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Abstract: The main goal of session-based recommendation (SBR) is to analyze the list of possible next
interaction items through the user’s historical interaction sequence. The existing session recommen-
dation models directly model the session sequence as a graph, and only consider the aggregation of
neighbor items based on spatial structure information, ignoring the time information of items. The
sparsity of interaction sequences also affects the accuracy of recommendation. This paper proposes a
spatio-temporal contrastive heterogeneous graph attention network model (STC-HGAT). The session
sequence is built as a spatial heterogeneous hypergraph, a latent Dirichlet allocation (LDA) algorithm
is used to construct the category nodes of the items to enhance the contextual semantic information of
the hypergraph, and the hypergraph attention network is employed to capture the spatial structure
information of the session. The temporal heterogeneous graph is constructed to aggregate the tempo-
ral information of the item. Then, the spatial and temporal information are fused by sumpooling.
Meanwhile, a modulation factor is added to the cross-entropy loss function to construct the adaptive
weight (AW) loss function. Contrastive learning (CL) is used as an auxiliary task to further enhance
the modeling, so as to alleviate the sparsity of data. A large number of experiments on real public
datasets show that the STC-HGAT model proposed in this paper is superior to the baseline models in
metrics such as P@20 and MRR@20, improving the recommendation performance to a certain extent.

Keywords: session-based recommendation; latent Dirichlet allocation; spatio-temporal heterogeneous;
contrastive learning

MSC: 68T07

1. Introduction

As an effective tool to alleviate information overload for users, recommendation sys-
tems (RSs) can help users improve their experience in various aspects of life, entertainment,
and shopping [1]. However, traditional recommendation methods rely on user personal
information or long-term historical records to recommend items. This dependency on
available information can lead to poor performance or malfunctioning of RS when such
information is unavailable. Session-based recommendation (SBR) [2], as a novel recom-
mendation paradigm, has garnered extensive attention from researchers. SBR operates
independently of users’ personal information and recommends the next interested item
based on the anonymous user’s behavior sequence within a session.

Traditional SBR methods, such as collaborative filtering [3] and matrix factorization[4],
mostly utilize a matrix to calculate the similarity between items and users, which ignores the
recent preferences of users and the temporal correlation of session sequences. The method,
which is based on Markov chains, employs the previous interaction item to guide the next
interaction item, while the user’s preference is not only related to the current behavior, but
also has a strong correlation with the past behavior. Recent research based on deep learning
techniques has made significant progress, including recurrent neural networks (RNNs) [5],
convolutional neural networks (CNNs) [6], and graph neural networks (GNNs) [7,8]. In
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RNN-based methods, recommendations are implemented according to the sequence of
items, and cannot obtain the information of other sessions. CNN-based algorithms can
learn feature representations of items within each session sequence through convolution
and pooling operations, but lack the ability to model time series. Methods based on GNNs
map interaction items into a graph according to the sequence, utilize the information of
other sessions, but struggle to acquire higher graph-level information. The hypergraph
structure, which is proposed in DHCN [9], can effectively capture higher graph-level
information, while the superior recommendation performance of SBR is obtained through
hypergraph neural networks (HGNNs). However, there are still the following defects:
firstly, the dependency relationship between the items in the current session and other
sessions is not fully considered; secondly, most of the existing SBR models ignore the
aggregation of temporal information of items; thirdly, the hypergraph constructed by the
session sequence has a serious issue of sparsity.

Based on the above reasons, this paper proposes a spatio-temporal contrastive hetero-
geneous graph attention network (STC-HGAT), which constructs the category nodes of
items through latent Dirichlet allocation (LDA) and considers the dependency relationship
between items in the current session and other sessions. Both the spatial and temporal
information of the session sequence are considered through the spatial heterogeneous
hypergraph and the temporal heterogeneous graph, respectively. The hypergraph attention
network (HyperGAT) is used to capture the spatial structure information of the session
sequence, and the heterogeneous graph attention network (HGAT) aggregates temporal
information of interaction items. To enhance the generalization performance of different
session sequences, a modulation factor is added to the loss function. In addition, contrastive
learning is used as an auxiliary task to maximize the spatio-temporal mutual information
of the sequence.

In summary, the main contributions of this paper are summarized as follows:

• The session sequence is modeled as a spatial heterogeneous hypergraph, and category
nodes of items by LDA are introduced to enhance the context information of the
hypergraph, which further captures the spatial structure information of sequences.

