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Abstract: Graphs are a powerful tool for solving various mathematical problems. One such task is
the representation of discrete structures. Combinatorial generation methods make it possible to obtain
algorithms that can create discrete structures with specified properties. This article is devoted to issues
related to the construction of such combinatorial generation algorithms for a wide class of directed
lattice paths. The main method used is based on the representation of a given combinatorial set in
the form of an AND/OR tree structure. To apply this method, it is necessary to have an expression
for the cardinality function of a combinatorial set that satisfies certain requirements. As the main
result, we have found recurrence relations for enumerating simple directed lattice paths that satisfy
the requirements of the applied method and have constructed the corresponding AND/OR tree
structure. Applying the constructed AND/OR tree structure, we have developed new algorithms
for ranking and unranking simple directed lattice paths. Additionally, the obtained results were
generalized to the case of directed lattice paths.
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1. Introduction

Lattice paths represent a fundamental construct in discrete mathematics and have
found applications in various fields. In simple terms, a lattice path can be defined as
a sequence of moves on an integer lattice, usually constrained to certain steps, that form
a path from an origin to a destination point. The elegance of lattice paths lies in their
simplicity in terms of their representation. At the same time, it is possible to map a set
of specific lattice paths into another set of more complex combinatorial objects. In this
research, we focus on the problem of enumerating and generating lattice paths.

A lattice path P is a sequence P = (P0, P1, . . . , Pl) of points Pi in the d-dimensional
integer lattice (i.e., Pi = (pi1, pi2, . . . , pid), where pij ∈ Z and Pi ∈ Zd). For a given lattice
path, P0 is the starting point and Pl is the end point. In this article, we consider lattice
paths in a plane, i.e., d = 2. Moreover, it is required to specify a set S = {s1, s2, . . . , sk}
of possible steps in the lattice path, where each step si is a vector in the d-dimensional
integer lattice, i.e., si ∈ Zd. For the two-dimensional case, we have si = (ai, bi), where
ai, bi ∈ Z. Then, a lattice path P = (P0, P1, . . . , Pl) can be represented as a sequence of
steps performed, i.e., P = (

−−→
P0P1, . . . ,

−−−→
Pl−1Pl) = (ps1, ps2, . . . , psl), where

−−−→
Pi−1Pi = psi ∈ S.

In this article, we will use only the representation of lattice paths in the form of sequences
of the performed steps.

One of the problems considered in this article is the enumeration of lattice paths.
A brief historical review of research related to lattice paths and their enumeration was
presented in [1]. A detailed description of the main results in the field of lattice path
enumeration and the methods for obtaining these results can be found in [2–4]. The most
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famous and studied class of lattice paths are the so-called Dyck paths due to their con-
nection with Catalan numbers. A large amount of information on explicit formulas for
enumerating Dyck paths, including an analysis of their various parameters/statistics and
their corresponding generating functions, can be found in [5–7]. In addition, there are
different generalizations of Dyck paths that add new properties. For example, one of
such generalizations is Dyck paths with catastrophes, motivated by a natural model in
queuing theory. The problem of enumerating such lattice paths in terms of finding closed
forms of corresponding generating functions was solved in [8]. The same property regard-
ing catastrophes was considered for skew Dyck paths in [9]. Another generalization of
Dyck paths related to catastrophes was considered in [10], where generating functions
for enumerating such lattice paths and asymptotic approximations for their coefficients
were obtained. The enumeration of labeled Dyck paths with ascents on return steps can
be found in [11]. Moreover, there are a large number of other special cases of lattice paths,
such as Delannoy paths [12], Schroder paths [13], Motzkin paths [14], Riordan paths [15],
Lukasiewicz paths [16], etc.

