)(t− 3))

has stiff variations at t = 1 and t = 3 which are calibrated by the parameter a. The initial
condition y0 is given by the exact solution evaluated at t = 0.5. We solve the differential
equation numerically over the time interval [0.5, 6] using different numerical schemes for a
relatively large stiffness coefficient a = 50.

We consider constant time step sizes and perform a convergence study for the first-
order basic BE, the double composition of BE, the second-order Cranck Nicolson (simply
denoted by CN) versus successively refined step sizes δt. The log-log plot of errors with

http://www.geuz.org/gmsh
http://www.geuz.org/gmsh
http://www.paraview.org
http://www.gnuplot.info
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respect to the exact solution in the norm l∞ is reported in Figure 2 as a function of δt. Results
corroborate the theoretical time rates of convergence, showing first-order and second-order
convergences for BE and CN, respectively, while a higher quadratic convergence is achieved
by dual composition of BE scheme. Moreover, a high order cubic convergence is obtained
by double composition of the composed BE scheme. Consequently, the error bounds are of
optimal order in time.

ΦBE3
ΦBE2
ΦCN
ΦBE

time step δt

slope 3

slope 1

slope 2

max
n

|yn − y(tn)|

110−210−410−6

1

10−4

10−8

10−12

Figure 2. Temporal convergence for different time schemes as a function of constant time steps δt.

We now proceed to a quantitative comparison between the time-stepping strategies.
The initial value problem is solved using adapted time steps generated using both the error
estimate ζn and the rate of change criterion. The calculations are also performed with a
constant time step δt∗ so as to perform the same number of iterations as in the case of the
adaptation of δt with the criterion ζn. Results are reported in Figure 3a–c.

δt∗ζn∂δt(yn)y(tn)

(c)

yn

time tn

6543210.5

0

−2

(b)

|yn − y(tn)|
10−2

10−6

10−10

(a)

δtn
10−1

10−3

10−5

Figure 3. Comparative study of the accuracy between the solutions obtained using different adapta-
tion strategies versus a constant time step. Time evolution of the adapted time step (a), error (b) and
computed solution (c).
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Figure 3c highlights the need to use an adapted time step according to the variations
of the solution in order to obtain an accurate evaluation in areas of stiff variations. Visually,
one perceives significant discrepencies compared to the exact solution, which is not the
case for calculations with the adapted time steps.

We give on Figure 3a the evolution over time of the adapted time steps δtn using for
the adaptation the two criteria above: the error estimate ζn and rate of change |∂δt(yn)|.
Although there is overall agreement in terms of variations of the adapted time steps, the
ζn criterion makes it possible to capture the stiff variations with an appropriate level of
temporal adaptability compared to the rate of change. Indeed, we plot on Figure 3c the
error with respect to the exact solution as a function of time, showing clearly better accuracy
when using ζn compared to the criterion |∂δt(yn)|, which provides better results compared
to the compuations with a constant time step δt∗.

4.2. Level Set Example–Spatial Convergence

To investigate spatial accuracy, we consider the Zalesak test of a solid slotted disk
in a periodic rotation. This test is commonly used to assess the performance of interface
tracking methods [48]. Consider a slotted circle of radius 0.15 initially centered at (0.5, 0.75)
and having a slot of depth 1/4 and width 1/10. The slotted circle is advected by a rotational

field given by u =

(
1
2
(0.5− y),

1
2
(x− 0.5)

)T
. The computational domain is the square

[0, 1]2. Successive snapshots showing the rotating slotted disk are provided in Figure 4.
We perform a spatial convergence analysis by calculating the error in the L2 norm of the

Heaviside of ϕ with respect to the exact solution after one period of rotation. Successively
refined meshes with mesh size h are considered. Figure 5 plots the evolution of the
logarithm of errors as a function of the logarithm of h, for continuous piecewise polynomial
approximations of degrees k = 1, k = 2 and k = 3. A nonlinear fitting is done. Convergence
slopes show that the error behaves approximately as O

(
hk+1

)
, where k is the Lagrange

polynomial’s degree.

P3

P2

P1

mesh size h

slope 4.3

slope 3.4

slope 1.9

‖Hε(ϕh)− Hε(πhϕ)‖L2(Λ)

5× 10−25× 10−3

10−1

10−3

10−5

Figure 4. Spatial convergence in the L2 norm for the rotating Zalesak disk as a function of the mesh
size h.
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Figure 5. Zalesak test case. Snapshots showing the rotation of the slotted disk at successive times
t = 0, 1.76, 3.77, 5.03, 2.28, 7.54, 9.55, 4π. The shape (blue color) obtained is compared to the exact
solution after a complete rotation period (red color).

4.3. Vesicle in Linear Shear Flow

Consider a vesicle with a reduced area v = 0.77 in a simple linear shear flow and set
the physical parameters to Re = 10−3, Bn = 103 and ς = 0.479. In light of the experimental
observations and analysis [49], RBCs can undergo mainly two different motions, referred
to as tank-treading (TT) and tumbling (TB) motions.

We first set a viscosity ratio µ̄ = 1 and report on Figure 6 successive snapshots of the
membrane dynamics in flow. Observe that the membrane Γ follows a steady state TT regime
by fixing its main axis at a given equilibrium inclination angle with respect to the flow.
Isocontour lines are provided in Figure 6 showing the velocity field becomes tangential to
the membrane in the steady state. Indeed, each material point on the membrane continues
to rotate tangentially to the flow without the vesicle changing shape.

