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Abstract: This paper explores solitary wave solutions arising in the deformations of a hyperelastic
compressible plate. Explicit traveling wave solution expressions with various parameters for the
hyperelastic compressible plate are obtained and visualized. To analyze the perturbed equation,
we employ geometric singular perturbation theory, Melnikov methods, and invariant manifold
theory. The solitary wave solutions of the hyperelastic compressible plate do not persist under small
perturbations for wave speed c > −βk2. Further exploration of nonlinear models that accurately
depict the persistence of solitary wave solution on the significant physical processes under the K-S
perturbation is recommended.
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1. Introduction

Nonlinear elasticity is a pivotal field in continuum mechanics that holds paramount
significance in comprehending the intricate behaviors of deformable materials beyond
the linear regime. Nonlinear elasticity wave equations are generated by the elastic wave
propagation in inelastic material. These equations provide a specific explanation of ma-
terial response under large deformations and elucidate complex nonlinear phenomena
observed in various engineering applications, including structural engineering, aerospace
engineering, and geological engineering [1–4].

A fundamental topic of nonlinear elasticity is unraveling the profound connections
between three-dimensional theoretical frameworks and the specialized theories governing
lower-dimensional entities such as plates [5]. Researching this topic contributes to predict,
model, and design materials effectively, enabling more accurate equation-based simulations
for material design and structural analysis in practical engineering applications. Numerous
theoretical studies about exact solutions have been conducted [5–9]. In particular, Chen [8]
derived a new family of two-dimensional nonlinear dispersive equations

[ut − uxxt + 3uux − γ(2uxuxx + uuxxx)]x − αuyy + βuxxyy = 0, (1)

whose family includes the KdV, Kadomtsev–Petviashvili (KP), and Camassa–Holm (C-
H) equations. Chen [7] demonstrated global well-posedness of the Cauchy problem for
Equation (1), establishing the existence of solitary wave solutions derived from an as-
sociated variational problem. In Equation (1), u represents the displacement along the
z-direction, while x and y denote rescaled longitudinal and lateral coordinates in the hor-
izontal plane, respectively. The equation encompasses four crucial material parameters,
denoted by γ, α, β. The parameter α and β are material constants measuring subtle trans-
verse effects. The parameter γ represents the coupling strength between the nonlinear and
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dispersive terms. Specifically, γ controls the relative contributions of the nonlinear and
dispersive terms, thereby influencing the behavior of the solutions, described as follows:

(1) When γ > 0, the coupling between the nonlinear and dispersive terms is positive,
indicating a forward interaction between the nonlinear and dispersive effects. In this
case, the solutions may exhibit more complex behaviors, such as the formation and
interaction of solitary waves.

(2) When γ < 0, the coupling between the nonlinear and dispersive terms is negative,
implying an opposite interaction. In such a scenario, the behavior of the solutions
may be simpler, potentially exhibiting stable behaviors such as asymptotic or periodic
solutions. This paper discusses the case of γ < 0.

It is noteworthy that the derived equation is an approximate two-dimensional plate
equation designed to simulate the behavior of the complete three-dimensional field space.
Therefore, we make the assumption that small perturbations applied to the pre-stressed
state primarily manifest in the vertical direction (z-direction) and a singular horizontal di-
rection (x-direction), which implies that variations in waves within the transverse direction
(y-direction) are considered to be small.

In practical engineering simulations, models inevitably experience perturbations from
various features. Therefore, investigating the persistence of traveling wave solutions
for nonlinear differential equations under different small perturbations is crucial. Apart
from parameter γ balancing nonlinearity and dispersion, in cases of strong dispersion
compared to the backward diffusion and dissipation, we add Kuramoto–Sivashinsky (KS)
perturbation [10] (uxx + uxxxx) to the equation to mimic real engineering scenarios.

Geometric singular perturbation theory (GSP) has been widely applied in the study of
perturbation problems. The basic principles and theories of GSP are introduced in detail by
Fenichel [11], while application fields and methods of GSP are introduced by Kuehn [12],
Jones [13], and Hek [14]. Moreover, GSP has found extensive use in exploring the existence
and persistence of traveling wave solutions in water wave equations [15–19].

Under certain specific parameter constraints, Equation (1) generalizes several well-
known models of water waves equations. The explicit solutions and persistence of some of
these models have been extensively studied, described as follows:

(1) When γ = β = 0, (1) is reduced to the regularized long-wave KP equation [6]. Mah-
mood and Ur-Rehman [20] investigated the existence and propagation characteristics
of ion-acoustic KP solitons; Anco and Gandarias [21] discussed Kinematic properties
of all of the different types of compactons and solitary waves, along with conservation
laws of the generalized KP equation.