This study examines a wide class of lattice paths called directed lattice paths [17].
A directed lattice path is a lattice path in the plane, where each possible step si = (ai, bi)
has ai > 0. A simple directed lattice path is a directed lattice path where each possible step
si = (ai, bi) has ai = 1. If a simple directed lattice path begins at the origin P0 = (0, 0)
and consists of n steps of the form si = (1, bi), then it ends at Pn = (n, m), where m ∈ Z.
Using the kernel method, generating functions for enumerating directed lattice paths were
obtained in [17]. Additionally, a summary of results related to directed lattice paths can
be found in [18]. The problem of obtaining explicit formulas for enumerating simple
directed lattice paths with the possible steps of the form (1, bi), where −h ≤ bi ≤ +h, was
considered in [19]. Using a new vectorial kernel method [20], these results in enumeration
and asymptotics of directed lattice paths were extended to the case of pattern-avoiding
directed lattice paths. In addition, there are studies in which non-directed lattice paths
are transformed into directed ones (for example, see [21]). This makes it possible to apply
appropriate known methods to them.

Another problem considered in the article is the generation of lattice paths. The de-
velopment of methods for generating various discrete structures is studied in a branch of
science called combinatorial generation [22]. The generation problem was also considered
for different classes of lattice paths. Since Dyck paths are the most famous and studied
class of lattice paths, a variety of combinatorial generation algorithms have been devel-
oped for such lattice paths. There are also studies on the development of combinatorial
generation algorithms for some generalizations of Dyck paths. For example, ranking and
unranking algorithms for a generalized Dyck language that use bijection into Dyck paths
were presented in [23]. Additional results related to the development of lexicographic
generation algorithms for this generalized Dyck language were obtained in [24]. Another
generalized Dyck language and a random generation scheme for it were considered in [25].
There is also an algorithm for random generation of Dyck paths with catastrophes [8]. Dyck
paths are used in the development of generation algorithms not only for Dyck languages,
but also for other discrete structures. For example, an efficient algorithm for the exhaustive
generation of n-node binary trees using Dyck paths is presented in [26]. There are also
examples of developing combinatorial generation algorithms for other lattice paths, such
as Motzkin and Schroder positive paths [27] and north–east lattice paths with turns [28].

Thus, existing combinatorial generation algorithms mainly solve only the narrow
generation problem for a specific combinatorial set. The lack of combinatorial generation
algorithms for a wide class of directed lattice paths confirms the relevance of this research.
Hence, the purpose of this article is to develop new combinatorial generation algorithms
for ranking and unranking directed lattice paths.

The organization of this paper is as follows. In Section 2, we briefly describe the method
used to develop new combinatorial generation algorithms for directed lattice paths and
specify the main restrictions of its application. Then, in Section 3, we provide a detailed de-
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scription of the main stages in the development of combinatorial generation algorithms for
directed lattice paths. First, we consider simple directed lattice paths, and then generalize
the obtained results to directed lattice paths. A discussion of the obtained results can be
found in Section 4.

2. Materials and Methods

There are a large number of combinatorial generation algorithms for different classes
of discrete structures. Some of them can be found in [22,29]. There are also several general
approaches for developing combinatorial generation algorithms, such as the backtracking
method [30], the ECO method [31], the Flajolet method [32] and the method based on
permutation languages [33]. However, they mostly aim only at exhaustive generation
or consider structures defined by a single parameter (object size). In this research, we
study a method for developing combinatorial generation algorithms, which is based on
the representation of combinatorial sets in the form of an AND/OR tree structure [34].
An AND/OR tree is a tree structure that contains nodes of two types: OR nodes and AND
nodes. This tree structure has a set of its variants, where a variant of an AND/OR tree is
a tree structure in which for each OR node only one child node is saved and the remaining
child nodes are deleted. Then, the number of variants of an AND/OR tree structure is
equal to the number of objects in the corresponding combinatorial set.