• The temporal heterogeneous graph aggregates the temporal information of the in-
teraction items, and the features of items effectively fuse the temporal and spatial
information of sequences through sumpooling.

• An adaptive weight (AW) loss function is constructed to improve the generalization
ability of the STC-HGAT model, and contrastive learning is introduced as an auxiliary
task to alleviate the sparsity problem of session data.

• Extensive experiments on real datasets show that the session recommendation perfor-
mance of our method STC-HGAT outperforms other baseline models.

The rest of this paper is organized as follows: Related work is presented in Section 2.
Section 3 provides the problem definition, and introduces the session graph construction
method of the STC-HGAT model. In Section 4, the framework and implementation method
are described in detail. Extensive experimental results and analysis are presented in
Section 5. Finally, in Section 6, we conclude and summarize the entire work.

2. Related Work

In this section, previous work related to the proposed STC-HGAT model is pre-
sented. It includes traditional SBR methods, deep learning-based methods, and hypergraph-
based methods.

2.1. Traditional SBR Methods

Traditional session-based recommendation methods mainly rely on collaborative
filtering, matrix factorization, and Markov chains. In 2011, Park et al. [10] proposed session-
based collaborative filtering, in which users prefer the same items in similar sessions.
Approaches based on matrix factorization and collaborative filtering do not consider the
item sequence. Therefore, FPMC [11] was introduced in 2010, which combines matrix
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factorization and Markov chains. It uses Markov chains to learn personalized transition
matrices for each user.

However, previous SBR models based on traditional methods rely too much on the
sequence order, which leads to a disadvantage when capturing the transition relationship
between items over long distances.

2.2. Deep Learning-Based Methods

With the advancement of deep learning, deep learning-based methods have made
significant progress in RSs. GRU4Rec [12], introduced in 2015, was the first model to
use gated recurrent units to model item interaction sequences. STAMP [13] proposed a
short-term attention memory model to capture the current interests of the user. Deep
learning-based methods are excellent at capturing the sequential dependencies of session
sequences, but ignore the information between interaction items.

In recent years, methods based on GNNs [14,15] have received extensive attention
and achieved remarkable results in RSs. GNNs model session sequences as graphs, and
aggregate one-hop or multi-hop neighboring item features in the graph to acquire richer
representations of items. SR-GNN [16], proposed in 2019, is a pioneering GNN-based
method that converts a session into a directed unweighted graph and exploits a gated
GNN to generate the session representation. SGNN-HN [17] was proposed in 2020 to
introduce a star node for each session graph to capture long-distance relationships between
items. While these studies have yielded encouraging results, independent learning from
short sessions may be inherently insufficient to accurately reveal a user’s true intentions.
Research methods are now shifting towards combining collaborative information from
other sessions to serve the current session. GCE-GNN [18] exploits the global and local
relationships of sessions to enhance the session-level representation.

Although the above methods based on GNNs have achieved good results, these
methods only consider the simple transition relationships between items in the session
sequence, ignoring the more high-order transition relationships in other sessions from a
global perspective.

2.3. Hypergraph-Based Methods

Traditional GNN-based methods [19] primarily leverage GNNs to capture pairwise
transition relationship between nodes in graph structure data. Wang et al. introduced
hypergraph convolutional networks to capture high-order item relationships within indi-
vidual sessions and employed self-supervised learning to enhance session representations.
In 2022, Li et al. [20] proposed a novel hypergraph-based model HIDE, which models each
session as a hypergraph and models the possible interest transfer of users from different
perspectives. The application of a hypergraph neural network to SBR can effectively mine
the spatial information of the sequence, but still struggles to overcome sparsity issues, es-
pecially for short sequences, and these methods do not aggregate the temporal information
of interaction items.

We propose a spatio-temporal contrastive heterogeneous graph attention network
model, which constructs a spatio-temporal heterogeneous graph to consider both spatial
and temporal information of the session sequence, and introduces an LDA algorithm to
construct category nodes of items to enhance the context information of the hypergraph.
Contrastive learning serves as an auxiliary task to maximize the mutual information
between the spatial and temporal representations of sequences, aiming to alleviate the
sparsity of data.

