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Abstract: In this paper, a family of temporal high-order accurate numerical schemes for the Landau–
Lifshitz–Gilbert (LLG) equation is proposed. The proposed schemes are developed utilizing the Gauss–
Legendre quadrature method, enabling them to achieve arbitrary high-order time discretization.
Furthermore, the geometrical properties of the LLG equation, such as the preservation of constant
magnetization magnitude and the Lyapunov structure, are investigated based on the proposed
discrete schemes. It is demonstrated that the magnetization magnitude remains constant with an
error of (2p + 3) order in time when utilizing a (2p + 2)th-order discrete scheme. Additionally, the
preservation of the Lyapunov structure is achieved with a second-order error in the temporal step
size. Numerical experiments and simulations effectively verify the performance of our proposed
algorithm and validate our theoretical analysis.

Keywords: Gauss–Legendre quadrature; geometric property; Landau–Lifshitz–Gilbert equation;
micromagnetics
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1. Introduction

Research on micromagnetism in nanoscale ferromagnetic bodies is crucial from both
scientific and technological perspectives. Currently, the exponential demand for efficient
storage and processing of large-scale data has led to the emergence of magnetization dy-
namics and relaxation as prominent areas of research. This field encompasses various
applications in the modern magnetic storage industry, such as hard-disk magnetic record-
ing materials, magnetic reading sensors [1,2], and magnetic RAM elements [3,4]. The
Landau–Lifshitz–Gilbert (LLG) equation is a fundamental equation employed in magneti-
zation dynamics that characterizes the precessional motion of magnetization in microscale
and nanoscale magnetic systems. The LLG equation exhibits two fundamental geomet-
rical properties within magnetization dynamics. Firstly, it guarantees the unconditional
preservation of magnetization magnitude, implying that magnetization magnitude remains
constant throughout time and space. Secondly, it possesses a Lyapunov structure, ensuring
that the system converges towards stable equilibrium states as minimum free energy when
a constant external fields is applied.

The nonlinearity of the LLG equation causes significant challenges for obtaining an-
alytical solutions, while the analytical solution can only be obtained in very few specific
cases [5–9]. For more general cases, numerical methods are the prevalent resolution for
studying magnetization dynamics. In terms of spatial discretization, researchers commonly
employ finite difference methods [10,11], finite element methods [12,13], and other tech-
niques to discretize the LLG equation. In terms of time discretization, general methods
include explicit methods and implicit methods, such as the Euler method, the implicit
Euler method [14], the linear multistep methods (e.g., Adams–Bashforth, Adams–Moulton,
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Crank–Nicholson, backward differentiation formulas (BDF)), the Runge–Kutta methods [11],
etc. [15]. However, the discussion regarding the geometric properties of the LLG equa-
tion remains insufficient among the aforementioned methods. In order to preserve the
inherent geometrical properties of LLG dynamics, it is crucial to focus more on suitable
geometrical integrators. Numerous methods, including the Lie-group methods [16], the
Gauss–Seidel projection method [17,18], the Cayley transform [19], the geometric integra-
tion on spheres [20], the mid-point rule [21,22], etc. [23,24], have been examined to develop
the numerical integrators for the LLG equation. Among these techniques, the second-order
accurate mid-point rule has garnered substantial popularity and widespread adoption
owing to its inherent advantages in preserving the geometric properties of the LLG equa-
tion [22,23,25–27]. D’Aquino, Serpico, and Miano demonstrated in [21] that the mid-point
rule time-stepping technique preserves the two fundamental geometrical properties of the
LLG equation exactly. However, the mid-point rule is limited to second-order accuracy in
time and necessitates the solution of a large discrete system comprising coupled nonlinear
equations. Recently, a study investigated the two fundamental geometric properties of
the LLG equation using a range of multistep discrete schemes [28]. The research revealed
that a high-order multistep discrete scheme leads to better preservation of the constant
magnetization magnitude, as supported by both theoretical and numerical results. Several
high-order accurate methods are worth mentioning, as discussed in [29,30]. However, there
is still potential to develop high-accuracy numerical schemes preserving some geometrical
properties of the LLG equation.

In this paper, we propose a novel discrete scheme based on Gauss–Legendre quadra-
ture for solving the LLG equation and analyze two fundamental geometric properties
within the proposed scheme. Thanks to the high precision of the Gauss–Legendre quadra-
ture formula, we can easily construct a high-order discrete scheme for the LLG equation.
More precisely, we can achieve a (2p + 2)th-order discrete scheme by employing (p + 1)
Gauss–Legendre quadrature points. Additionally, we demonstrate that the magnetiza-
tion magnitude is preserved with a (2p + 3)th-order error of the temporal step size when
employing (p + 1) Gauss–Legendre quadrature points. It can also be proven that the
preservation of the Lyapunov structure is achieved with a second-order error of temporal
step size.