The main restriction on the application of this method is that the cardinality function
of a combinatorial set can only consist of the following operations and their combinations:

• The use of positive integers, as well as expressions whose calculation result is a positive
integer. In an AND/OR tree structure, a positive integer from the cardinality function
is represented in the form of an OR node that has k child nodes, where k equals
the value of this positive integer and all these child nodes are leaf nodes;

• The use of zero values. In an AND/OR tree structure, a zero value from the cardinality
function is represented in the form of an empty node that must be removed from
the AND/OR tree along with the subtree containing this node until the closest son of
any OR node;

• The use of addition operations. In an AND/OR tree structure, an addition operation
from the cardinality function is represented in the form of an OR node that has k child
nodes, where k equals the number of summands in this addition and all these child
nodes have their own subtree structure defined by the summands’ content;

• The use of multiplication operations. In an AND/OR tree structure, a multiplication
operation from the cardinality function is represented in the form of an AND node
that has k child nodes, where k equals the number of factors in this multiplication and
all these child nodes have their own subtree structure defined by the factors’ content;

• The use of recursion operations. In an AND/OR tree structure, a recursion operation
from the cardinality function is represented in the form of a node that has a subtree
structure defined in the same way as the structure of the AND/OR tree;

• The use of cardinality functions of other combinatorial sets that have corresponding
AND/OR tree structures. In an AND/OR tree structure, such a cardinality function is
represented in the form of a node that has a subtree structure defined by the structure
of the corresponding AND/OR tree;

• The use of cardinality functions of other combinatorial sets that have ranking and
unranking algorithms. In an AND/OR tree structure, such a cardinality function
is represented in the form of an OR node that has k child nodes, where k equals
the number of objects in the corresponding combinatorial set and all these child nodes
are leaf nodes;

• The use of conditional statements. In an AND/OR tree structure, such conditional
statements are represented in the form of a set of AND/OR trees structures, where
each AND/OR tree corresponds to one case of the conditional statements.

In contrast to the original method, the presented rules expand the possibilities of
constructing AND/OR tree structures for combinatorial sets.
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In previous research [35], the method based on AND/OR trees was applied to develop
combinatorial generation algorithms for some special cases of lattice paths (north–east
lattice paths, Dyck paths, Delannoy paths, Schroder paths, and Motzkin paths). This article
continues the study presented in [36], where the possibility of constructing AND/OR tree
structures for directed lattice paths was shown.

3. Results

This section provides a detailed description of the main stages in the development of
combinatorial generation algorithms for directed lattice paths. First, we consider simple
directed lattice paths, and then generalize the obtained results to directed lattice paths.

3.1. Simple Directed Lattice Paths

Theorem 1. The number of all simple directed lattice paths that begin at (0, 0), end at (n, m)
and consist of steps in the set {(1, b1), (1, b2), . . . , (1, bk)} can be calculated using the following
recurrence:

Wm
n =

k

∑
i=1

Wm−bi
n−1 , (1)

where W0
0 = 1 and Wm

0 = 0 for m ̸= 0.

Proof. Let us consider the end point (n, m) of a directed lattice path. Based on the given
set of possible steps S = {s1, s2, . . . , sk} = {(1, b1), (1, b2), . . . , (1, bk)}, the end point (n, m)
can be reached from the following k points:

1. From (n − 1, m − b1) to (n, m) by performing the step s1 = (1, b1);
2. From (n − 1, m − b2) to (n, m) by performing the step s2 = (1, b2);...
k. From (n − 1, m − bk) to (n, m) by performing the step sk = (1, bk).

Figure 1 demonstrates a set of possible steps S = {s1, s2, . . . , sk} and all options for
reaching the point (n, m) using one step from S.

S:
sk = (1, bk)

. . .

s2 = (1, b2)

s1 = (1, b1)

y

x(0, 0) nn − 1

(n, m)

(n − 1, m − b1) s1

(n − 1, m − b2)
s2

. . .

(n − 1, m − bk)

sk

Figure 1. All options for reaching the point (n, m) using one step from S = {s1, s2, . . . , sk}.