3. Preliminary

In this section, the problem of SBR is first defined, and then two constructions of the
session graph are introduced.
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3.1. Problem Definition

SBR outputs the top K candidate items with higher scores, which enables calcu-
lation of its similarity with the session representation. Considering a session dataset
S = {s1, s2, · · · , sM} and item datasets V = {v1, v2, · · · , vN}, M and N represent the
number of S and V, respectively. A given session si = [(vsi ,1, t1), (vsi ,2, t2), · · · , (vsn ,1, tn)]
represents the i-th time series of an anonymous user, where (vsi ,k, tk) ∈ V denotes the k-th
item that the user interacted with in si, and tk is the time of vsi ,k clicked. The purpose
of SBR is to predict the next most likely item v̂si,n+1 , based on datasets S and V, namely,
v̂si,n+1 = g(S, V, si : θ). Here, θ represents the set of learnable parameters and the function
g(·) is constructed.

3.2. Session Graph Construction
3.2.1. Spatial Heterogeneous Hypergraph

To explore the spatial structure information of the sequence, we model a single session
sequence as a hypergraph Gs = {Vs, Es} in the form of a sliding window, where each
sliding window is a hyperedge, and the items in the sliding window are the nodes of the
hyperedge. Let ew

s denote the set of all hyperedges constructed with sliding windows of
size w, and then the set of hyperedges of different sizes is gathered together to obtain the set
of hyperedges Es = e1

s ∪ e2
s ∪ · · · ∪ eW

s , where W is the maximum size of the sliding window.
However, the hypergraph-based recommendation model has a serious issue of graph
sparsity. Latent Dirichlet allocation (LDA), as a generative model, can learn the distribution
of topics from a set of documents. LDA mines the potential category ci = (θ1, θ2, · · · , θk)
from the item dataset V, k represents the number of items in the category, the average
features of the top k items within the category are aggregated, and each category feature
is denoted as hci =

1
k ∑k

j=1 hθj(θj ∈ ci). The category nodes are added to the sequence to
construct a spatial heterogeneous hypergraph.

3.2.2. Temporal Heterogeneous Graph

The heterogeneous hypergraph mines the spatial information of the sequence, but
the temporal information of the interaction items is also important for recommendation.
Inspired by DRGN [21], we construct the interaction sequence as a temporal heterogeneous
graph Gt = {Vt, Et}. For effective training and reduced computation, we aggregate the
temporal order of the interactions of the 1-hop neighboring nodes. Taking the sequence si
as an example, the item (vsi ,k, tk) ∈ V is selected as the anchor node to construct the time
series vsi ,k = {s1, s2, · · · , sm}.

4. Methodology

The framework of the model STC-HGAT is shown in Figure 1, where five modules are
introduced as follows: Module I represents HyperGAT to capture higher spatial information
between items in the sequence. Module II is HGAT to aggregate the different temporal
information of items. Module III fuses the spatial and temporal information of the sequence
and obtains the final session representation using the attention mechanism. Module IV
denotes contrastive learning (CL). Module V predicts the possible item.
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Figure 1. The framework of the model STC-HGAT.

4.1. HyperGAT

After building the session sequence as a spatial heterogeneous hypergraph, we em-
ploy HyperGAT as the aggregation operation to learn the importance degree between
hyperedges and nodes. The nodes of the item and category in the hypergraph are initially
encoded h(0) =

{
h(0)1 , h(0)2 , · · · , h(0)N , h(0)c

}
, which serves as the input of the first layer.

4.1.1. Nodes to Hyperedges

The information of all the connected nodes Nk to the hyperedge ek is aggregated via
an attention operation, represented as e(1)k :

e(1)k = ∑
t∈Nk

αk,tW
(1)
1 h(0)t , (1)

where, W(1)
1 is the transformation matrix. αk,t denotes the attention score of the node t on

the hyperedge ek, calculated as follows:

αk,t =
S(Ŵ(1)

1 h(0)t , u(1))

∑ f∈Nk
S(Ŵ(1)

1 h(0)f , u(1))
, (2)

where, u(1) represents the trainable context vector, and Ŵ(1)
1 is the transformation matrix.

S(·, ·) uses the scaled click attention to compute the similarity computation between the
node encoding and the context vector:

S(a, b) =
aTb√

D
, (3)

where, D represents the dimension size, which can be used for normalization when calcu-
lating the similarity score.
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4.1.2. Hyperedges to Nodes

The attention mechanism is also employed to aggregate information from hyperedges
Et and to distinguish the significance of different hyperedges. The node information is
updated as n(1)

t :

n(1)
t = ∑

k∈Et

αt,kW(1)
2 e(1)k (4)

αt,k =
S(Ŵ(1)

2 ek
(1), W(1)

3 n(1)
t )

∑ f∈Et S(Ŵ(1)
2 e f

(1), W(1)
3 n(1)

t )
, (5)

where, W(1)
2 , Ŵ(1)

2 , and W(1)
3 are the trainable weight transformation matrix. αt,k represents

the degree of influence of the hyperedge ek on the node t, S(·, ·) as shown in Equation (4).
HyperGAT can obtain the information of the direct neighbors, and higher-order information
can be learned from the hypergraph through the l HyperGAT layers. The final node
representation is denoted as h(l) =

{
h(l)1 , h(l)2 , · · · , h(l)N , h(l)c

}
.

