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Abstract: This paper presents a comprehensive investigation into the applicability and performance
of two prominent growth models, namely, the Verhulst model and the Montroll model, in the
context of modeling tumor cell growth dynamics. Leveraging the power of Physics-Informed
Neural Networks (PINNs), we aim to assess and compare the predictive capabilities of these models
against experimental data obtained from the growth patterns of tumor cells. We employed a dataset
comprising detailed measurements of tumor cell growth to train and evaluate the Verhulst and
Montroll models. By integrating PINNs, we not only account for experimental noise but also embed
physical insights into the learning process, enabling the models to capture the underlying mechanisms
governing tumor cell growth. Our findings reveal the strengths and limitations of each growth model
in accurately representing tumor cell proliferation dynamics. Furthermore, the study sheds light on
the impact of incorporating physics-informed constraints on the model predictions. The insights
gained from this comparative analysis contribute to advancing our understanding of growth models
and their applications in predicting complex biological phenomena, particularly in the realm of tumor
cell proliferation.
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function; deep learning; cancer cells; Montroll growth model; Verhulst growth model

MSC: 92-08; 92-10

1. Introduction

Physics-Informed Neural Networks (PINNs) represent a powerful and innovative
approach at the intersection of physics-based modeling and machine learning. These
networks seamlessly integrate physical laws or governing equations into the neural network
architecture, enabling the incorporation of prior knowledge about a system’s behavior.
PINNs have gained prominence in various scientific and engineering domains where
traditional numerical simulations may be computationally expensive or challenging.

The key idea behind Physics-Informed Neural Networks is to train neural networks to
not only learn from observed data but also adhere to the underlying physics that govern
the system. This is achieved by incorporating differential equations or other relevant
physical constraints as additional terms in the loss function during training. This unique
combination allows PINNs to generalize well beyond the available data and offers a data-
driven framework for solving complex physical problems.

PINNs also represent a powerful tool for solving complex inverse problems by inte-
grating domain knowledge from physics-based constraints with data-driven approaches
provided by neural networks. Recent advancements in PINNs have demonstrated their
effectiveness in a wide range of scientific and engineering applications, including fluid dy-
namics, materials science, and medical imaging. In this study, we leverage the capabilities
of PINNs to address the problem of accurately predicting the underlying system behavior,
specifically focusing on the growth dynamics of multicellular tumor spheroids.
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Recent research in the field of PINNs has highlighted their potential to overcome the
limitations of traditional modeling techniques by seamlessly incorporating physical laws
or constraints into the learning process. For instance, Kamyab et al. [1] developed an
adaptive PINN framework capable of automatically adjusting the network architecture and
hyperparameters based on the complexity of the problem, leading to improved accuracy
and efficiency in solving inverse problems.

In the context of tumor growth modeling, recent studies have explored the application
of PINNs to predict tumor evolution and response to treatment. For example, Chen et al. [2]
employed PINNs to incorporate biomechanical constraints into tumor growth models,
enabling the prediction of tumor deformation and invasion patterns with high accuracy.
Furthermore, Lorenzo et al. [3] utilized PINNs to optimize treatment strategies for cancer
patients by integrating patient-specific data with physiological constraints, leading to
personalized treatment recommendations and improved clinical outcomes.

PINNs have demonstrated success in a diverse range of applications, including fluid
dynamics, heat transfer, structural mechanics, and quantum mechanics. By leveraging the
expressive power of neural networks and the interpretability of physics-based constraints,
PINNs provide an efficient means to model and simulate complex physical systems [4,5].

Building upon these advancements, our study aims to leverage the combination of
supervised learning and physics-based constraints offered by PINNs to accurately predict
the growth behavior of multicellular tumor spheroids. By integrating experimental data
with mechanistic insights from the Verhulst growth model and Montroll growth model,
we seek to develop a predictive model capable of capturing the complex dynamics of
tumor growth and facilitating comparisons between different growth models. Through this
approach, we hope to contribute to the ongoing efforts in understanding tumor biology.