Figure 6. Vesicle with reduced area v = 0.77 following a TT regime in simple shear flow at times
t ∈ {0.01, 0.14, 0.52, 1.6}. Dimensionless parameters: µ̄ = 1, Re = 10−3 and Bn = 103. The membrane
is plotted in red, while the tangential velocity is plotted in green. [Colour figure can be viewed
online].
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We then increase the ratio to µ̄ = 10, which leads to a change of regime. The membrane
loses its fluidity and undergoes a solid-like cyclic rotational motion around the interior, as
shown in the snapshots in Figure 7. Indeed, the TT becomes unfavorable to the benefit of
the TB when the viscosity ratio is beyond a threshold value for which the twisting force
due to shear can no longer be converted into TT torque of the membrane.

Figure 8 reports the TB inclination angle θn and adapted time steps versus the time
for few rotation periods. Higher values of δtn are successfully generated when the vesicle
is close to a horizontal tilt characterized by slow rotational dynamics. However, δtn are
almost ten times smaller when the membrane is in vertical position undergoing a strong
action of the orthogonal shear flow which results in a faster rotation.

Figure 7. Flowing vesicle with v = 0.77 following a TB regime for µ̄ = 10, Re = 10−3 and Bn = 103

at times t ∈ {2.27, 2.70, 2.88, 3.09, 3.25, 3.62}. The membrane is plotted in red, while the tangential
velocity is plotted in green. [Colour figure can be viewed online].

Thereafter, we proceed to a qualitative validation of our model compared to some
experimental and numerical results available in the published literature. We first focus
on the TT-TB transition in the purely Newtonian case, where some simulation results are
available. We report the critical viscosity contrast µ̄? necessary to observe a change of
regime for several values of the reduced area v in the interval [0.7, 1]. The phase diagram is
reported in Figure 9, showing good quantitative agreement with the Keller and Skalak’s 2D
predictive theory [50], referred to as KS, the experimental results of Kantsler & Steinberg
in [51] and the numerical calculations with the level set method in a finite differences
framework in [26]. Note that the KS predictive theory is obtained by assuming a fixed
ellipse shape for the vesicle, while only flow orientation is permitted. This could explain
the small difference between the different results and those predicted by the KS work.
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time tn

θn

43210

π/2

0

−π/2

δtn9× 10−2

9× 10−3

Figure 8. Flowing vesicle under TB regime: Adapted time steps δtn and inclination angle θn for a
vesicle in a tumbling regime.

2

4

6

8

0.7 0.8 0.9

Critical viscosity µ̄⋆(v)

ς = 1

v

2D KS
Kantsler & Steinberg

Salac et al.
this work

Figure 9. Phase diagram of the TT-TB transition versus the reduced area v in the Newtonian case.
Comparison with 2D KS theory [50], experimental results of Kantsler & Steinberg in [51] and numeri-
cal computations in [26]. [Colour figure can be viewed online].

Finally, we consider a vesicle following the tank-treading motion and focus on some
effects of the non-Newtonian fluid model on the TT regime. For TT vesicles at equilibrium,
we report in Figure 10 the change in the equilibrium inclination angle θ? with respect to the
reduced area parameter v. For ς = 1 corresponding to a Newtonian fluid, only a qualitative
agreement is observed with the experimental results in [51] and the numerical calculations
in [12], with angles slightly shifted upwards. While the proposed penalty method features
a smaller system of equations to solve, the small difference observed with respect to the
numerical results obtained in [12,33] may be due to relaxation of the inextensibility instead
of using an exact Lagrange multiplier [18,33] imposing this constraint.

We now study the equilibrium inclination angle of tank-treading vesicles immersed
in a non-Newtonian Carreau fluid. Simulation results are also reported in Figure 10,
illustrating lower values of the equilibrium angle θ? are obtained, for various reduced area
parameters. Our interpretation is as follows. At the vesicle scale in small capillaries, the
length scale and velocity are typically around 10µm and 1–100µm/s, respectively. The
local shear rate is of the order of 0.1–10 < 100 s−1 (typical value characterizing the transition
to a Newtonian behavior), resulting in an apparent viscosity closer to the infinite-shear
viscosity. As a consequence, the fluid is much denser and tends to decrease the inclination
angle at equilibrium.
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0
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0.1

0.15

0.2

0.25
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µ̄⋆ = 1

θ⋆(v)/π

v

Lai et al.
Laadhari et al.
Kantsler et al.

ς = 1
ς = 0.479

Figure 10. Vesicle in the TT regime. Equilibrium inclination angle θ? versus different reduced areas v.
Comparison with the experiments in [51] and numerical results in [12,33].

5. Conclusions

We have presented a numerical method for the simulation of the dynamics of a single
vesicle in non-Newtonian flow. The membrane is described by a level set function, while
the inextensibility is relaxed by a penalty method. The penalty method is straightforward
to implement using any Stokes solver generally available in finite element libraries and
features a smaller system of equations to solve. The order of the temporal scheme is raised
according to the double composition of the numerical flow associated with the first-order
backward Euler integrator. Moreover, an adaptive time-stepping strategy is based on an
error estimation and allows to improve the prediction of the membrane dynamics. The
numerical results show that we are able to accurately reproduce the cellular regimes under
linear shear flow as well as the regime change from tank-treading to tumbling in the
Newtonian case. Last but not least, a change of regime due to a non-Newtonian rheology
is highlighted.

The non-Newtonian effect will be further explored in a separate work, in the hope
of prompting experiments to explore it in depth. This is part of a larger study of the
dynamics of 3D biological membrane and RBCs with hyperelastic cytoskeleton in non-
Newtonian flows [25,52]. This requires the development of a robust solver for fluid–
structure interaction problems with a thin elastic structure [53,54]. Other extensions of
the presented method are being currently explored. We are particularly focusing on
the development of higher-order schemes by multi-step composition of various basic
integrators. The construction of robust preconditioners is also being explored.
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