4.2. HGAT
4.2.1. Items to Session

HGAT aggregates the information of items in the temporal heterogeneous graph. For
a given item vi, the influence degree of the item on the session sequence s is denoted as ei,s:

ei,s = LeakyReLU(vT
i,s(h

(0)
s ⊙ h(0)i )), (6)

where, vi,s presents the weight vector between items and session, and h(0)s is the encoding

of the session, namely, h(0)s = 1
n ∑n

i=1 hi
(0). To ensure comparability between the different

nodes, the attention coefficients βi,s are normalized by the softmax function on ei,s:

βi,s =
exp(ei,s)

∑vi∈s exp(ei,s)
(7)

Then, the feature representation of the session h(1)s is obtained:

h(1)s = ∑
vi∈s

βi,sh(0)i (8)

4.2.2. Sessions to Item

Similarly, the attention coefficient βs,i of the sequence s to vi is obtained through the
LeakyReLU and softmax function:

es,i = LeakyReLU(vT
s,i(h

(0)
i ⊙ h(1)s )) (9)

βs,i =
exp(es,i)

∑s∈vsi ,k
exp(es,i)

. (10)

Then, the feature representation of the item is acquired:

h(1)t,i = ∑
s∈vsi ,k

βs,ih
(1)
s (11)

After d layers of HGAT, the final node features are denoted by
h(d)t =

{
h(d)1 , h(d)2 , · · · , h(d)N

}
.
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4.3. Information Fusion Layer

The temporal and spatial information of the sequence are fused by sumpooling; h
represents the aggregated session vector:

h = sumpooling(h(l)s + h(d)t ) (12)

Position information, as an effective technique, is introduced in Transformer to memo-
rize the position information of items. We reverse the position encoding P = [p1, p2, · · · , pn],
where pi represents the encoding vector for the i-th position, and n is the length of the current
session sequence. In the current session, the encoding information h∗i for the i-th item is
obtained through aggregation operations and non-linear transformations:

h∗i = tanh(W4(hi||pn−i+1) + b) (13)

ρi = pT(W5h∗i + W6hi + c) (14)

s =
l

∑
i=1

ρi · hi (15)

in which, W4, W5, W6, and b, c are trainable parameters. The session sequence s is repre-
sented via the soft attention mechanism.

4.4. Contrastive Learning

Comparing the spatio-temporal representations of items, if the two item embedding
representations are the same, the pair of embeddings is marked as ground-truth, otherwise
it is marked as negative. The model adopts InfoNCE, employing the standard binary
cross-entropy loss between positive samples and negative samples as the learning objective,
denoted as:

Lc = −logσ( fD(hH
i , hI

i ))− logσ(1 − fD(h̃H
i , hI

i )), (16)

where, h̃H
i represents negative samples, which are obtained by corrupting hH

i (row transfor-
mation and column transformation). The discriminant function fD(., .) conducts the dot
product of the vectors to evaluate the consistency between the two input vectors.

4.5. Prediction Layer

The dot product between the current session representation s and the item representa-
tion hi is calculated to the likelihood of the recommended candidate item, and normalized
by the softmax function to obtain the probability of the next clicked item ŷi:

ŷi = softmax(sThi) (17)

The differences between samples within the dataset also reflect variations in the
model’s predictions for different sessions [22]. We add a modulation factor to the cross-
entropy loss function to allocate weights based on the predictive deviation of samples,
thereby constructing the adaptive weight (AW) loss function:

pi =

{
ŷi, i f yi = 1
1 − ŷi, otherwise

(18)

Lr(ŷi) = −
N

∑
i=1

(2 − 2pi)
γ log(1 − pi) (19)

in which, γ is the temperature coefficient, and yi represents the one-hot encoding vector
of the ground-truth item. Ultimately, the model unifies the objective function of the
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recommendation task and the function of contrastive learning, where the former is the
main task of recommendation, and the latter is the auxiliary task, specifically defined as:

L = Lr + λLc, (20)

where λ is used to control the size of the contrastive learning task.