There is only one way to reach the point (n, m) from the point (n − 1, m − bi): to
achieve this, it is necessary to perform step si = (1, bi). The number of all simple directed
lattice paths that begin at (0, 0), end at (n − 1, m − bi) and consist of steps in the set
{(1, b1), (1, b2), . . . , (1, bk)} is equal to Wm−bi

n−1 . To calculate the number of all simple directed
lattice paths that begin at (0, 0) and end at (n, m), it is necessary to sum the number of all
simple directed lattice paths from (0, 0) to each point (n − 1, m − bi), i = 1, k. Therefore,
we obtain the desired recurrence (1).

Next, we define the initial conditions for the obtained recurrence (1):
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1. The value of W0
0 shows the number of all simple directed lattice paths that begin

at (0, 0) and end at (0, 0). There is only one such lattice path: the empty lattice path
that does not contain any performed steps. Therefore, we obtain the first initial
condition W0

0 = 1;
2. Since the simple directed lattice path begins at (0, 0) and ai = 1 is true for each step

si = (ai, bi), it is impossible to reach the point (0, m), where m ̸= 0. Therefore, we
obtain the second initial condition Wm

0 = 0 for m ̸= 0.

Figure 2 demonstrates a set of possible steps S = {s1, s2, . . . , sk} and all possible and
impossible steps for a simple directed lattice path that begins at (0, 0) and ends at (1, m).

S:
sk = (1, bk)

. . .

s2 = (1, b2)

s1 = (1, b1)

y

x(0, 0)

(1, m)

1

s1

s2

sk

Figure 2. All possible (black line) and impossible (red line) steps for a simple directed lattice path
that begins at (0, 0) and ends at (1, m).

Hence, the obtained recurrence (1) with the defined initial conditions can be applied
for calculating the number of all simple directed lattice paths that begin at (0, 0), end
at (n, m) and consist of steps in the set {(1, b1), (1, b2), . . . , (1, bk)}.

The initial conditions for Wm
n can be slightly improved by adding the following

condition that reduces the number of recursive calls when calculating Wm
n :

Wm
n = 0 for m > n · max

i
bi or m < n · min

i
bi. (2)

In addition, we can use the following initial condition, which also reduces the number
of recursive calls when calculating Wm

n :

Wm
n = 1 for m = n · max

i
bi or m = n · min

i
bi. (3)

Figure 3 demonstrates the set of possible steps S = {(1,−1), (1, 0), (1, 1)} and all
recursive calls when applying (1) to calculate W1

3 without (Figure 3a) and with (Figure 3b)
the use of (2) and (3).

The obtained recurrence (1) with the use of the initial conditions (2) and (3) satisfies
the requirements of the method for developing combinatorial generation algorithms based
on AND/OR trees. Figure 4 shows the corresponding AND/OR tree structure for Wm

n .
In this tree, the root, labeled Wm

n , is an OR node with k child nodes labeled i (i = 1, k).
This structure matches the summation in (1). Each node labeled i has only one child node,
labeled Wm−bi

n−1 , that corresponds to the summand in the summation in (1). The subtree

of the node labeled Wm−bi
n−1 , which is shown as a node with a triangle, is constructed in a

similar way for the new values of parameters n and m; i.e., a recursive call is needed. Such
recursive calls stop when some initial condition for Wm

n are satisfied:

• If we obtain a node where Wm
n = 1, then it is a leaf node;

• If we obtain a node where Wm
n = 0, then it is necessary to remove this node and its

parent node labeled i.
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S:
s3 = (1, 1)

s2 = (1, 0)

s1 = (1,−1)

y

x(0, 0)

(3, 1)

(a)

y

x(0, 0)

(3, 1)

(b)

Figure 3. An example of applying (1): (a) without (2) and (3). (b) with (2) and (3).

Wm
n

i := 1

Wm−bi
n−1

. . . i := k

Wm−bi
n−1

Figure 4. An AND/OR tree structure for Wm
n based on (1).

