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Abstract: We demonstrate a basic technique for simplifying time-periodic competition models, which
is based on the utilization of periodic delta functions as population growth rates. We show that the
Poincare mapping splits into a sequence of one-dimensional mappings. The study of the correspond-
ing stable equilibria allows us to make conclusions concerning the coexistence and selection of the
family of competitors. In particular, in “all vs. all” systems, for one of the populations to dominate, it
is enough to surpass the others with a certain margin, and the correspondent stock constant does not
depend on the number of competitors. We present paradoxical examples, where (1) a low-productive
population can displace a highly productive one, (2) the displacement is non-transitive, (3) the coexis-
tence is non-transitive. We also show how the delta functions can be utilized for the analysis of a
“predator–prey” system.

Keywords: time-periodic environment; delta functions; competition; selection criteria; universal
stock constant
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1. Introduction

Simulation models are widely used in the study of environmental, economic, and
social systems, see, for instance, classical references [1,2]. An important feature of such
objects is the possibility of an ambiguous description: the interaction of their elements can
be represented by many “plausible” nonlinear dependencies. This “uncertainty” (freedom)
allows us in some cases to choose a special structure of the model that allows for a fairly
complete study. To study the population evolution in a periodic environment, in the present
paper, we propose the design of competition models, i.e., δ-systems, in which population
growth coefficients are periodic delta functions.

Periodicity often reflects seasonality, which is an important factor affecting population
dynamics [3,4]. More precisely, there are a lot of periodic factors, e.g., temperature, rainfall,
human activity, etc., which can essentially affect evolution [3], species coexistence [5,6],
infectious diseases [7–9], etc. Taking into account seasonality can qualitatively change the
conclusions regarding population dynamics, since parameter periodicity can, in particular,
produce quasi-periodic and chaotic solution behavior [10,11]. Interestingly, seasonality can
have a stabilizing as well as destabilizing effect on dynamics [12–14].

In this paper, we follow the approach which was first used in [15] that can be classified
as semi-discrete modeling [16]. In fact, it utilizes differential equations with impulsive
effects [17–19]. We believe that the form of this approach which we use in the paper has
a certain degree of novelty. Usually, impulses are used to reproduce some biological or
environmental effects such as short-term reproduction processes [15,20], pulsed immigra-
tion [16], impulsive harvesting [21], etc. Our goal is somewhat different: the presented
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approach allows us to simplify the study of large time dynamics in systems with periodi-
cally changing parameters. We show that the study of such systems can be substantially
simplified by the utilization of periodic delta functions as population growth rates. In the
δ-system framework, the search for periodic regimes is reduced to the solution of a certain
system of linear algebraic equations. Moreover, the stability of equilibria can be justified by
quite elementary means. In the corresponding δ-systems, nonlinear interactions appear
quite rarely; each population has only one growth point during a period. The last circum-
stance allows us to split the Poincaré mapping into a superposition of simple mappings by
changing only one (“its own”) variable. Therefore, a certain “nonlinear skeleton” remains
from a full-fledged nonlinear interaction. This skeleton preserves the competitive essence of
the phenomena, while greatly simplifying the investigation. Therefore, δ-systems represent
a kind of “scout model” for obtaining plausible hypotheses related to the general case.

The aim of this paper is to demonstrate the capabilities of this approach using the
Contois-type model [22] as the main example. From the point of view of modeling ecosys-
tems, we demonstrate that some interesting effects can be discovered with the use of the
adopted approach: a low-productive population can displace a highly productive one, the
displacement can be non-transitive, the coexistence can be non-transitive. We also show
how delta functions can be utilized for the analysis of a “predator–prey” system.

The paper is organized as follows. In Section 2, we introduce δ-shaped periodic growth
rates using an example of the Contois model for a single population. We derive the jump
condition and carry out a simple study of the correspondent Poincaré mapping. In Section 3,
we generalize the jump condition to the case of two populations, underlying the “splitting
effect” of the Poincaré mapping. We present some examples, demonstrating counter-
intuitive properties of competition outcomes. In Section 4, we present some results related
to the stock constant, which is sufficient for the displacement of competitors. Section 5
concludes the paper.