Cell growth is a fundamental process in biology, pivotal for understanding develop-
ment, tissue regeneration, and disease progression. Over the years, mathematical models
have played a crucial role in unraveling the complexities of cell growth dynamics. One
such model that has gained prominence is the Verhulst model [6], which originates from the
field of population dynamics but finds compelling applications in describing the growth
patterns of individual cells.

Another important proposal was developed by Montroll [7], which consists of a
general model that translates the asymptotic growth of a variable, taking into account the
position of the inflection point of the curve.

Understanding the growth dynamics of tumor cells is critical for advancing the knowl-
edge of cancer progression and developing effective treatment strategies. Mathematical
models play a pivotal role in this endeavor by providing a quantitative framework to de-
scribe and predict the complex behavior of tumor cell populations. However, the accurate
adjustment of these models to observed data poses significant challenges, particularly in
the context of tumor cell growth.

2. Materials and Methods

The objective of this study was to investigate and compare the applicability of two
prominent growth models: the Verhulst logistic growth model and the Montroll power-law
growth model. The study aimed to understand how these models capture population
growth dynamics and to identify scenarios in which one model may be more suitable
than the other. The study utilized a combination of numerical simulations and empirical
data analysis to evaluate the performance of the Verhulst and Montroll growth models.
Numerical simulations allowed for the controlled exploration of model behavior, while
empirical data analysis provided insights into the models’ capabilities to describe real-
world growth patterns.

The Verhulst growth model and the Montroll growth model are both mathematical
models used to describe population growth over time. These models are useful in under-
standing the dynamics of population growth, but they also have limitations. Both models
assume continuous population growth, which may not always hold true in real-world
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populations. In reality, populations may experience discrete events such as births and
deaths, which are not accounted for in these models. The values of parameters like the in-
trinsic growth rate (k) and the carrying capacity (C) are typically not constant in real-world
scenarios. They may vary due to environmental factors, resource availability, competi-
tion, predation, etc. Assuming fixed values for these parameters might oversimplify the
dynamics of real populations.

PINNs are a class of machine learning models that leverage neural networks to ap-
proximate solutions to partial differential equations (PDEs) while incorporating physical
principles. In this study, we apply PINNs to model growth phenomena, specifically utiliz-
ing them for the Verhulst and Montroll growth models.

While it may seem unconventional to use PINNs for simple first-order differential
equations, their flexibility, ability to incorporate prior knowledge, data-driven approach,
robustness to noise, and generalization to higher dimensions make them a valuable tool in
solving a wide range of differential equations, including those encountered in real-world
applications such as tumor growth modeling.

Real-world data often contain noise, measurement errors, and uncertainties. Analytical
solutions might not be robust to these perturbations. Neural networks can be trained on
noisy data and learn to generalize, making them more robust in noisy environments.

2.1. Verhulst Growth Model

The Verhulst growth model, representing logistic growth, is described by the differen-
tial equation

dp
dt

(t) = kp(t)
(

1 − p(t)
C

)
(1)

where p is the population size, t is time, k is the growth rate, and C is the carrying capacity [6].
For this model, obtaining p(t) > C indicates that the population size has exceeded the

carrying capacity of the environment. In the Verhulst model, this leads to a negative growth
rate, as the term

(
1 − p(t)

C

)
becomes negative. This negative growth rate implies a decrease

in the population size, bringing it closer to the carrying capacity over time. However, if
p(t) < C, the population is below the carrying capacity, and the growth rate is positive. In
this scenario, the population will tend to increase until it reaches the carrying capacity. It
is important to note that these models are typically designed to handle scenarios where
p(t) and C are positive real numbers. Setting C = 1 could lead to a situation where p(t)
surpasses the carrying capacity, causing the growth rate to become negative, as mentioned
earlier. This behavior does not necessarily imply a limitation of the model but rather a
reflection of the dynamics specified by the model under the given parameter values.

2.2. Montroll Growth Model

The Montroll growth model, capturing power-law growth, is expressed as follows:

dp
dt

(t) = kp(t)

(
1 −

(
p(t)
C

)θ
)

(2)

where the parameter θ indicates the position of the inflection point of the growth curve. If
θ = 1, we obtain the Verhulst growth model [7].