(2) When γ = α = β = 0, (1) is reduced to the the BBM equation [22]. Chen et al. [23]
proved the existence of solitary waves and periodic waves for a generalized BBM
equation with KS perturbation with the method of GSP; Buhe and Chaolu [24] used a
hybrid approach to obtain the approximate solitary wave solutions of a perturbed
BBM equations.

(3) When γ = 1, and α = β = 0, (1) is reduced to the the Camassa–Holm equation [25].
Lenells [26] classified all weak traveling wave solutions of the CH equation, deter-
mined the wavelength of the traveling waves for the peaked solutions, and detailed
analyzed the phase diagram of the CH equation. Du et al. [27,28] analyzed a CH
equation with KS perturbation and a delayed CH equations with methods of GSP.
Sun et al. [29] depicted bifurcation portraits of a CH–DP-type equation and proved
that the portraits exhibit all possible exact explicit bounded solutions. Wang [30]
obtained the exact traveling-wave solution of the non-differential type for the local
fractional Camassa–Holm–Kadomtsev–Petviashvili equation by employing the local
fractional wave method.

Inspired by the above references, in this paper we study the perturbed equation as the
following form

[ut − uxxt + 3uux − γ(2uxuxx + uuxxx) + ϵ(uxx + uxxxx)]x − αuyy + βuxxyy = 0, (2)
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where ε is sufficiently small. uxx and uxxxx represent the backward diffusion term and
dissipation term, respectively. We prove that the Melnikov function of (2) lacks a simple
zero point for the wave speed c. Thus, the solitary wave on the homoclinic orbit is not
persistent in the perturbed Equation (2) under the parameter conditions γ < 0, α = β for
wave speed c > −βk2 with perturbation ε being sufficiently small.

The innovations of this paper can be summarized as follows:

(1) Departing from calculating the exact solution of the hyperelastic dispersion equation [5,8],
this paper expresses traveling solutions in terms of the relationship between u and y,
studying the persistence of homoclinic orbits under real disturbances simulated by
KS perturbation.

(2) In contrast to traditional GSP methods for proving the existence and persistence
of solutions in water wave equations with perturbations, the paper uses Melnikov
functions to demonstrate the non-persistence of homoclinic orbits for wave speed c
satisfying certain conditions.

(3) In the process of calculating the Melnikov function, which involves numerous com-
plex parameters, the paper simplifies the function and breaks down the parameter
range for γ, eventually obtaining the specific expression of the Melnikov function
concerning the wave speed c when α = β.

The paper follows the structure outlined below. In Section 2, we simplify Equation (1)
into ordinary differential equations and transform it into the fast and slow system. Then
we depict the bifurcation and phase portraits under various parameter ranges, ultimately
obtaining the precise expression for homoclinic orbits. In Section 3, we utilize GSP and
invariant manifold theory to reduce the dimension of (2). Moreover, we employ Melnikov
function theory to demonstrate the non-persistence of solitary solutions on the homoclinic
orbit Γ of Equation (2) for γ < 0, α = β. In Section 4, we conduct numerical simulations to
verify our results. In Section 5, we summarize the conclusion of this paper and potential
directions for future work. In Appendix A, we describe the Theorem 3.1(2) cited in this
paper regarding reference [31].

2. Solitary Wave Solutions of (1)

In this section, we consider the traveling wave solutions of (1). We utilize the traveling
wave transformation ξ = x + ky − ct, where k is the directional constant and c is the wave
speed. We then integrate ξ twice on both sides of the equation, introducing the integral
constant as 0. Equation (1) transforms into

3
2

u2 − (αk2 + c)u + (βk2 + c)uξξ −
γ

2
(uξ)

2 − γuuξξ = 0. (3)

Let
A = αk2 + c, B = βk2 + c, A = B + (α − β)k2. (4)

Equation (3) can be expressed more succinctly as follows:

3
2

u2 − Au + Buξξ −
γ

2
(uξ)

2 − γuuξξ = 0. (5)

Equation (5) corresponds to the subsequent first-order system{ du
dξ = y,

(B − γu) dy
dξ = γ

2 y2 + Au − 3
2 u2.

(6)

By the transformation ξ
B−γu = η, we obtain the equivalent system{ du

dη = (B − γu)y,
dy
dη = γ

2 y2 + Au − 3
2 u2.

(7)
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The system (7) is a Hamiltonian system with the first integral function

H(u, y) = −y2

2
(B − γu) +

A
2

u2 − u3

2
.