The structure of the rest of this paper is as follows. In Section 2, we introduce the
LLG equation and propose a discrete scheme based on the Gauss–Legendre quadrature.
In Section 3, we analyze the property of norm preservation within the proposed discrete
scheme, which effectively preserves the norm of magnetization vectors with a high degree
of accuracy. In Section 4, we analyze the preservation of Lyapunov structure within the
proposed discrete scheme. In Section 5, several numerical experiments are presented to
validate the efficiency of our discrete scheme.

2. The Physical Model and Numerical Method

In this section we introduce the LLG equation, which describes the micromagnetic
dynamic model, and propose a numerical method based on the Gauss–Legendre quadrature
formulas. Furthermore, we provide a demonstration of the accuracy of the proposed
numerical method.

2.1. Landau–Lifshitz–Gilbert Equation

The evolution of the magnetization vector field M(r, t), a function of the position
r ∈ Ω and time t in a ferromagnetic body Ω ⊂ R3, is described by the Landau–Lifshitz
(LL) equation:

∂M
∂t

= − γ

1 + α2 M × Heff −
γα

Ms(1 + α2)
M × M × Heff, (1)
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where γ is the absolute value of the gyromagnetic ratio, Ms is the saturation magnetization,
α is the dimensionless damping coefficient, Heff is the effective field, which can be defined
by Heff = −δG(M)/δM, and G(M) is the micromagnetic free energy.

To account for the phenomenological damping, Gilbert introduced a damping term in
reference [31] and proposed the LLG equation:

∂M
∂t

= −γM ×
(

Heff −
α

γMs

∂M
∂t

)
, (2)

which is mathematically equivalent to the LL Equation (1).
For convenience of the analysis, the dimensionless form of the LLG equation being an

initial-boundary value problem is commonly used and can be expressed as

∂m
∂t

= −m ×
(

heff − α
∂m
∂t

)
, (3)

with the homogeneous Neumann boundary condition

∂m
∂n

∣∣∣∣
∂Ω

= 0, (4)

where m(r, t) = M(r, t)/Ms, heff = −δg(m)/δm represents the normalized effective field,
g(m) is the normalized micromagnetic free energy, and n is the unit outward normal vector
on the boundary ∂Ω. The existence of a solution to the LLG equation can be found in
section 4.1 of [32].

Here, the free energy g(m) consists of normalized exchange energy, anisotropy energy,
stray field energy, and external energy, given by

g(m) =
Cex

µ0M2
s

∫
Ω
|∇m|2 dx +

Ku

µ0M2
s

∫
Ω

(
1 − (m · ean)

2
)

dx − 1
2

∫
Ω

m · hs dx −
∫

Ω
m · he dx, (5)

where Cex is the exchange constant, Ku is the uniaxial anisotropy constant, ean is the easy
axis unit vector, µ0 is the magnetic permeability of vacuum, hs is the stray field, and he is
the external vector field.

In the following analysis, we assume the external field to be zero. Consequently, the
normalized effective field can be expressed as

heff =
2Cex

µ0M2
s

∆m +
2Ku

µ0M2
s

ean(m · ean) + hs. (6)

2.2. Numerical Method Based on Gauss–Legendre Quadrature

According to the Gauss–Legendre quadrature formulas [33], there exists a set of Gauss–
Legendre quadrature weights {ω̄i}

p
i=0 and Gauss–Legendre quadrature nodes {āi}

p
i=0

on [−1, 1]. The following equations hold (more details are referred to Theorem 3.5 in
reference [34]):

p

∑
i=0

ω̄i(āi)
j =

∫ 1

−1
xjdx = 0, for odd j with 0 ≤ j ≤ 2p + 1,

p

∑
i=0

ω̄i(āi)
j =

∫ 1

−1
xjdx =

2
j + 1

, for even j with 0 ≤ j ≤ 2p + 1.

(7)

By rescaling and translation, we can obtain a set of Gauss–Legendre quadrature nodes
{ai}

p
i=0 and weights {ωi}

p
i=0 on [0, 1] corresponding to those on [−1, 1]. These two sets of

Gauss–Legendre quadrature nodes and weights satisfy the following equation:

āi = 2ai, ω̄i = 2ωi. (8)
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From Equations (7) and (8), we have

p

∑
i=0

ωia
j
i = 0, for odd j with 0 ≤ j ≤ 2p + 1,

p

∑
i=0

ωia
j
i =

1
(j + 1)2j , for even j with 0 ≤ j ≤ 2p + 1.