2. Single Population Dynamics in a Model with δ-Shaped Growth Rates

Formally, the dynamics of a single population are represented in the form [23]:

ẋ = xφ(x, r(t)) (1)

where x is the population biomass; φ is a smooth function, which decreases in the first argu-
ment; r(t) is the growth rate, depending on changing environmental factors (temperature,
etc.). For example, the Contois model [22] uses the dependence

φ(x, r(t)) = −1 +
r(t)

1 + k + x
, (2)

where k is the biomass of competitors at time moment t, and r(t) ≥ 0 for all t. If the
environment is periodic, then r is a periodic function, r(t+mT) = r(t), m ∈ N := {1, 2, . . . },
for some T > 0. Growth rate functions are usually non-negative and may have one or
several maxima on [0, T]. Some biologists suggest that for evolutionary mature communities
of similar species, within common ecological niches, the areas under these graphs are
approximately the same (over the same time period) [24]. Without loss of generality, we
assume that they are equal to 1.

The usage of δ-shaped growth rate functions can be rationalized as follows. Consider
the Laplace-like transform

p(s) = Lr(s) :=
∫ T

0
e−str(t) dt, s ≥ 0.

The function p is completely monotone: (−1)n p(n)(s) ≥ 0, n ∈ Z+ := {0, 1, . . . }, and
p(0) = 1. Let E be the locally compact space of infinitely differentiable functions on (0, ∞),
endowed with the topology of uniform convergence of functions and all their derivatives
on compact subsets of (0, ∞). As is mentioned in [25], the set K of all completely monotone
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functions such that f (0+) ≤ 1 is compact in E, and the exponents s → e−αs, α ∈ [0, ∞] are
precisely its extreme points. Any function in K can be represented as

p(s) =
∫ ∞

0
e−αsµ(dα)

with some non-negative Borel measure on [0, ∞] (the Bernstein theorem [25]). Since e−τs =
Lδ(t − τ), from a heuristic point of view, delta functions turn out to be a kind of “basis” in
the family of growth functions.

Let us construct the Poincaré mapping (the first recurrence mapping) for the following
single population model with a δ-shaped growth rate:

ẋ = x
[
−1 + λδ(t − τ)

1
1 + k + x

]
. (3)

where τ ∈ (0, T), λ > 0 is a population productivity parameter, and k is the biomass
of competitors. From now on, we assume that all delta functions δ are T-periodic. Roughly
speaking, the solution of (3) on (0, T) is a decreasing exponent, except of one point t = τ,
where there is a positive jump from x− = x(τ − 0) to x+ = x(τ + 0), see Figure 1a.

t

x

(a)

y

g
(b)

Figure 1. (a) Behavior of a solution of Equation (3); (b) Poincaré mapping.

To deduce the formula for this jump, we follow a well-known scheme [26,27]. Assume
that the solution x of Equation (3) is a pointwise limit of the solutions xn, correspond-
ing to the growth rates λhn, where hn is a smooth function concentrated in the interval
In = [τ − a,τ + bn], and∫

In
hn(t) dt = 1, 0 < an, bn → 0, n → ∞.

We also assume that x(0) = xn(0) > 0. Such a definition of x is correct if the limit
does not depend on the sequence. For r(t) = hn(t), from (1), (2) we obtain

(1 + k)
ẋn

xn
+ ẋn + xn + 1 + k = λhn.

Integrating over [0, T], we see that for n → ∞∫
In
(1 + k)

ẋn

xn
dt = (1 + k)(ln xn(τ + bn)− ln xn(τ − an)) → (1 + k)(ln x+ − ln x−),

∫
In

ẋn dt → x+ − x−,
∫

In
(λhn − 1 − k) dt → λ.

Finally, since
ẋn ≤ λxnhn
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it follows that xn is uniformly bounded:

0 ≤ xn(t) ≤ xn(0) exp
(

λ
∫ t

0
hn(s) ds

)
≤ xn(0)eλ,

and
∫

In
(xn(s) + 1 + k) ds → 0, n → ∞. Collecting these assertions, we obtain the relation

for the left and right limits x−, x+ at the jump point τ:

φ(x+) = φ(x−) + λ, where φ(x) = (1 + k) ln x + x. (4)

Importantly, the values x−, x+ do not depend on the sequence. Note also that the
nonlinearity in (3) is related only to the jump at t = τ. In particular,

x(t) = x(τ + 0)e−(t−τ), t ∈ (τ, τ + T).

Hence,

φ(x(T + τ + 0)) = φ(x(T + τ − 0)) + λ = φ(x(τ + 0)e−T)) + λ

= φ(x(τ + 0)) + λ − (1 + k)T − (1 − e−T)x(T + τ − 0). (5)

Put ym = x(mT + τ + 0). Then,

φ(ym+1) = φ(ym) + T
[

λ

T
− 1 − k − ym 1

q

]
, m ∈ Z+, (6)

where 1/q = (1− e−T)/T. Indeed, for m = 0, this relation coincides with (5). In the general
case, (6) follows from the periodicity argument.