The previous discussion for the Verhulst model applies to the Montroll model as well,
after appropriate adjustments are made, including the parameter θ.

2.3. Network Architecture

A feedforward neural network was designed to approximate the solutions of the
Verhulst and Montroll growth models. The network architecture included an input layer,
multiple hidden layers, and an output layer corresponding to the predicted population size.

Figure 1 refers to the schematic PINN architecture with the following components:
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1. Multiple layers, including input, hidden, and output layers. Each layer contains
neurons that perform the activation function σ. Common activation functions include
ReLU, sigmoid, and tanh [4].

2. The input layer receives input data.
3. The output layer produces predictions, the solutions to the problem. This layer might

output approximate solutions to the differential equations at different points in time.
4. In addition to standard training data, PINNs are trained with physics-informed con-

straints. These constraints encode the underlying physics of the problem and are used
to guide the learning process.

5. The loss function measures the error between the predicted solutions and the actual
solutions or data. In a PINN, the loss function typically includes terms that penalize
deviations from both the observed data and the physics-informed constraints. The
network is trained to minimize this combined loss (see Section 2.4).

Figure 1. The schematic PINN architecture for solving differential equations for the Montroll model.

2.4. Loss Function

The PINN was trained by minimizing a physics-informed loss function, which com-
bines the mean squared error between predicted and observed data with terms enforcing
the satisfaction of the underlying growth model equations. The loss function was formu-
lated as follows:

LPINN = Ldata + λLphysics (3)

where Ldata is the data fidelity term and Lphysics enforces adherence to the growth model
equations, and λ is a regularization parameter [5].

For a set of data points (xi, yi)i=1,...,N , where xi denotes input points and yi corresponds
to target values, the data-driven loss might look like the following:

Ldata =
1
N

N

∑
i=1

(p(ti)− yi)
2 (4)

Here, p(xi) represents the output of the neural network for the model under study for
input xi, and N is the number of data points.

The other term is defined by

Lphysics =
1

NR

NR

∑
j=1

R2(tj) (5)

Here, NR is the number of points where the model’s restrictions need to be satisfied,
and R(tj) is the residual of the model at point xj.

This component ensures that the solution satisfies the underlying physical laws or con-
straints. It is formulated based on the governing equations or other physics-related constraints.

Choosing an appropriate regularization parameter is crucial for achieving conver-
gence and preventing divergence during training. This selection process often involves
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experimentation and validation techniques to find the regularization parameter that results
in the best generalization performance on unseen data.

The domain of the regularization parameter depends on the specific regularization
technique being used. Two common types of regularization are L1 regularization (Lasso)
and L2 regularization (Ridge). For both L1 and L2 regularization, regularization typically
ranges from 0 to positive infinity [8].

3. Algorithm for Calculating Mean of Residuals

Here, we introduce the algorithm for calculating the mean of residuals for the Verhulst
growth model in a PINN framework:

1. Initialization:

• Initialize the neural network parameters (weights and biases) randomly or using
a predefined initialization scheme.

• Define the training dataset, consisting of input–output pairs (ti, pi), i ∈ {1, . . . , N}
representing observations of the population size at different time points from
Table 1.

2. Forward Pass:

• Perform a forward pass through the neural network to obtain predictions p̂i for
each input time ti.

3. Compute Residuals:

• Calculate the residuals Rj =
dp̂j
dt − kp̂j

(
1 − p̂j

C

)
for each predicted population

size p̂j, j ∈ {1, . . . , NR}, using the Verhulst model equation.

4. Calculate Mean of Residuals:

• Compute the mean of the residuals mean_residual = 1
NR

∑NR
j=1 R2

j .

5. Update Neural Network Parameters:

• Use an optimization algorithm (in this case, ADAM) [9] to update the neural
network parameters to minimize the mean of residuals.

6. Repeat:

• Repeat steps 2–5 until convergence criteria are met (e.g., maximum number of
iterations reached or convergence of the loss function).