(9)

We denote

Bj :=
p

∑
i=0

ωia
j
i , (10)

and then it is obtained that, for 0 ≤ j ≤ 2p + 1,

Bj = 0, if j is odd, and Bj =
1

(j + 1)2j , if j is even. (11)

For simplicity, we introduce some notations:

D := heff − α
∂m
∂t

, t̄n := tn +
∆t
2

, (12)

where ∆t is the temporal step size and tn = n∆t.
Based on p + 1 Gauss–Legendre quadrature nodes {ai}

p
i=0 and weights {ωi}

p
i=0 on

[0, 1], the general temporal discrete scheme of Equation (3) is proposed as follows:

mn+1 − mn

∆t
= −

p

∑
i=0

ωim(t̄n + ai∆t)× D(t̄n + ai∆t), (13)

where mn denotes the magnetization m at time tn.
Especially when p = 1, there exists a set of according Gauss–Legendre quadrature

weights and nodes ω±1 = 1/2, a±1 = ±1/(2
√

3), and we can obtain the following two-
point Gauss–Legendre discrete scheme from the general temporal discrete scheme (13):

mn+1 − mn

∆t
= −1

2
m
(

t̄n −
∆t

2
√

3

)
× D

(
t̄n −

∆t
2
√

3

)
− 1

2
m
(

t̄n +
∆t

2
√

3

)
× D

(
t̄n +

∆t
2
√

3

)
. (14)

Remark 1. While m and D in Equations (13) and (14) have not been fully discretized, the numerical
experiment should be conducted using fully discrete versions of m and D (please refer to Section 5
for more details). Additionally, the analysis of the two geometrical properties will be demonstrated
using partially discretized versions of m and D, rather than fully discrete ones.

For convenience, we denote Sm×D as

Sm×D := −
p

∑
i=0

ωim(t̄n + ai∆t)× D(t̄n + ai∆t).

To show the order of the discrete scheme (13), we introduce some preliminaries first.
By Taylor series, for any c ∈ R, we have

m(t̄n + c∆t) =
∞

∑
j=0

1
j!
(c∆t)j · m̄(j), (15)

D(t̄n + c∆t) =
∞

∑
j=0

1
j!
(c∆t)j · D̄(j), (16)
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where m̄ := m(x, t̄n), D̄ := D(x, t̄n), and m(j) and D(j) denote the jth-order derivative of
m and D, respectively, with respect to time t.

Taking t = t̄n in Equation (3), it is easy to see that

m̄t = −m̄ × D̄, (17)

where m̄t denotes the first-order derivative of m̄ with respect to time t.
By differentiating both sides of Equation (17), we obtain, for any positive integer s,

m̄(s+1) = −
s

∑
i=0

Ci
sm̄(s−i) × D̄(i). (18)

In addition, Equation (18) can be rewritten as

D̄(s) × m̄ = m̄(s+1) +
s−1

∑
i=0

Ci
sm̄(s−i) × D̄(i). (19)

Using the aforementioned preliminaries, we present the order of the discrete scheme
(13) in the following lemma.

Lemma 1. The discrete scheme (13) has (2p + 2)th-order accuracy in time.

Proof. Using Equations (15), (16) and (18), we have

m(t̄n + ai∆t)× D(t̄n + ai∆t) =

(
∞

∑
j=0

1
j!

aj
i∆tjm̄(j)

)
×
(

∞

∑
j=0

1
j!

aj
i∆tjD̄(j)

)

=
∞

∑
s=0

s

∑
j=0

1
j!

aj
i∆tj 1

(s − j)!
as−j

i ∆ts−jm̄(j) × D̄(s−j)

=
∞

∑
s=0

1
s!

∆tsas
i

s

∑
j=0

Cj
sm̄(j) × D̄(s−j)

= −
∞

∑
s=0

1
s!

∆tsas
i m̄(s+1). (20)

By using Equations (20), (10) and (11), it can be obtained that

Sm×D =
p

∑
i=0

ωi

(
∞

∑
s=0

1
s!

∆tsas
i m̄(s+1)

)

=
∞

∑
s=0

1
s!

p

∑
i=0

ωias
i ∆tsm̄(s+1)

=
∞

∑
s=0

B2s
1

(2s)!
∆t2sm̄(2s+1). (21)

Using Equation (15) with c = ±1/2, we have

mn+1 − mn

∆t
=

∞

∑
i=0

∆ti−1

i!

(
1
2i −

(−1)i

2i

)
m̄(i) =

∞

∑
i=0

∆t2i

22i(2i + 1)!
m̄(2i+1). (22)

At last, substituting Equations (21) and (22) into Equation (13), and using Equation (11),
the conclusion is obtained.
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3. Preservation of Magnetization Magnitude

In this section, we analyze the preservation of the magnetization magnitude |mn| of
the discrete scheme Equation (13).

Multiplying both sides of Equation (13) by (mn+1 + mn), it can be obtained that∣∣mn+1
∣∣2 − |mn|2

∆t
= Sm×D ·

(
mn+1 + mn

)
. (23)

To analyze the preservation of magnetization magnitude, the items on the right-hand
side of Equation (23) should be discussed. To this end, a series of lemmas are provided.