The relation (6) implicitly determines the Poincaré mapping

ym+1 = g(ym, k) (7)

where the function g is monotone increasing and concave in the first argument (see
Appendix A). Note that functions of this kind constitute the simplest class of nonlinear de-
pendencies. They are widely used in applied research in economics and ecology (see, e.g., [28]).

Assume that λ > (1 + k)T; then, there exists a unique equilibrium point

y∗ = q
(

λ

T
− 1 − k

)
of (7). From the properties

lim
y→+0

∂g
∂y

(y, k) > 1, lim
y→+∞

∂g
∂y

(y, k) < 1, (8)

(see Appendix B) and Figure 1b, it follows that y∗ is globally stable in R+.
To show that the proposed approach is of general nature, consider the non-autonomous

Volterra model [29]:
ẋ = x · (1 − λδ(t)x),

where, as defined above, δ is the T-periodic delta function, which is zero everywhere except
the points t = mT, m ∈ N. Clearly, the solution of this equation on the interval (0, T) is an
increasing exponent. At the point t = T, there is a downward jump. Put Ym = x(mT + 0).
Then, x(T − 0) = Y0eT . To find x(T + 0), rewrite the Volterra equation as follows

ẋ
x2 − 1

x
= −λδ(t).
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Integrating this over a small interval (T − ε, T + ε) and passing to the limit as ε → 0, we
get 1/(Y0eT)− 1/Y1 = −λ. These related calculations are quite similar to those considered
above. In general, the recursion takes the form [30]:

1
Ym+1 = λ +

e−T

Ym .

3. Paradoxes in a δ-System of Two Competitors

If there are several populations with T-periodic growth rates δ(t− τi), then to avoid the
ambiguity in the jump outcomes, we always assume that all τi are different. Furthermore,
we consider the model of “similar” competitors:

ẋi = φi(x1 + · · ·+ xn, t)xi, i = 1, . . . , n.

Here, other competitors exert equal pressure on the growth rate of the i-th population.
Sometimes, such competition is called neutral.

Consider a Contois-type model with two competitors and T-periodic δ-growth rates:

ẋ1 = x1

[
−1 + λ1δ(t − τ1)

1
1 + x1 + x2

]
, (9)

ẋ2 = x2

[
−1 + λ2δ(t − τ2)

1
1 + x1 + x2

]
, (10)

where 0 < τ1 < τ2 < T, λ1/T > 1 and λ2/T > 1. Put ym
i = xi(mT + τi + 0), m ∈ Z+,

b12 = exp(τ2 − τ1 − T), b21 = exp(τ1 − τ2).

Using the “jump conditions” (4), after a few calculations (see Appendix C), we con-
clude that the Poincare mapping is implicitly determined by the equations

φ1(ym+1
1 , ym

2 ) = φ1(ym
1 , ym

2 ) + T
[

λ1

T
− 1 − b12ym

2 − ym
1

1
q

]
, (11)

φ2(ym+1
1 , ym+1

2 ) = φ2(ym+1
1 , ym

2 ) + T
[

λ2

T
− 1 − b21ym+1

1 − ym
2

1
q

]
, (12)

where m ≥ 1,
φ1(y1, y2) = (1 + b12y2) ln y1 + y1,

φ2(y1, y2) = (1 + b21y1) ln y2 + y2.

Furthermore, the Poincaré mapping g : R2
+ → R2

+ admits a decomposition g = g2 ◦ g1
into two simple mappings

(ym
1 , ym

2 )
g1−→ (ym+1

1 , ym
2 ), (ym+1

1 , ym
2 )

g2−→ (ym+1
1 , ym+1

2 ).

Each simple mapping is a monotone concave function, and it changes only “its own”
coordinate. This gives rise to a “stepwise” movement of the state point, resembling the
movement of a rook on a chessboard, see Figure 2a. Without splitting, the movement of the
state point resembles the “oblique” movement of the chess bishop, see Figure 2b.

A key role in the study of the dynamics of the system (11), (12) is played by two isoclines

E1 = {Y = (y1, y2) ∈ R2
+ : g1(Y) = Y}, E2 = {Y = (y1, y2) ∈ R2

+ : g2(Y) = Y}.