5. Experiment and Analysis

In this section, we introduce the datasets and preprocessing methods, as well as
the evaluation metrics, which is followed by the baselines, and the parameter settings of
the STC-HGAT model. Finally, we conduct extensive experiments to address the follow-
ing questions:

• RQ1: Is the STC-HGAT model superior to state-of-the-art baseline models?
• RQ2: How do different modules contribute to the recommendation performance in

the STC-HGAT model?
• RQ3: What impact do different hyperparameter settings have on the final recommen-

dation results?
• RQ4: How does the STC-HGAT model perform when dealing with sessions of differ-

ent lengths?
• RQ5: How about the computational complexity of the STC-HGAT model, compared

with other models?

5.1. Experimental Settings
5.1.1. Datasets

This work selects two real datasets, namely, Diginetica and Yoochoose. The Diginetica
dataset is from the CIKM Cup 2016 and contains transaction data of anonymous users.
Yoochoose was released in the Recsys Challenge 2015 as a public dataset, which mainly
consists of click data from an e-commerce website within six months. Yoochoose1/4 and
Yoochoose1/64 are both from the public dataset Yoochoose, which was released in the
RecSys Challenge. While the Yoochoose dataset consists of the huge interaction data of
users, only part of them are usually selected as the dataset of SBR. The Yoochoose1/4
dataset is the training set with the most recent quarter of the interactions in the Yoochoose
dataset. Yoochoose1/64 is different in that it takes 1/64 of the most recent interactions as
the training set.

For better recommendation, we follow [23,24] and preprocess the three datasets. In
the preprocessing phase, sessions of length l with less than five occurrences of items were
filtered out on both datasets. For the Yoochoose dataset, the sessions that occurred on the
last day were used for the test set and the rest were used as the training set. The difference
is that for the Diginetica dataset, the sessions that occurred within the last seven days
are used for the test set. Meanwhile, the session si = {[(vsi ,1, t1), (vsi ,2, t2), · · · , (vsi ,n, tn)}
is preprocessed by sequence segmentation to generate sequences and corresponding la-
bels, such as {[(vsi ,1, t1)], (vsi ,2, t2)}, · · · , {[(vsi ,1, t1), (vsi ,2, t2), · · · , (vsn ,1, tn−1)], (vsn ,1, tn)},
which are used for training and testing on the three datasets. Table 1 shows the detailed
statistics of the dataset after preprocessing.

Table 1. Statistical information of the datasets.

Dataset Diginetica Yoochoose1/64 Yoochoose1/4

#train 719,470 369,859 5,917,746
#test 60,858 55,898 55,898

#items 43,596 16,766 29,618
avg.len 5.12 6.16 5.71
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5.1.2. Metrics

To facilitate the analysis and comparison, we follow previous work and choose the
evaluation metrics widely used in SBR, including P@20 and MRR@20.

P@K (precision calculated over the top K items) is widely employed to measure the
accuracy of a prediction. It represents the fraction of correctly recommended items among
the top K items, and the equation is:

P@K =
nhit
K

, (21)

where nhit is the number of correctly recommended items in the top K-ranked list.
MRR@K (mean reciprocal rank calculated over the top K items) is the mean reciprocal

rank calculated over the top K items, which takes into account the order in which the
recommendations are ranked. The MRR@K value increases as the accuracy of the top-
ranked items recommended by the model. Formally, MRR@K is calculated as follows:

MRR@K =
1
|S|

S

∑
x=1

1
rankx

, (22)

in which, S is the number of items in the test set, and rankx is the user interaction in the x
position actual list of recommended items. In the experiments, the value of K is set to 20;
that is, we investigate the values of MRR@20 and P@20 of different models.

5.1.3. Baselines

Our proposed model is compared with related session recommendation models to
verify the advantages of STC-HGAT. The selected baseline models are as follows:

1. Traditional method: FPMC combines matrix decomposition and first-order MCs to
capture user preferences. Similar to previous studies of SBR [25], we also ignore the
potential representation of the user when calculating the recommendation score.

2. Attention mechanism and RNNs: GRU4REC learns the final sequence representation
through gated neural networks. STAMP replaces RNNs in previous work with
multiple attention layers, and captures the short-term interest of the user through the
last item in the current session.

3. GNNs: SR-GNN constructs the session sequence as a graph, and uses gated GNNs
to acquire the encoded representation of items. GCE-GNN considers other session
information to construct a global graph.