Lemma 2. According to Bj in Equation (10), we have

Sm×D ·
(

mn+1 + mn
)

= 2
p

∑
j=0

∆t2j

(
j

∑
i=0

B2i

(2i)!(2j − 2i)!22j−2i m̄(2i+1) · m̄(2j−2i)

)
+O(∆t2p+2). (24)

Proof. Firstly, by Equation (15) with c = ±1/2, we have

mn+1 + mn =
∞

∑
j=0

∆tj

j!

(
1
2j +

(−1)j

2j

)
m̄(j) = 2

∞

∑
j=0

∆t2j

(2j)!22j m̄(2j). (25)

Then, combining Equations (21) and (25), it is obtained that

Sm×D ·
(

mn+1 + mn
)

=

(
∞

∑
s=0

B2s
∆t2s

(2s)!
m̄(2s+1)

)
·
(

2
∞

∑
j=0

∆t2j

(2j)!22j m̄(2j)

)

=
∞

∑
j=0

j

∑
s=0

B2s

(
2∆t2s∆t2j−2s

(2s)!(2j − 2s)!22j−2s m̄(2s+1) · m̄(2j−2s)
)

= 2
∞

∑
j=0

∆t2j

(
j

∑
s=0

B2s

(2s)!(2j − 2s)!22j−2s m̄(2s+1) · m̄(2j−2s)

)
, (26)

which completes the proof with Equation (23).

Lemma 3. For any positive integer k, there exists

2k−1

∑
i=1

Ci
2km̄(2k−i) ·

(
i−1

∑
s=0

Cs
i (m̄

(i−s) × D̄(s))

)
= 0. (27)

Proof. By rearrangement and taking l = i − s, we have

2k−1

∑
i=1

Ci
2km̄(2k−i) ·

(
i−1

∑
s=0

Cs
i (m̄

(i−s) × D̄(s))

)

=
2k−2

∑
s=0

2k−1

∑
i=s+1

Ci
2kCs

i m̄(2k−i) · (m̄(i−s) × D̄(s))

=
2k−2

∑
s=0

2k−1−s

∑
l=1

Cl+s
2k Cs

l+sm̄(2k−l−s) · (m̄(l) × D̄(s)). (28)

We introduce the notation

T1 :=
2k−2

∑
s=0

2k−1−s

∑
l=1

Cl+s
2k Cs

l+sm̄(2k−l−s) · (m̄(l) × D̄(s)). (29)
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Taking h = 2k − s − l, and noticing that

C2k−h
2k Cs

2k−h =
(2k)!(2k − h)!

h!(2k − h)!(2k − h − s)!s!
=

(2k)!(h + s)!
h!(h + s)!(2k − h − s)!s!

= Ch+s
2k Cs

h+s, (30)

T1 can be transformed into the following form:

T1 =
2k−2

∑
s=0

2k−1−s

∑
h=1

C2k−h
2k Cs

2k−hm̄(h) · (m̄(2k−h−s) × D̄(s))

=
2k−2

∑
s=0

2k−1−s

∑
h=1

Ch+s
2k Cs

h+sm̄(h) · (m̄(2k−h−s) × D̄(s))

= −
2k−2

∑
s=0

2k−1−s

∑
h=1

Ch+s
2k Cs

h+sm̄(2k−h−s) · (m̄(h) × D̄(s))

= −T1. (31)

The conclusion is obtained accordingly.

Lemma 4. According to Equation (11), we have

k

∑
i=0

B2i

(2i)!(2k − 2i)!22k−2i m̄(2i+1) · m̄(2k−2i) = 0, for k = 0, 1, 2, · · · , p. (32)

Proof. Firstly, the left-hand side of Equation (32) is split as

k

∑
i=0

B2i

(2i)!(2k − 2i)!22k−2i m̄(2i+1) · m̄(2k−2i) := I1 + I2, (33)

where

I1 =
k−1

∑
i=0

B2i

(2i)!(2k − 2i)!22k−2i m̄(2i+1) · m̄(2k−2i),

I2 =
B2k
(2k)!

m̄(2k+1) · m̄.

By using Equation (18) with s = 2k, I2 can be written as

I2 =
B2k
(2k)!

m̄(2k+1) · m̄

=
B2k
(2k)!

(
−

2k

∑
i=0

Ci
2km̄(2k−i) × D̄(i)

)
· m̄

= − B2k
(2k)!

(
2k

∑
i=0

Ci
2km̄(2k−i) ·

(
D̄(i) × m̄

))
.

Next, using the above equation, by splitting and using Equations (17) and (19), I2 can
be written as
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I2 = − Bk
(2k)!

C2k
2k m̄ ·

(
D̄(2k) × m̄

)
− B2k

(2k)!

2k−1

∑
i=1

Ci
2km̄(2k−i) ·

(
D̄(i) × m̄

)
− B2k
(2k)!

C0
2km̄(2k) · (D̄ × m̄)

= − B2k
(2k)!