It is remarkable that each isocline is a straight line segment which gently attracts
the state point along its own coordinate. If E1 is above E2 (see Figure 2a), then the first
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population displaces the second one. If the isoclines intersect inside R2, then a positive
equilibrium (y∗1 , y∗2) arises:

1
q

y∗1 + b12y∗2 =
λ1

T
− 1, b21y∗1 +

1
q

y∗2 =
λ2

T
− 1. (13)

Note that the determinant ∆ = q−2 − e−T of the system of linear Equations (13) is
strictly positive for all T > 0. In this case, it is easy to see that the positive equilibrium is
asymptotically stable, see Figure 2b.

0 1 2 3 4 5 6
y1

0

1

2

3

4

5

6

y 2

(a)
E1
E2

0 1 2 3 4 5 6
y1

0

1

2

3

4

5

y 2

(b)
E1
E2

Figure 2. Competition outcomes for different locations of isoclines: (a) competitive displacement,
(b) sustainable coexistence.

If one of the components, say y∗i , is negative, then the correspondent component xi of
the solution of (9), (10) tends to zero. Put µi = λi/T − 1. The analysis of (13) with T = 3
reveals the following “paradoxical” phenomena.

1. A low-productive population can displace a highly productive one. Put τ1 = 0, τ2 = 2.99,
µ1 = 3, µ2 = 2.9. From (13), we get y∗1 < 0, y∗2 > 0.

2. The displacement can be non-transitive. Consider a set of three populations with parameters

τ1 = 1/2, τ2 = 3/2, τ3 = 5/2, µ1 = µ2 = µ3 = 6.

Applying (13) to any pair of these populations, we see that in a two-species community,
one of the populations displaces the other. Formally,

x1 ≻ x2, x2 ≻ x3, x3 ≻ x1,

where xi ≻ xj is the binary relation, meaning that the i-th population displaces the j-th one.
Iterations of the split Poincaré mapping are shown in Figure 3.

In the three-dimensional Contois system, a stable periodic regime was discovered.
However, in some other models, non-transitivity gives rise to a complex regime consisting
of a cyclical change of dominant forms, see [30].

3. Coexistence can be non-transitive. Denote by xi~xj the coexistence relation. It appears
that this relation need not be transitive. For

τ1 = 0, τ2 = 4/3, τ3 = 8/3, µ1 = µ2 = µ3 = 6

from the analysis of (13), we get

x1 ∼ x2, x2 ∼ x3, x3 ≻ x1.
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Figure 3. An illustration of an example with non-transitive displacement.

Note that in a constant environment, the neutral competition is quite tough. In par-
ticular, it is not difficult to show that only one (the most productive) population survives
in such a situation. The changing environment turns out to be less rigid, and here the
coexistence of several competitors is possible, as mentioned above. It is natural to ask how
many competitors can contain their community for a given period T, reflecting the time
capacity of the environment. This problem was investigated in [31] for piecewise constant
growth rates. After some quite cumbersome calculations, the authors deduced that the
coexistence of any finite number of competitors is possible.

It turns out that this conclusion can be easily achieved for a δ-system with n simi-
lar competitors:

ẋi =

(
−1 + λδ(t − τi)

1
1 + x1 + · · ·+ xn

)
xi

for λ/T > 1, and τi = iT/n, i = 1, . . . , n. Put Ym
i = xi(mT + τi + 0) and construct

the Poincaré mapping, similarly to the two-dimensional case. Its equilibrium points
(Y∗

1 , . . . , Y∗
m) are determined by a system of linear equations. When a positive solution

exists, its components are equal due to symmetry. Finally (see [30]), this solution is globally
asymptotically stable in Rn

+.
Note that even in simple oscillatory systems, periodic deformations of their param-

eters often lead to unexpected effects. For instance, at a certain frequency of oscillations
of the suspension of a pendulum, the lower equilibrium becomes unstable (parametric
resonance), and a “strange” stabilization of the upper equilibrium occurs at sufficiently
high frequencies [26]. Therefore, it is natural, for example, to investigate the influence of pa-
rameter periodicity on the oscillatory dynamics of the “predator–prey” system. To do this,
we carry out a modification of the non-autonomous Volterra “predator–prey” model [29]:

ẋ = −x + δ(t − τ1)xy, ẏ = y − δ(t − τ2)xy,

where 0 < τ1 < τ2 < T. Put

Xm = exp(τ1 − τ2)x(mT + τ1 + 0), Ym = exp(T + τ1 − τ2)y(mT + τ2 + 0).