4. HGNNs: SHARE [26] builds each session as a hypergraph that models item corre-
lations defined by various context windows. HIDE employs the hyperedges of the
current session and captures user interest shifts from different perspectives.

5. Contrastive learning: COTREC [27] utilizes different connectivity information to
generate labels and supervise each other through contrastive learning. HCCF [28]
acquires the global relationship through the hypergraph and the local neighborhood
through the original interaction graph, and designs the enhancement method of
double graph contrastive learning.

6. Temporal: STAM [29] uses the multi-head attention mechanism to explore the relation-
ship in the sequence and aggregate the spatio-temporal information of the neighbor
node embedding. TMI-GNN [30] identifies multiple interests of modeling users
through temporal information of the interval and interest level of item transitions.

5.1.4. Hyperparameter Settings

Adaptive Moment Estimation (Adam) refers to an optimization algorithm used in
training neural networks, particularly in SBR models. In this experiment, Adam was
used as the optimizer and the learning rate was set to 0.001 for the datasets. For a fair
comparison, the embedding size of the STC-HGAT and baseline models is set to 128. For
the Yoochoose1/4 dataset, we set the number of HyperGAT to 2. Let us set the number of
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layers to 3. As in previous work, 10% was randomly sampled from the training set as the
validation set for parameter tuning.

5.2. Overall Performance Comparison (RQ1)

As shown in Table 2, the experimental results of the STC-HGAT and baseline models
are compared to illustrate the overall performance of the proposed model, and we average
the values of results in the table after multiple experiments. The overall performance
of STC-HGAT achieves the optimal outcome. Multiple GRU layers are simply stacked,
and the order relationship is only considered in GRU4Rec. GRU4Rec models the session
sequence as a session representation, and although its performance is better than FPMC,
it is not sufficient to consider only modeling the sequence because user preferences are
dynamic. The attention mechanism is employed in STAMP, which can consider the weight
difference between different items of the session to express the user’s intention more
accurately. This indicates that assigning different attention weights to different items for
session encoding is very effective. Therefore, the STC-HGAT model proposed in this paper
uses HyperGAT to achieve the spatial information of the sequence, and HGAT to learn the
temporal information of the item sequence.

Table 2. Performance comparison of our STC-HGAT model with the baselines.

Methods
Diginetica Yoochoose1/64 Yoochoose1/4

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

FPMC 26.31 7.63 55.63 19.67 40.78 17.41
GRU4Rec 30.79 8.22 60.84 22.89 43.80 19.83
STAMP 48.32 16.00 68.35 28.63 54.17 26.11

SR-GNN 46.62 15.13 67.85 27.71 53.96 25.46
GCE-GNN 51.26 17.78 70.57 30.94 58.87 26.47

SHARE 54.22 18.54 71.31 30.58 63.75 27.29
HIDE 54.73 18.85 71.53 31.24 71.59 30.13

COTREC 53.66 18.51 70.53 30.12 54.91 27.82
HCCF 54.36 18.67 71.46 30.95 71.86 30.99
STAM 53.18 18.44 70.86 29.80 70.17 29.97

TMI-GNN 54.13 18.61 71.22 30.81 70.76 29.22

STC-HGAT 55.40 19.01 72.12 31.57 72.62 31.19
p value 0.001 0.001 0.001 0.01 0.001 0.001

Note: The black fonts and underlined fonts indicate the best results for each column and baselines respectively.

Compared with the GNN-based models, including SR-GNN and GCE-GNN, the
recommendation effect is better than that of the deep learning-based models. This is because
the session sequence is modeled as a graph structure, while the GNN-based models employ
GNNs to learn the pairwise transition relationship between items, which also proves the
importance of considering the dependencies between items when recommending. The
performance of DHCN and SHARE is better than that of the GNN model. The GNN-based
model only constructs the session as a simple graph construction, which cannot capture
complex high-order relationships between items, while hypergraph further mines the
spatial information of the session sequences. However, the method based on contrastive
learning alleviates the data sparsity of the graph model and shows better recommendation
performance. Different from the above baseline models, the category nodes of items are
considered through the LDA algorithm, so it can effectively represent the characteristics of
the item in the current session.

Although models based on time series information, including STAM and TMI-GNN,
mine the temporal information in the sequence, they produce lower results than the contrastive
learning model, which may be due to the influence of sparsity and sample imbalance. In our STC-
HGAT approach, the heterogeneous graph and hypergraph are employed to simultaneously
consider the spatio-temporal information of sequences, and contrastive learning is added in the
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prediction to alleviate the data sparsity. This is also the reason for the superior performance of
STC-HGAT. For both the evaluation metrics, MRR@20 and P@20, the p-value represents the
significant improvement of STC-HGAT over the best baseline, and the p-values of STC-HGAT
are all less than the critical value of 0.05.