2k−1

∑
i=1

Ci
2km̄(2k−i) ·

(
D̄(i) × m̄

)
− B2k

(2k)!
m̄(2k) · m̄t

= − B2k
(2k)!

2k−1

∑
i=1

Ci
2km̄(2k−i) ·

(
m̄(i+1) +

i−1

∑
s=0

Cs
i

(
m̄(i−s) × D̄(s)

))
− B2k

(2k)!
m̄(2k) · m̄t

= − B2k
(2k)!

2k−1

∑
i=0

Ci
2km̄(2k−i) · m̄(i+1) − B2k

(2k)!

2k−1

∑
i=1

Ci
2km̄(2k−i) ·

i−1

∑
s=0

Cs
i

(
m̄(i−s) × D̄(s)

)
:= I21 + I22. (34)

By splitting I21 into odd terms and even terms, we have

I21 = − B2k
(2k)!

k−1

∑
i=0

C2i
2km̄(2k−2i) · m̄(2i+1) − B2k

(2k)!

k−1

∑
i=0

C2i+1
2k m̄(2i+1) · m̄(2k−2i)

= −B2k

k−1

∑
i=0

(
1

(2i)!(2k − 2i)!
+

1
(2i + 1)!(2k − 2i − 1)!

)
m̄(2i+1) · m̄(2k−2i). (35)

Noticing that Lemma 3 indicates I22 = 0, then using Equations (33)–(35) and (11),
we have

k

∑
i=0

B2i

(2i)!(2k − 2i)!22k−2i m̄(2i+1) · m̄(2k−2i)

=
k−1

∑
i=0

(
B2i

(2i)!(2k − 2i)!2(2k−2i)
− B2k

(2i)!(2k − 2i)!
− B2k

(2i + 1)!(2k − 2i − 1)!

)
m̄(2i+1) · m̄(2k−2i)

=
k−1

∑
i=0

((2k + 1)− (2i + 1)− (2k − 2i))
(2k + 1)(2i + 1)!(2k − 2i)!22k m̄(2i+1) · m̄(2k−2i)

= 0, (36)

which completes the proof.

By using the aforementioned lemmas, we analyze the preservation of magnetization
magnitude of the discrete scheme Equation (13) in the following theorem.

Theorem 1. For the discrete scheme Equation (13) based on (p + 1) Gauss–Legendre quadrature
nodes and weights, we have

|mn+1|2 − |mn|2 ∼ O(∆t2p+3). (37)

Proof. Using Lemma 2, we have

|mn+1|2 − |mn|2 = 2
p

∑
j=0

∆t2j+1

(
j

∑
i=0

B2i

(2i)!(2j − 2i)!2(2j−2s)
m̄(2i+1) · m̄(2j−2i)

)
+ O(∆t2p+3).

Further, by applying Lemma 4 to the above equation, the conclusion can be obtained.

Remark 2. Theorem 1 is still valid for the case where the effective field includes the external field,
since the specific expression of D has not been utilized in Section 3.
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4. Preservation of the Lyapunov Structure

In micromagnetics, the Lyapunov structure implies the free energy g(m) in Equation (5)
is a decreasing function of time, which can be expressed as

dg(m(t))
dt

= −α
∫

Ω

∣∣∣∣∂m(t)
∂t

∣∣∣∣2 dx. (38)

In this section, we analyze the preservation of Lyapunov structure within the discrete
scheme Equation (13).

The magnetic body Ω is assumed to be subdivided by spatial discretization techniques,
such as finite difference methods, finite element methods, etc., with a total of N degrees
of freedom.

After spatial discretization, the discrete scheme Equation (13) can be rewritten as

mn+1 − mn

∆t
= −

p

∑
i=0

ωim(t̄n + ai∆t)⊙ D(t̄n + ai∆t), (39)

where
m = (m1,1, · · · , m1,N , m2,1, · · · , m2,N , m3,1, · · · , m3,N)

T ∈ R3N . (40)

mi,j denotes the ith component of the magnetization vector field m ∈ R3 at the jth degree
of freedom and the operator ⊙ is defined as for any a, b ∈ R3N ,

c = a ⊙ b ∈ R3N (41)

with (c1,j, c2,j, c3,j) = (a1,j, a2,j, a3,j)× (b1,j, b2,j, b3,j), j = 1, 2, · · · , N.
For the fully discrete scheme Equation (39), the free energy g(m) and D = heff − αmt

can be written as (see Equations (25) and (26) of reference [21]):

g(m) =
1
2

m · C · m, (42)

D = −C · m − αmt, (43)

where C is a 3N × 3N symmetric matrix.
Next, we analyze the preservation of the Lyapunov structure in the discrete scheme

Equation (39).