Table 1. Chinese hamster V79 fibroblast tumor cells [10].

t V t V t V t V t V

3.46 0.0158 12.39 0.4977 24.33 3.2046 35.2 5.9668 48.29 7.0694
4.58 0.0264 13.42 0.6033 25.58 4.5241 36.34 6.6945 49.24 7.4971
5.67 0.0326 15.19 0.8441 26.43 4.3459 37.29 6.6395 50.19 6.9974
6.64 0.0445 16.24 1.2163 27.44 5.1374 38.5 6.8971 51.14 6.7219
7.63 0.0646 17.23 1.447 28.43 5.5376 39.67 7.2966 52.10 7.0523
8.41 0.0933 18.18 2.3298 30.49 4.8946 41.37 7.2268 54.0 7.1095
9.32 0.1454 19.29 2.5342 31.34 5.0660 42.58 6.8815 56.33 7.0694

10.27 0.2183 21.23 3.0064 32.34 6.1494 45.39 8.0993 57.33 8.0562
11.19 0.2842 21.99 3.4044 33.0 6.8548 46.38 7.2112 59.38 7.2268

Usually, a first-order differential model requires an initial condition to become a well-
posed problem. Here, this condition will be inferred from the experimental data available
in Table 1, and then one can use p(3.46) = 0.0158 as the initial condition.
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4. Results

In this section, we present the results obtained from the application of PINNs for the
Verhulst and Montroll growth models to the dataset of tabulated data in Table 1. In this
study, we used previously published data from Chinese hamster V79 fibroblast tumor
cells [10]. The dataset consists of 45 measurements of volumes (109 νm3) over a time period
of 60 days.

The main objective of our study was to leverage the combination of supervised learning
and physics-based constraints to accurately predict the underlying system behavior and
compare the two growth models.

For each method under study, we define the respective loss function depending on the
parameters to be determined. Namely, for the Verhulst model,

LVerhulst data = L(k, C) (6)

and for the Montroll model,

LMontroll data = L(k, C, θ) (7)

As a result of applying the algorithm outlined in Section 3 to each of the functions (6)
and (7), we derive the parameters for Tables 2 and 3 and, consequently, the solutions
depicted in the graphs in Figures 2 and 4, respectively. This iterative process allows us
to efficiently extract the necessary parameters from the given functions, thus facilitating
the generation of the corresponding graphical representations. Through this approach, we
visually represent the obtained solutions (in blue) compared to the data provided (in red).

Table 2. Predicted final parameters for the Verhulst model.

k = 0.57168955 C = 7.533739

Figure 2. The PINN solution for the Verhulst model. Volumes (109 νm3) over a time period of 60 days.

In Figure 2, we see the graph of the solution predicted by the Verhulst model for
the data obtained at the end of a process of 5000 epochs. The evolution of the model’s
performance can be seen in Figure 3.

Similarly, in Figure 4, we see the graph of the solution predicted by the Montroll model
for the data obtained at the end of the same process of 5000 epochs, while the evolution of
the model’s performance can be seen in Figure 5.
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Figure 3. The history of the total loss function for the Verhulst model.

Table 3. Predicted final parameters for the Montroll model.

k = 0.8311218 C = 7.3327312 θ = 0.16937177

Figure 4. The PINN solution for the Montroll model. Volumes (109 νm3) over a time period of 60 days.

Figure 5. The history of the total loss function for the Montroll model.
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The models are well defined when the associated parameters are determined;
Tables 2 and 3 contain the predicted parameters for the Verhulst and Montroll models,
respectively.

5. Discussion

For both models, we found that the PINN methodology can predict the asymptotic
behavior of the saturation of tumor cell volume growth. However, the existence of the θ
parameter of the Montroll model allows a better fit to the data and a better prediction of
the location of the inflection point of the growth function graph.

6. Conclusions

This study intended to use Physics-Informed Neural Networks to choose the method
that best fits the data, as in a reverse engineering procedure, determining the parameters
intrinsic to each method.

The methodology presented for adjusting the growth model can be adopted for any other
phenomenon that is intended to be mathematically modeled based on experimental data.

PINNs provide a means of learning robust and accurate models of systems, providing
existing domain knowledge about the models that govern the data, even in situations
where the equations do not exactly match the data.
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