5.3. Ablation Studies (RQ2)

To verify the performance effect of different modules in the STC-HGAT model, we use
the following variants for evaluation:

• STC-HGAT-S removes the spatial heterogeneous hypergraph and only retains the
temporal information of the temporal heterogeneous graph.

• STC-HGAT-T extracts the sequence information through the spatial heterogeneous
hypergraph, and then calculates the score of the candidate.

• STC-HGAT-C removes the category nodes and only aggregates the hyperedge infor-
mation in the sliding window.

• ST-HGAT does not employ contrastive learning as an auxiliary task.
• STC-HGAT-A only employs the cross-entropy function after removing the modula-

tion factor.

We can see from Table 3 that the proposed STC-HGAT achieves the best performance
on P@20 and MRR@20. On the Diginetica, Yoochoose1/64, and Yoochoose1/4 datasets,
the STC-HGAT model outperforms the STC-HGAT-S variant, which shows that modeling
the session sequence as a spatial heterogeneous hypergraph and using HyperGAT can
effectively learn the spatial information from the sequence. Meanwhile, the STC-HGAT
model performs better than the STC-HGAT-T variant, which proves the effectiveness of
using HGAT to learn temporal information. By comparing the experimental results of the
STC-HGAT model and the ST-HGAT variant, it can be seen that the use of CL can effectively
enhance the graph model modeling, and alleviate the sparsity problem of graph data to
a certain extent. The performance of STC-HGAT is better than STC-HGAT-C, and LDA
enriches the contextual semantic information of the graph structure data. However, the
STC-HGAT-C variant shows the best performance on the Yoochoose1/64 dataset and the
corresponding MRR@20, which may be because the session length in the Yoochoose1/64
dataset is relatively long, and the model does not fully consider the position information of
the long session sequence when the category nodes are added. On the whole, STC-HGAT-A
performs slightly worse than STC-HGAT on the three datasets, indicating the effectiveness
of the AW loss function. Ablation experiments show that the fusion of temporal and spatial
information of the sequence can effectively learn the item feature representation, and the
introduction of contrastive learning can enhance graph modeling to a certain extent, thereby
alleviating the sparsity of data. And adding an adaptive loss function can improve the
generalization ability of the model.

Table 3. Experimental results of different modules.

Methods
Diginetica Yoochoose1/64 Yoochoose1/4

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

STC-HGAT-S 54.35 18.27 71.23 30.85 71.13 29.24
STC-HGAT-T 51.13 17.38 69.54 29.63 68.20 27.50
STC-HGAT-C 53.86 18.13 70.31 31.65 70.03 28.72
ST-HGAT 55.00 18.59 71.55 31.18 70.67 29.49

STC-HGAT-A 55.12 18.78 71.86 31.44 71.87 30.67
STC-HGAT 55.40 19.01 72.19 31.57 72.62 31.19

Note: The black fonts indicate the best results for each column.
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5.4. Impact of Hyperparameters (RQ3)
5.4.1. Click Unit

On the two evaluation metrics, the values of the click unit effects on the recommen-
dation performance are different when the session sequence is modeled as a hypergraph.
Here, the value of the click unit is 1, which means that the session sequence has not been
built into a hypergraph, while the item uses static embeddings throughout the session.
From Figure 2, it can be observed that on the Diginetica dataset, the recommendation per-
formance is optimal when the corresponding click units are 5 and 1 for P@20 and MRR@20,
respectively. However, in the Yoochoose1/64 dataset and the Yoochoose1/4 dataset, the
recommendation performance of P@20 is optimal when the click unit value is set to 7 and
6, while for the MRR@20 evaluation metric, the click unit value of the Yoochoose dataset is
2 to achieve the optimal outcome. This shows that for P@20, it is necessary to set a large
click unit value to effectively acquire the feature information of items, so as to improve the
hit rate of recommendation. For MRR@20, we need to consider the location accuracy of
the item for recommendation. If the click unit is set too high, it is easy to take irrelevant
item information into account when establishing the hypergraph. Therefore, we need to
set the click unit to a small value. The results show that, in some cases, making a trade-off
between the hit rate and the item ranking is important when choosing the click unit.

Figure 2. The impact of the click unit on recommendation performance.