Theorem 2. For the discrete scheme Equation (39), we have

g
(
mn+1)− g(mn)

∆t
= −α

∣∣∣∣∣mn+k − mn+k−1

∆t

∣∣∣∣∣
2

+O(∆t2). (44)

Proof. Firstly, we introduce the notation

T := −C · mn+1 + mn

2
− α

mn+1 − mn

∆t
. (45)

Additionally, using Equations (25) and (22), T can be expanded as

T =

(
−C ·

(
∞

∑
j=0

∆t2j

(2j)!22j m̄(2j)

)
− α

(
∞

∑
j=0

∆t2j

22j(2j + 1)!
· m̄(2j+1)

))
= −C · m̄ − αm̄t +O(∆t2). (46)
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Multiplying both sides of Equation (39) by T defined in Equation (45), using the
symmetry of C and Equation (42), we have

−
g
(
mn+1)− g

(
mn−1)

∆t
− α

∣∣∣∣mn+1 − mn

∆t

∣∣∣∣2
=

(
−

p

∑
i=0

ωim(t̄n + ai∆t)⊙ D(t̄n + ai∆t)

)
· T. (47)

By using the similar technique as in Equation (21) with Equation (11) and Equation (46),
the right-hand side of Equation (47) can be written as(

m̄t +O(∆t2)
)
·
(
−C · m̄ − αm̄t +O(∆t2)

)
. (48)

Substituting (48) into Equation (47), and using Equations (43) and (17), we have

−
g
(
mn+1)− g

(
mn−1)

∆t
− α

∣∣∣∣mn+1 − mn

∆t

∣∣∣∣2 = O(∆t2), (49)

which completes the proof.

5. Numerical Experiments

In this section, some numerical experiments are presented to verify the effectiveness
of the discrete scheme Equation (13).

5.1. Accuracy Test

In this subsection, the accuracy of the discrete scheme Equation (13) with a predeter-
mined exact solution is tested as follows.

Example 1. The problem is presented as

∂m
∂t

= −m ×
(

∆m − α
∂m
∂t

)
+ f in Ω × T, (50)

with α = 0.1, the space domain Ω = [0, 1]× [0, 1]× [0, 1], and the time domain T = [π/4, π/4 +
0.2]. The exact solution is given as

me =

 sin(1/t) cos(x2y2z2(1 − x)2(1 − y)2(1 − z)2)

sin(1/t) sin(x2y2z2(1 − x)2(1 − y)2(1 − z)2)

cos(1/t)

, (51)

and f is chosen according to Equation (50) and the exact solution Equation (51).

In this experiment, the temporal discrete scheme Equation (14), as one special case of
the general scheme Equation (13) with p = 1, of fourth order in time and second order in
space, is implemented:

mn+1 − mn

∆t

=
1
2

(
−mh

(
t̄n − ∆t

2
√

3

)
× ∆hmh

(
t̄n − ∆t

2
√

3

)
+ αmh

(
t̄n − ∆t

2
√

3

)
× mt,h

(
t̄n − ∆t

2
√

3

))
+

1
2

(
−mh

(
t̄n +

∆t
2
√

3

)
× ∆hmh

(
t̄n +

∆t
2
√

3

)
+ αmh

(
t̄n +

∆t
2
√

3

)
× mt,h

(
t̄n +

∆t
2
√

3

))
+

1
2

f
(

t̄n − ∆t
2
√

3

)
+

1
2

f
(

t̄n +
∆t

2
√

3

)
, (52)
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where

mh

(
t̄n −

∆t
2
√

3

)
= α̃−2mn−2 + α̃−1mn−1 + α̃0mn + α̃1mn+1,

mt,h

(
t̄n −

∆t
2
√

3

)
=

(
β̃−2mn−2 + β̃−1mn−1 + β̃0mn + β̃1mn+1)/∆t,

mh

(
t̄n +

∆t
2
√

3

)
= ᾱ−2mn−2 + ᾱ−1mn−1 + ᾱ0mn + ᾱ1mn+1,

mt,h

(
t̄n +

∆t
2
√

3

)
=

(
β̄−2mn−2 + β̄−1mn−1 + β̄0mn + β̄1mn+1)/∆t,

the coefficients {α̃}, {β̃}, {ᾱ}, {β̄}, are chosen to achieve fourth-order approximations for
the following four terms:

m
(

t̄n −
∆t

2
√

3

)
, mt

(
t̄n −

∆t
2
√

3

)
, m

(
t̄n +

∆t
2
√

3

)
, mt

(
t̄n +

∆t
2
√

3

)
,

respectively, and ∆h is a discrete Laplace operator of second-order central difference.
In this case, the initial value m0 is provided by the exact solution, and m1 and m2

are obtained by using the fourth-order Runge–Kutta method. Noticing that the fully
discrete scheme (52) is implicit, an explicit iteration method is applied to solve this discrete
scheme with initial value m2 and tolerance error tol = 10−8. In this numerical test, the
spatial mesh size h and temporal step size ∆t are selected at a fixed ratio of ∆t2/h. In
Table 1, the difference between the numerical solution mh and the exact solution me at
time t = π/4 + 0.2 is described as the maximum errors ∥mh − me∥∞ for different temporal
step size ∆t. From Table 1, it can be observed that the numerical order is around 4, which
basically fits the theoretical conclusion of fourth order in Lemma 1 with p = 1.