By the argument given above, we obtain the relations

ln Xm+1 = ln Xm − T + Ym, ln Ym+1 = ln Ym + T − Xm+1.

Here, the equilibrium X∗ = Y∗ = T is unstable for all T > 0. In particular, for T = 1, a
locally stable cycle of length 6 arises. So, the oscillatory process becomes more complex.

4. A Sufficient Condition for Competitive Displacement—Universal Stock Constant

Let us analyze paradox 1 from Section 3 more carefully. Namely, we will find a
sufficient condition for the displacement of the second population. Within the framework
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of system (13), this is a constraint on λ1, λ2, ensuring the inequalities y∗1 > 0 and y∗2 ≤ 0 for
all 0 < τ1 < τ2 < T. The most severe option occurs when the parameters τ1 and τ2 are very
close to each other. Put formally, τ2 = τ1. Then, b12 = 1, b12 = eT . We will call

KZ =
eT − 1

T
> 1

the stock constant. Under the condition(
λ1

T
− 1

)
>

(
λ2

T
− 1

)
KZ (14)

we have y∗1 > 0 and y∗2 < 0. This conclusion holds true for all other τ1 < τ2 and implies the
following result.

Theorem 1 ([30]). Under condition (14), the first population displaces the second one within a
community of two competitors.

Sometimes, a cruder sufficient condition for competitive dominance is used [30]:
λ1 > λ2KZ. For n competitors, the Contois δ-system takes the form

ẋi =

(
−1 + λiδ(t − τi)

1
1 + x1 + · · ·+ xn

)
xi, i = 1, . . . , n, (15)

where 0 < τ1 < · · · < τn. Surprisingly, the stock constant for a two-dimensional system
remains valid in the general case as well.

Theorem 2 ([30]). Under the stock condition

λ1 > λi · KZ, i = 1, . . . , n (16)

the first population displaces the others in system (15).

The justification of this result is based on simple geometric considerations similar
to Figure 2a: For each variable in (15), it is possible to construct a Poincaré mapping
(see (11), (12) for its two-dimensional analogue), from which isoclines E1, . . . , En can be
found explicitly. All isoclines are hyperplanes. It turns out that under the stock condition
(16), the isocline E1 is located above the others. This implies the result of Theorem 2.

One can say that (15) describes all vs. all competition. Here, for the dominance of
the first population, the stock constant need not depend on the number of competitors.
This universality is due to the fact that populations interfere with each other, and therefore
cannot fully unite against the first one.

Let us consider an analogue of system (15) with smooth growth coefficients:

ẋi =

(
−1 + ri(t)

1
1 + x1 + · · ·+ xn

)
xi, i = 1, . . . , n, (17)

where each ri(t) is a non-negative T-periodic function. It appears that here, the inequali-
ties (16) with λi =

∫ T
0 ri(t) dt still imply that the the first population displaces the others.

The proof of this rather complex result is based of the principle of inheritance of local
properties by the global Poincaré mapping [32].

For comparison, consider Volterra’s competitive scheme:

ẋi = (1 − λiδ(t − τi)(x1 + · · ·+ xn))xi, i = 1, . . . , n, (18)

It is natural to call 1/λi the value of individual productivity of the i-th population.
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Theorem 3 ([30]). Assume that the stock condition

1
λ1

>
1
λi

KZ, i > 1

is satisfied. Then, in the Volterra system, the first population displaces the others.

This means that system (18) also has a universal stock constant. Of course, the
coincidence of the stock constants in the models (9) and (12) is accidental. Again, we stress
that the existence of universal stock constants is due to the “all vs. all” competition scheme.
It is expected that in “all vs. one” models, the stock constants depend on n.

5. Conclusions

We showed that the usage of periodic delta functions can largely clarify the dynamics
of competitors in a periodic environment. Some paradoxes and sufficient evolutionary
selection conditions were discovered.

The developed approach can be generalized. For instance, in non-autonomous models,
attention should be paid to the geometric properties of an admissible family of coefficients.
If this family is convex, then it is at first useful to use models that involve its extreme points.
Such systems allow for a simple investigation, and the results obtained can be surprisingly
general and typical.

In mathematical ecology, the reaction–diffusion equations are traditionally used to
describe spatio-temporal effects [33–36]. These are quite complex mathematical objects. It
is tempting to invent a model structure in which the diffusion manifests itself “rarely”. This
can probably be achieved by using certain delta-shaped (both in time and space) factors in
front of diffusion terms.
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Appendix A

To show that the Poincaré mapping y 7→ g(y, k), defined in (7), is increasing and
concave, consider the equation

ẋ = F(x, t), x(0) = x0. (A1)

Assume that (A1) has a unique solution on R. In particular, this is true for the Contois
model (1), (2). Denote by xT = P(x0) the corresponding Poincaré mapping.