5.4.2. CL Parameter λ

Figure 3 illustrates the impact of the parameter controlling the size of the auxiliary task
for CL on the experimental results. Specifically, experiments were undertaken to explore the
value of the typical values set for 0.001 to 0.01. It can be seen from the figure that different
values also have different effects on the recommendation performance, and the recommen-
dation performance decreases with larger values, which may be caused by the conflict
between the two gradients of the recommendation task and the self-supervised learning
task. On the Diginetica dataset and the two evaluation metrics, the recommendation effect
is best when the value is set to 0.001, which indicates that for the Diginetica dataset and
the value is 0.001, the hypergraph channel and the general conversation graph channel can
learn more mutual information from each other through CL. For the Yoochoose1/64 dataset
and the Yoochoose1/4 dataset, the recommendation effect is best on the corresponding two
evaluation indicators when the value is 0.0005. When the recommendation performance is
optimal, the value corresponding to the Yoochoose1/64 dataset is relatively small compared
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to the Diginetica dataset, which indicates that appropriate values need to be set for different
datasets to balance the two different learning tasks.

Figure 3. The impact of the CL parameter on recommendation performance.

5.5. Impact of Session Length (RQ4)

For a more thorough analysis, especially when dealing with different data volumes and
operating conditions. We investigate the recommendation performance of three different
recommendation models, including STC-HGAT, HIDE, and HCCF, when the session length
is different. It can be seen from Figure 4 that on the three datasets, the STC-HGAT model
reaches the optimal on P@20 when the session length is 4, 5, and 4, respectively. However,
with increase in the length, the performance of STC-HGAT declines, potentially exceeding
the average length of the session sequence in the dataset, and the long sequence is more
susceptible to data sparsity. The experimental results show that the performance of STC-
HGAT is consistent for different length session sequences.

Figure 4. The impact of session length on recommendation performance.
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5.6. The Computational Complexity of STC-HGAT (RQ5)

The construction of a spatio-temporal heterogeneous graph may increase the complex-
ity of the model. In order to understand the effectiveness and feasibility of our model in
practical applications, we increased the comparison of the training time of each epoch and
the number of trainable parameters on three datasets, and compared with three types of
recommendation models, namely HIDE, COTREC, and TMI-GNN, respectively. From the
results in Table 4, we can see that the parameter values of our model are slightly lower
than those of TMI-GNN and HIDE. Although the number of parameters of our model
is higher than that of COTREC, its running time is less than that of COTREC because
self-supervised learning requires more corrosion operations and runs take more time. The
experimental results show that the construction of a spatio-temporal heterogeneous graph
does not greatly increase the number of parameters and running time, and STC-HGAT is
quite practical to apply.

Table 4. The computational complexity of STC-HGAT.

Methods
Diginetica Yoochoose1/64 Yoochoose1/4

Time #Params Time #Params Time #Params

HIDE 29 m 21 s 4.31 M 18 m 49 s 3.87 M 57 m 69 s 4.12 M
COTREC 33 m 41 s 4.24 M 20 m 13 s 3.81 M 63 m 42 s 4.10 M

TMI-GNN 29 m 44 s 4.30 M 19 m 12 s 3.84 M 58 m 93 s 4.14 M
STC-HGAT 28 m 56 s 4.26 M 18 m 33 s 3.73 M 56 m 33 s 4.06 M

Note: The black fonts indicate the best results for each column, additionally, m, s, and M stand for minute, second,
and million, respectively.

6. Conclusions and Discussion

This work investigates the problem of SBR using spatio-temporal heterogeneous
graph attention networks (STC-HGAT). We construct session sequences into a spatial
heterogeneous hypergraph and a temporal heterogeneous graph, respectively. STC-HGAT
uses LDA to construct category nodes, mines spatial information through HyperGAT, and
uses HGAT to aggregate temporal information. Then, information from two sessions is
fused using a sumpooling operation, and the spatial information and temporal information
of the sequence are maximized through CL. A modulation factor was added to the cross-
entropy loss function to construct the AW loss function. Experiments undertaken show
that the proposed method STC-HGAT exhibits superior performance on the three datasets.

Although the recommendation performance of the STC-HGAT model has been im-
proved, the real-time performance of the recommendation results may need to be consid-
ered. In the future, graph compression techniques, such as low-rank factorization, can
be used to compress the original large-scale graph data into smaller matrices, thereby
reducing the computational complexity. In addition, the noise problem can also affect
the recommendation performance of the model, so, sequence time information and item
interaction frequency will be further used to remove the noise problem.
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