According to the applied method [34], the total number of variants of the AND/OR
tree structure for Wm

n is equal to Wm
n . The constructed tree structure does not contain AND

nodes, since there are no multiplications in the recurrence (1). Therefore, a variant of such
an AND/OR tree is a path from the root to a leaf node. A bijection between the considered
set of all simple directed lattice paths and the set of all variants of the constructed AND/OR
tree structure is defined by the following rules:

• Selecting a child of the node labeled Wm
n (each child is labeled with a specific value of

the parameter i) corresponds to selecting one of the possible steps si when reaching
the point (n, m), i.e., psn = si. The subtree of the selected child node determines
the remaining part of the simple directed lattice path from (0, 0) to (n − 1, m − bi).
It is also important to note that it is necessary to fix some order on the set of possible
steps S, because the AND/OR tree is an ordered structure;

• A leaf node labeled Wm
n , where m = n · maxi bi, means reaching the point (n, m) from

(0, 0) by performing n steps of the form (1, max
i

bi), i.e., ps1 = . . . = psn = (1, max
i

bi);
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• A leaf node labeled Wm
n , where m = n · mini bi, means reaching the point (n, m) from

(0, 0) by performing n steps of the form (1, min
i

bi), i.e., ps1 = . . . = psn = (1, min
i

bi);

• A leaf node labeled W0
0 means reaching the starting point (0, 0); i.e., there are no

additional steps required.

Figure 5 shows the corresponding AND/OR tree structure for W1
3 with the set of

possible steps S = {s1, s2, s3} = {(1,−1), (1, 0), (1, 1)}. This structure is constructed based
on (1) with the use of (2) and (3). The total number of its variants is equal to W1

3 = 6, which
corresponds to the following simple directed lattice paths: (s3, s3, s1), (s3, s2, s2), (s2, s3, s2),
(s3, s1, s3), (s2, s2, s3), (s1, s3, s3).

W1
3

i := 1

W2
2

i := 2

W1
2

i := 2

W1
1

i := 3

W0
1

i := 2

W0
0

i := 3

W0
2

i := 1

W1
1

i := 2

W0
1

i := 2

W0
0

i := 3

W−1
1

Figure 5. An AND/OR tree structure for W1
3 with S = {(1,−1), (1, 0), (1, 1)}.

Since the constructed tree structure does not contain AND nodes and the choice
between children of OR nodes is associated with the choice of feasible solutions when
constructing lattice paths. This tree structure is similar to the state space tree obtained by ap-
plying the backtracking method [30]. Traversing this tree allows for exhaustive generation
of the considered simple directed lattice paths. However, in contrast to the backtracking
method, the applied method [34] makes it possible to obtain other classes of combinatorial
generation algorithms for the set of simple directed lattice paths.

According to the applied method for developing combinatorial generation algorithms
based on AND/OR trees, we obtain algorithms for ranking (Algorithm 1) and unranking
(Algorithm 2) simple directed lattice paths that begin at (0, 0), end at (n, m) and consist
of steps in the set S = {s1, s2, . . . , sk} = {(1, b1), (1, b2), . . . , (1, bk)}. In these combi-
natorial generation algorithms, ( ) denotes an empty lattice path and concat( ) denotes
the concatenation of lattice paths; i.e., concat((s1, s2), (s3, s4, s5)) returns the lattice path
(s1, s2, s3, s4, s5).
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Algorithm 1: An algorithm for ranking a simple directed lattice path that
begins at (0, 0), ends at (n, m) and consists of steps in the ordered set
S = {(1, b1), (1, b2), . . . , (1, bk)}.

1 Rank_SDLP(P = (ps1, ps2, . . . , psn), n, m)
2 begin
3 if (n = 0 and m = 0) or m = n · maxi bi or m = n · mini bi then r := 0
4 else
5 I := index of psn in the ordered set S

6 sum :=
I−1
∑

i=1
Wm−bi

n−1

7 r := sum+ Rank_SDLP((ps1, ps2, . . . , psn−1), n − 1, m − bI)
8 end
9 return r

10 end

Algorithm 2: An algorithm for unranking a simple directed lattice path
that begins at (0, 0), ends at (n, m) and consists of steps in the ordered set
S = {(1, b1), (1, b2), . . . , (1, bk)}.