Let (ui, 0)(i = 1, 2) represent the equilibrium point of (7)

u1 = 0, u2 =
2A
3

.

At each equilibrium point (ui, 0), the linearized representation of system (7) can be formu-
lated as (

0 B − γui
A − 3ui 0

)
. (8)

Theorem 1. For system (7) with A > 0 and γ < 0, we have the following results:

(a) If B > 0, (7) has a saddle at (0, 0) and a center at ( 2A
3 ,0). System (7) has a homoclinic orbit Γ

surrounding the center, which is from (0, 0) to (0, 0) and intersects with the u-axis at (A, 0)
(see Figure 1a).

(b) If B = 0, (7) has a cusp at (0, 0) and a center at ( 2A
3 , 0). System (7) has period orbits

surrounding the center (see Figure 1b).

(c) If
2γA

3
< B < 0, (7) has a center at (0, 0) and a center at ( 2A

3 , 0). System (7) has period
orbits surrounding the centers (see Figure 1c).

(d) If B =
2γA

3
, (7) has a center at (0, 0) and a cusp at ( 2A

3 , 0). System (7) has period orbits
surrounding the center (see Figure 1d).

(e) If B <
2γA

3
, (7) has a center at (0, 0) and a saddle at ( 2A

3 , 0). System (7) has a homoclinic

orbit Γ0 surrounding the center, which is from ( 2A
3 , 0) to ( 2A

3 , 0) and intersects with the u-axis

at (
3
√

27Au2 − 4A3

3
, 0) (see Figure 1e).

Corollary 1. For system (7) with A < 0 and γ < 0, we have the following results:

(a) If B >
2γA

3
, (7) has a center at (0, 0) and a saddle at ( 2A

3 , 0). System (7) has a homoclinic

orbit Γ surrounding the center, which is from ( 2A
3 , 0) to ( 2A

3 , 0) and intersects with the u-axis

at (
3
√

27Au2 − 4A3

3
, 0).

(b) If B =
2γA

3
, (7) has a center at (0, 0) and a cusp at ( 2A

3 , 0). System (7) has period orbits
surrounding the center.

(c) If 0 < B <
2γA

3
, (7) has a center at (0, 0) and a center at ( 2A

3 , 0). System (7) has period
orbits surrounding the centers.

(d) If B = 0, (7) has a cusp at (0, 0) and a center at ( 2A
3 , 0). System (7) has period orbits

surrounding the center.
(e) If B < 0, (7) has a saddle at (0, 0) and a center at ( 2A

3 , 0). System (7) has a homoclinic orbit
surrounding the center, which is from (0, 0) to (0, 0) and intersects with the u-axis at (A, 0).

From Theorem 1 and Figure 1, we observe the existence of the homoclinic orbit Γ
when the parameters satisfy A > 0, γ < 0, B > 0, and the homoclinic orbit Γ0 when the
parameters satisfy A > 0, γ < 0, B < 2γA

3 for system (7). Both Γ and Γ0 share identical
properties and characteristics.
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(a) B > 0 (b) B = 0

(c)
2γA

3
< B < 0 (d) B =

2γA
3

(e) B <
2γA

3

Figure 1. The bifurcation and phase portraits of waves with different starting points of system (7).

Next, we will present the explicit expression of the homoclinic orbit Γ using the
Hamiltonian function. For A > 0, γ < 0, B > 0 (see Figure 1a), homoclinic orbit Γ satisfies

lim
ξ→∞

u(ξ) = 0.

The Hamiltonian function of the point on the homoclinic orbit Γ is characterized by

H(u, y) = H(0, 0) = 0. (9)

Γ+ represents the segment of the homoclinic orbit Γ above the u-axis which the
homoclinic orbit is from (0, 0) to (A, 0). The expression of y along the Γ+ deduced from (9)
is

y =

√
Au2 − u3

B − γu
. (10)
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Γ− represents the part of the homoclinic orbit Γ below the u-axis which the homoclinic
orbit is from (A, 0) to (0, 0). The expression of y along the Γ− deduced from (9) is

y = −

√
Au2 − u3

B − γu
. (11)

Since homoclinic orbits determine solitary wave solutions, we will discuss the persis-
tence of homoclinic orbit Γ for (2) |ε ̸=0, where ε is sufficiently small.

3. Non-Persistence of Solitary Wave Solutions of (2) |ε ̸=0

In this section, we will prove that solitary wave solutions of the hyperelastic compress-
ible plate on the homoclinic orbit Γ (Theorem 1 (a)) do not persist under small perturbations.