Table 1. Convergence test for Example 1.

∆t h ∥mh − me∥∞ Order

2 × 10−4 2 × 10−1 2.6011 × 10−5 -
1.41 × 10−4 1 × 10−1 6.6369 × 10−6 3.9411

1 × 10−4 5 × 10−2 1.6495 × 10−6 4.0170
7.07 × 10−5 2.5 × 10−2 4.1832 × 10−7 3.9586

5.2. Numerical Simulations

In this subsection, a series of numerical simulations is conducted to validate the
effectiveness and applicability of the proposed numerical scheme (13).

In the absence of specific indications or declarations, it is assumed that the equilibrium
state of the magnetization has been reached when

max
l=1,··· ,N

|ml × heff,l | ≤ 10−5. (53)

Example 2. Let Ω be a 2 µm × 1 µm × 0.02 µm-sized ferromagnetic thin film. We investigate the
LLG equation (2) with α = 0.1 and γ = 2.211 × 105 m/(As). The effective field is expressed as

heff =
2Cex

µ0M2
s

∆m +
2Ku

µ0M2
s

ean(m · ean) + hs, (54)

where Cex = 1.3 × 10−11 J/m, µ0 = 4π × 10−7 N/A2, Ms = 8.0 × 105 A/m, Ku = 5.0 ×
102 J/m3, ean = (1, 0, 0), and the stray field hs is given as

hs = −∇x

(∫
Ω
∇y

(
1

4π|x − y|

)
· m(y) dy

)
. (55)
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The two-point Gauss–Legendre fully discrete scheme is employed as follows:

mn+1 − mn

∆t

=
1
2

(
−mh

(
t̄n − ∆t

2
√

3

)
× heff

(
t̄n − ∆t

2
√

3

)
+ αmh

(
t̄n − ∆t

2
√

3

)
× mt,h

(
t̄n − ∆t

2
√

3

))
+

1
2

(
−mh

(
t̄n +

∆t
2
√

3

)
× heff

(
t̄n +

∆t
2
√

3

)
+ αmh

(
t̄n +

∆t
2
√

3

)
× mt,h

(
t̄n +

∆t
2
√

3

))
, (56)

with the same notations as in Example 1.
To evaluate the effectiveness of the numerical scheme (56), we employ a fully discrete

mid-point method as a reference, and its formula is expressed as

mn+1 − mn

∆t
= −mn+1 + mn

2
×
[

heff

(
mn+1 + mn

2
, t̄n

)
− α

mn+1 − mn

∆t

]
. (57)

For the first simulation, we apply the discrete scheme (56) with initial magnetization

m0(x, y, z) =

{
(1, 0, 0), if 0 µm ≤ y ≤ 0.5 µm,
(−1, 0, 0), if 0.5 µm ≤ y ≤ 1 µm.

(58)

We employ a constant temporal step size of ∆t = 0.1 picoseconds (ps) and utilize
a uniform mesh grid of 80 × 40 × 2. The initial values m1 and m2 are obtained by the
fourth-order Runge–Kutta method. The discrete Laplace operator ∆h is calculated using
the second-order central difference method, while the stray field hs is computed using the
3D fast Fourier transform.

In Figure 1, the configurations of the magnetization on the xy-plane at different times
are presented. Firstly, the initial state of the magnetization configuration is depicted in
Figure 1a. After 300 ps, the magnetization reaches the Landau state. Over time, the total
energy continues to decrease (see Figure 2), and the magnetization at the center of the
material undergoes further evolution and eventually reaches equilibrium at a cross-tie state
(see Figure 1c–f).
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Figure 1. Cont.



Mathematics 2024, 12, 1179 13 of 18

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
×10−6

0.0

0.2

0.4

0.6

0.8

1.0
×10−6

(e) t = 1.2 × 10−9 s
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Figure 1. Snapshots of the magnetization configuration by applying the discrete scheme (56) with the
initial magnetization (58) at different times.

The total free energies obtained using the discrete scheme (56) and the mid-point
method are presented as functions of time during the transition process in Figure 2. It is
evident that there is no obvious difference between the two energy curves. Both curves
exhibit a gradual and smooth decrease, eventually reaching a steady state at the end of
the simulation. At the steady state, the total energy of our proposed method and the
mid-point method, expressed in units of Kd × |Ω|, is 4.6829 × 10−3. Here, the stray field
energy constant Kd is defined as Kd = µ0M2

s /2. Additionally, our results demonstrate good
agreement with the normalized energy value of 4.6828 × 10−3 obtained by OOMMF 2.1,
an open-source software package for micromagnetics numerical simulation [35], using the
same simulation parameters.
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Figure 2. The total free energy as a function of time by applying the discrete scheme (56) and
mid-point method (57) with the initial magnetization (58).