1 Unrank_SDLP(r, n, m)
2 begin
3 if n = 0 and m = 0 then P := ( )
4 else if m = n · maxi bi then P := (ps1, . . . , psn) = ((1, max

i
bi), . . . , (1, max

i
bi))

5 else if m = n · mini bi then P := (ps1, . . . , psn) = ((1, min
i

bi), . . . , (1, min
i

bi))

6 else
7 sum := 0
8 for i := 1 to k do
9 s := Wm−bi

n−1
10 if sum + s > r then
11 r := r − sum
12 I := i
13 break
14 end
15 sum := sum + s
16 end
17 P :=concat(Unrank_SDLP(r, n − 1, m − bI), (sI))
18 end
19 return P
20 end

Algorithms 1 and 2 have at most n recursive calls, where each recursive call requires
calculations of Wm

n maximum k times. Hence, Algorithms 1 and 2 have a time complexity
of O(n · k · w(n, k, S)), where w(n, k, S) is a function that describes the increase in the time
of calculating value Wm

n depending on the values of parameters n and m, as well as the set
of possible steps S. If we use recurrence (1) for calculating Wm

n , which has time complexity
O(kn), we obtain time complexity O(nkn) for ranking and unranking algorithms. The time
complexity of the developed combinatorial generation algorithms can be improved by using
formulas for calculating Wm

n that are more efficient in terms of computational complexity.
Such formulas can be found by considering simple directed lattice paths with a specific set
of possible steps.
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Table 1 presents an example of applying Algorithm 1 for ranking and Algorithm 2 for
unranking simple directed lattice paths that begin at (0, 0), end at (3, 1) and consist of steps
in the ordered set S = {(1,−1), (1, 0), (1, 1)}.

Table 1. Ranking and unranking simple directed lattice paths that begin at (0, 0), end at (3, 1) and
consist of steps in the ordered set S = {s1, s2, s3} = {(1,−1), (1, 0), (1, 1)}.

Lattice Path P Rank(P, 3, 1)
−−−−−−→

Rank r Unrank(r, 3, 1)
−−−−−−−→

Lattice Path P

(s3, s3, s1) 0 (s3, s3, s1)
(s3, s2, s2) 1 (s3, s2, s2)
(s2, s3, s2) 2 (s2, s3, s2)
(s3, s1, s3) 3 (s3, s1, s3)
(s2, s2, s3) 4 (s2, s2, s3)
(s1, s3, s3) 5 (s1, s3, s3)

Thus, using the developed algorithms, it is possible to rank any simple directed lattice
paths, as well as generate a specific lattice path according to a given rank. Moreover, some
lattice paths can be transformed to the form of simple directed lattice paths. For example,
we can consider north-East lattice paths [37]. A north–east lattice path is a lattice path that
begins at (0, 0), ends at (n, m) and consists of steps in the set S = {s1, s2} = {(0, 1), (1, 0)}.
The step s1 = (0, 1) is called the north step and the step s2 = (1, 0) is called the east
step. The number of all north–east lattice paths can be calculated using the following
explicit formula:

Lm
n =

(
n + m

m

)
. (4)

North–east lattice paths are not directed lattice paths. If we change the basis and
consider another coordinate system (red x∗-axis and y∗-axis in Figure 6), then the north–east
lattice paths are transformed into simple directed lattice paths. The obtained simple directed
lattice paths begin at (0, 0), end at (n∗, m∗), and consist of steps in the set S∗ = {s∗1 , s∗2} in
the new coordinate system. The connection between the new and old coordinate systems is
stated in the following formulas:

n∗ = m + n, m∗ = m − n. (5)

As a result, we obtain the set of possible steps S∗ = {s∗1 , s∗2} = {(1, 1), (1,−1)} that
satisfy the requirements of simple directed lattice paths.

y

x(0, 0)