Property A1. The function P is increasing.

Proof. Let xt, yt be the trajectories corresponding to the initial conditions x0, y0. If Prop-
erty A1 does not hold, then there exist x0 < y0 such that xT ≥ yT . In this case, the
trajectories xt, yt intersect at some point in contradiction with the solution uniqueness
property.

Property A2. If F is strictly concave in x, then P is concave.
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Proof. Let α ∈ (0, 1). Consider the initial points x0, y0, z0 = αx0 + (1 − α)y0 and the
corresponding trajectories xt, yt, zt. Put

L(t) = zt − (αxt + (1 − α)yt).

By the initial conditions, L(0) = 0. It is enough to prove that L is non-negative,
since then

zT = P(αx0 + (1 − α)y0) ≥ αxT + (1 − α)yT = αP(x0) + (1 − α)P(y0). (A2)

Note that

dL
dt

(0) = F(z0, 0)− (αF(x0, 0) + (1 − α)F(y0, 0)) > 0

by the concavity of the mapping x 7→ F(x, t), since z0 = αx0 + (1 − α)y0. Thus, L is non-
negative in the right neighborhood of t = 0. Furthermore, if L(s) = 0, at some point s > 0;
then, by the same argument, we conclude that L is non-negative in the right neighborhood
of s. It follows that L(t) ≥ 0, t ≥ 0.

The Poincaré mapping y 7→ g(y, k) inherits the mentioned properties of P.

Appendix B

In this Appendix, we prove (8). For notational simplicity, let us omit parameter k and
write g as a function of a single argument. This function is determined by Equation (6):

(1 + k) ln g(y) + g(y) = (1 + k) ln y + y + T
[

λ

T
− 1 − k − 1 − e−T

T
y
]

= (1 + k) ln y + e−Ty + α, (A3)

where α = λ − (1 + k)T > 0. Taking the derivatives, we get(
1 + k
g(y)

+ 1
)

g′(y) =
1 + k

y
+ e−T . (A4)

The function y 7→ g′(y) is non-increasing by the concavity of g. If g′(y) ≥ 1, y > 0,
then limy→+∞ g(y) = +∞, and (A4) gives a contradiction: limy→+∞ g′(y) = e−T < 1. Thus,
the second inequality (8) is proven.

Furthermore, from (A3), we get

g(y) = y exp
(
− g(y)

1 + k

)
exp

(
e−Ty + α

1 + k

)
≤ y exp

(
e−Ty + α

1 + k

)
, (A5)

since g is non-negative. From the inequality (A5), it follows that limy→+0 g(y) = 0. Now,
the equality (A5) implies

g′(0) = lim
y→+0

g(y)
y

= exp
(

α

1 + k

)
> 1.

Appendix C

To obtain (11), (12), let us first substitute

x+ = x1((m + 1)T + τ1 + 0) = ym+1
1 , x− = x1((m + 1)T + τ1 − 0),

and k = x2((m + 1)T + τ1) in the jump condition (4). Before doing so, note that

ẋ1 = −x1, t ∈ (mT + τ1, (m + 1)T + τ1), m ≥ 1,
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and thus

x− = x1((m + 1)T + τ1 − 0) = x1(mT + τ1 + 0)e−(t−mT−τ1)
∣∣∣
t=(m+1)T+τ1

= ym
1 e−T .

Furthermore, since

ẋ2 = −x2, t ∈ (mT + τ2, (m + 1)T + τ1), m ≥ 1,

we have

k = x2((m + 1)T + τ1) = x2(mT + τ2 + 0)e−(t−mT−τ2)
∣∣∣
t=(m+1)T+τ1

= ym
2 eτ2−τ1−T = b12ym

2 .

Now, using (4), we get

(1 + b12ym
2 ) ln ym+1

1 + ym+1
1 = (1 + b12ym

2 ) ln(ym
1 e−T) + ym

1 e−T + λ1, m ≥ 1,

which is equivalent to (11). Equality (12) is obtained in a similar way by considering

x+ = x2((m + 1)T + τ2 + 0) = ym+1
2 , x− = x2((m + 1)T + τ2 − 0),

and k = x1((m + 1)T + τ2).
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