By using the identical transformation as detailed in Section 2, we attain the equivalent
formulation of (2)

3
2

u2 − Au + Buξξ −
γ

2
(uξ)

2 − γuuξξ + ε(uξ + uξξξ) = 0, (12)

which is equivalent to the following slow system
du
dξ = y,
dy
dξ = w,
ε dw

dξ = −(B − γu)w + Au − 3
2 u2 + γ

2 y2 − εy.
(13)

Let ξ
ε = σ. We obtain the equivalent fast system

du
dσ = εy,
dy
dσ = εw,
dw
dσ = −(B − γu)w + Au − 3

2 u2 + γ
2 y2 − εy.

(14)

The linearization of system (14) with ε = 0 is 0 0 0
0 0 0

A − 3u + γw γy γu − B

 (15)

It can be directly calculated that the eigenvalues of (15) are λ1 = 0, λ2 = 0, and λ3 = γu− B.
The critical manifold of (14) is as follows:

M0 = {(u, y, w) ∈ R3|(B − γu)w = Au − 3
2

u2 +
γ

2
y2}.

The dimension of M0 is equal to the number of zero eigenvalues of (15). Thus, M0 is
normally hyperbolic.

By Fenichel’s Invariant Manifold Theorem (Theorem 1, [13]), (14) has a slow manifold Mε

Mε = {(u, y, w) ∈ R3|(B − γu)w = Au − 3
2

u2 +
γ

2
y2 + εh1 + O(ε2)}, (16)

which is diffeomorphic to M0 and locally invariant under the flow of system (14).
By substituting (16) into the slow system (13), we obtain

h1 = (
3u − A − 2γw

γu − B
+ 1)y,

= − y
(B − γu)2 (γ

2u2 + γ2y2 + B2 + Aγu − 2Bγu − 3Bu + AB).
(17)
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Hence, the three-dimensional system (13) reduces to the following two-dimensional system
on Mε{ du

dξ = y,

(B − γu) dy
dξ = Au − 3

2 u2 + γ
2 y2 − ε

y
(B−γu)2 (γ

2u2 + γ2y2 + B2 + Aγu − 2Bγu − 3Bu + AB).
(18)

Let ξ
B−γu = η. We obtain the equivalent two-dimensional system{ du

dη = (B − γu)y,
dy
dη = Au − 3

2 u2 + γ
2 y2 − ε

y
(B−γu)2 (γ

2u2 + γ2y2 + B2 + Aγu − 2Bγu − 3Bu + AB).
(19)

Theorem 2. For γ < 0, α = β, there does not exist wave speed c > −βk2 such that (19) has
homoclinic orbits near Γ (Theorem 1(a)) with ε that is small enough. That is, the solitary wave
solution of (2) is not persistent.

Proof. We shall compete the proof by using the Melnikov method. Consider the Melnikov
function in homoclinic orbit Γ (Theorem 1(a))

M(B) =
∫ +∞

−∞
− y2

B − γu
(γ2u2 + γ2y2 + B2 + Aγu − 2Bγu − 3Bu + AB)dη.

By substituting (10), (11) and the first equation of system (19) into M(B), we obtain

M(B) =
∫

Γ+

− y
(B − γu)2 (γ

2u2 + γ2y2 + B2 + Aγu − 2Bγu − 3Bu + AB)du

+
∫

Γ−
− y
(B − γu)2 (γ

2u2 + γ2y2 + B2 + Aγu − 2Bγu − 3Bu + AB)du

=
∫ A

0
−

√
Au2 − u3

(B − γu)5 (γ
2u2 + γ2 Au2 − u3

B − γu
+ B2 + Aγu − 2Bγu − 3Bu + AB)du

+
∫ 0

A

√
Au2 − u3

(B − γu)5 (γ
2u2 + γ2 Au2 − u3

B − γu
+ B2 + Aγu − 2Bγu − 3Bu + AB)du

= −2
∫ A

0

√
Au2 − u3

(B − γu)5 (γ
2u2 + γ2 Au2 − u3

B − γu
+ B2 + Aγu − 2Bγu − 3Bu + AB)du

= −2
∫ A

0

√
Au2 − u3

(B − γu)7 ((1 +
1
γ
)(B − γu)3 + B(AB − B2

γ
))du

= −2
∫ A

0

√
Au2 − u3

B − γu
(1 +

1
γ
+

B(AB − B2

γ
)

(B − γu)3 )du.

(20)

Take the transform B − γu = z. Since α = β (A = B), we obtain

M(B) = − 2
γ2

∫ (1−γ)B

B
(z − B)

√
z − (1 − γ)B

γz
(1 +

1
γ
− B3(1 − γ)

γz3 )dz

= − 2
γ2

∫ (1−γ)B

B
(z − B)

√
z − (1 − γ)B

γz
(
(γ + 1)z3 − B3(1 − γ)

γz3 )dz.