The maximum error, maxx∈Ω |m2 − 1|, of the normalized magnetization magnitude as
a function of time throughout the dynamics process is illustrated in Figure 3. It is observed
that the maximum error is kept within 10−6, which is deemed sufficiently small for this
numerical simulation.

For the second simulation, we employ a different initial condition, which leads to
configurations of the magnetization resulting in a distinct steady state. In this case, the
initial condition is given as

m0(x, y, z) =


(−1, 0, 0), if 0 µm ≤ x ≤ 0.5 µm, 0 µm ≤ y ≤ 0.5 µm,
(1, 0, 0), if 0 µm ≤ x ≤ 0.5 µm, 0.5 µm ≤ y ≤ 1 µm,
(1, 0, 0), if 0.5 µm ≤ x ≤ 1 µm, 0 µm ≤ y ≤ 0.5 µm,
(−1, 0, 0), if 0.5 µm ≤ x ≤ 1 µm, 0.5 µm ≤ y ≤ 1 µm.

(59)
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Figure 3. The maximum error maxx∈Ω |m2 − 1| as a function of time by applying the discrete scheme
(56) with the initial magnetization (58).

Figure 4 displays the magnetization configurations on the xy-plane at different times.
While the initial state of magnetization configuration is depicted in Figure 4a, within a
short period of time, the magnetization evolves into two vortexes known as the Diamond
state, which is also the eventual equilibrium state (see Figure 4b–f). From Figure 5, we can
observe that our proposed method and mid-point method present a highly similar energy
decrease during the dynamic simulation. Both energy curves converge to a steady-state
energy of 5.1933 × 10−3, aligning closely with the normalized energy of 5.1449 × 10−3

obtained by OOMMF. Similar to the last simulation, the maximum error maxx∈Ω |m2 − 1|
is also kept within 10−6, as shown in Figure 6.
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Figure 4. Snapshots of the magnetization configuration by applying the discrete scheme (56) with the
initial magnetization (59) at different times.
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Figure 5. The total free energy as a function of time by applying the discrete scheme (56) and
mid-point method (57) with the initial magnetization (59).
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Figure 6. The maximum error maxx∈Ω |m2 − 1| as a function of time by applying the discrete scheme
(56) with the initial magnetization (59).

Next, to validate the applicability of our numerical scheme, we test the two-point
Gauss–Legendre scheme (56) with different damping coefficients α.

A renormalized vector field of (1, 0, 0.1) is set to be the initial magnetization for this
simulation. The temporal step size is taken as ∆t = 5 × 10−3 ps. To ensure the attainment
of equilibriated magnetization, we implement the numerical simulation for t = 2 ns. We
investigate our proposed method with different damping coefficients α = 0.025, 0.05, 0.1, 0.2.
For different damping coefficients, the magnetization for all cases eventually reaches an
equilibrium state known as the S state, as shown in Figure 7.

The total energies of our proposed methodology as functions of time, depicted in
Figure 8, exhibit a consistent decline for all damping coefficients α. All energy curves
converge to a steady-state energy of 2.4784 × 10−2 over time. However, different α lead
to different velocities of energy decrease. It can be observed that the larger the α is, the
greater the rate of energy decrease is, and the earlier to reach the equilibrium state. Such
a phenomenon exhibits strong agreement with the Lyapunov structure (38) of the LLG
equation, which posits that larger damping coefficients α lead to a faster energy decrease.
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Figure 7. Cont.
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Figure 7. Snapshots of the magnetization configuration by applying the discrete scheme (56) with
different damping coefficients.
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Figure 8. The total free energy as a function of time with different damping parameters by applying
the discrete scheme (56).

6. Conclusions

In this paper, we propose a family of high-order numerical schemes for the Landau–
Lifshitz–Gilbert equation in micromagnetics. The proposed schemes are constructed based
on the Gauss–Legendre quadrature and are shown to achieve arbitrarily high order over
time by employing different Gauss–Legendre nodes and weights.

Furthermore, we analyze the geometrical properties—the preservation of constant
magnetization magnitude and the Lyapunov structure—within the proposed discrete
scheme. We demonstrate that the magnetization magnitude remains constant with an
error of (2p + 3) order over time when employing a (2p + 2)th-order Gauss–Legendre
quadrature discrete scheme. Additionally, the preservation of the Lyapunov structure is
achieved with a second-order error of temporal step size.

Some three-dimensional accuracy tests are provided to demonstrate the precision of
our proposed method. The effectiveness of the proposed method is validated through a
comparison with the mid-point method during two numerical simulations. Furthermore,
we test the proposed numerical method with a different damping coefficient α to show its
applicability. Unfortunately, our proposed method involves solving a nonlinear system,
and the exploration of an efficient approach to solve it will be the primary focus of our
future work.
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