(21)

(a) For γ ≤ 1 −
√

5
2

, we have

z3 ≤ (1 − γ)3B3 ≤ 1 − γ

1 + γ
B3.
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(z − B) ≥ 0,

√
z − (1 − γ)B

γz
≥ 0, (

(γ + 1)z3 − B3(1 − γ)

γz3 ) ≥ 0.

Thus, M(B) < 0, M(B) has no simple zero point with respect to B > 0.

(b) For
1 −

√
5

2
≤ γ < 0, (22) can be integrated

M(B) = − 2
γ2

∫ (1−γ)B

B
(z − B)

√
z − (1 − γ)B

γz
(
(γ + 1)z3 − B3(1 − γ)

γz3 )dz

= − 2
γ2 ·

B2(√γ(−45 + γ(15 + (61 − 15γ)γ)) + 15(−1 + γ)2(1 + γ)(3 + γ)ArcTanh
(√

γ
))

60(−1 + γ)γ3/2 .

(22)

M(B) ̸= 0 for any B > 0.

Thus, for
1 −

√
5

2
≤ γ < 0, M(B) does not possess a simple zero point with respect to

B(B > 0).
The proof is completed by (a) and (b). By Theorem 3.1 (2) [31] (see Appendix A

Lemma A1), M(B) has no zero point for α = β, B = c + βk2 > 0, γ < 0. In other words,
when α = β, the homoclinic orbit Γ (Theorem 1(a)) of (2) does not persist under small
perturbations for arbitrary wave speed c > −βk2 since B = c + βk2 > 0.

4. Numerical Simulations

In this section, we verify the results above through numerical simulations conducted
using Mathematica 13. Let γ = −2.0, B = A = 3.0. From Theorem 1(a), we know that
when ε = 0, Equation (1) has a homoclinic orbit Γ from the saddle (0, 0) to (0, 0). To capture
the bifurcation, we set (u(0), y(0)) = (10−3, 0). Consequently, we obtain the bifurcation
and phase portrait (see Figure 2a).

To simulate the case of Equation (2), we set ε = 8 · 10−4. From Theorem 2, we know
that the phase diagram trajectory breaks for any c > −βk2(B > 0). The result is verified by
numerical simulation (see Figure 2b).

(a) ε = 0 (b) ε = 8 × 10−4

Figure 2. The initial condition is (u(0), y(0)) = (10−3, 0). The phase portraits of (1) and (2) with
γ = −2.0, B = A = 3.0.

5. Conclusions

In this paper, we derived the precise expressions of the homoclinic orbits Γ for
γ < 0, A > 0, c > −βk2 and the homoclinic orbit Γ0 for γ < 0, A > 0, c < −βk2 + 2γA

3
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by analyzing the bifurcation and phase portraits of the hyperelastic compressible plate
model (1) under specific parameter conditions. Then we proved that, although the solitary
wave solutions on the homoclinic orbit Γ (Theorem 1(a)) of the system (1) exists, it is not
persistent on the perturbed system (2) under the parameters γ < 0, α = β for wave speed
c > −βk2.

In future research, we may explore the persistence of solitary solutions on the homo-
clinic orbit Γ in more intricate scenarios, such as on the condition of α ̸= β. Additionally,
investigating the persistence of solitary solutions on the homoclinic orbit Γ0 could be
another promising direction.
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Appendix A

In the appendix,we will state the results in [31]. Consider C3 system{
x
′
= f (x, y) + a f0(x, y, a, δ),

y
′
= g(x, y) + ag0(x, y, a, δ),

(A1)

where a ∈ R, δ ∈ Rn, n ≥ 1, f , g, f0, f0 ∈ C3. Assuming that when a = 0, (A1) has a closed
orbit

Lλ : z = z(t, λ) = (x(t, λ), y(t, λ)), 0 ≤ t ≤ Tλ, 0 ≤ λ < K, (A2)

and Lλ → L0 as λ → 0. L0 is an odd closed orbit with one saddle.
Define M(δ) as

M(δ) =
∮

L0

e−
∫ t

0 ( fx+gy)dτ( f g0 − g f0)a=0dt. (A3)

Lemma A1 (Theorem 3.1 (2) [31]). If M(δ0) ̸= 0, (A1) has no closed orbit in the small neighbor-
hood of L0 when |a| ̸= 0 and |δ − δ0| small sufficiently.
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