(n, m)

s1 = (0, 1)

s2 = (1, 0)

y

x(0, 0)

(n, m)

s1 = (0, 1)

s2 = (1, 0)

y∗

x∗

(n∗, m∗)

s∗1 = (1, 1)

s∗2 = (1,−1)

Figure 6. Transformation of north–east lattice paths into simple directed lattice paths.
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The number of all simple directed lattice paths that begin at (0, 0), end at (n∗, m∗) and
consist of steps in the set S∗ = {s∗1 , s∗2} = {(1, 1), (1,−1)} is equal to Wm∗

n∗ . Hence,

Lm
n = Wm∗

n∗ = Wm−n
m+n . (6)

Applying Algorithms 1 and 2 for the considered simple directed lattice paths, we
obtain algorithms for ranking and unranking north–east lattice paths. For example, to rank
a north–east lattice path P = (ps1, . . . , psn), psi ∈ S = {(0, 1), (1, 0)} that begins at (0, 0)
and ends at (n, m), it is necessary to change the basis by using (5), obtain the corresponding
simple directed lattice path P∗ = (ps∗1 , . . . , ps∗n), ps∗i ∈ S∗ = {(1, 1), (1,−1)}, and execute

Rank_SDLP_NE (P∗ = (ps∗1 , ps∗2 , . . . , ps∗n), m + n, m − n).

According to Theorem 1, for the case S = {(1, 1), (1,−1)}, we obtain

Wm
n =


0, m > n or m < −n;
1, m = n or m = −n;
Wm−1

n−1 + Wm+1
n−1 , otherwise.

(7)

If we apply (7) when executing Algorithm 3 or Algorithm 4, we obtain a time complex-
ity of O(n · 2n). A significant improvement will be obtained if we use explicit formula (4)
in (6):

Wm
n =

0, (n + m) odd;

L
n+m

2
n−m

2
, otherwise

=


0, (n + m) odd;(

n
n+m

2

)
, otherwise.

(8)

Algorithm 3: An algorithm for ranking a simple directed lattice path that
begins at (0, 0), ends at (n, m) and consists of steps in the ordered set
S = {(1, 1), (1,−1)}.

1 Rank_SDLP_NE(P = (ps1, ps2, . . . , psn), n, m)
2 begin
3 if m = n or m = −n then r := 0
4 else
5 if psn = (1, 1) then r := Rank_SDLP_NE((ps1, ps2, . . . , psn−1), n − 1, m − 1)
6 else r := Wm−1

n−1 + Rank_SDLP_NE((ps1, ps2, . . . , psn−1), n − 1, m + 1)
7 end
8 return r
9 end

Algorithm 4: An algorithm for unranking a simple directed lattice path
that begins at (0, 0), ends at (n, m) and consists of steps in the ordered set
S = {(1, 1), (1,−1)}.

1 Unrank_SDLP_NE(r, n, m)
2 begin
3 if n = 0 and m = 0 then P := ( )
4 else if m = n then P := (ps1, . . . , psn) = ((1, 1), . . . , (1, 1))
5 else if m = −n then P := (ps1, . . . , psn) = ((1,−1), . . . , (1,−1))
6 else
7 if r < Wm−1

n−1 then P :=concat(Unrank_SDLP_NE(r, n − 1, m − 1), ((1, 1))
8 else P :=concat(Unrank_SDLP_NE(r − Wm−1

n−1 , n − 1, m + 1), ((1,−1))
9 end

10 return P
11 end
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Then, we obtain a polynomial time complexity O(n2) for Algorithms 3 and 4. The re-
sults of computational experiments using software implementations for Algorithms 3 and 4
confirm the theoretical time complexity.

3.2. Simple Directed Lattice Paths with Restrictions

Various restrictions can be applied to the generated lattice paths. There may be
restrictions of the following type: fixing the end point of the lattice path, prohibiting going
beyond certain boundaries, calculating some statistics of the lattice path, etc. For example,
the following four types of directed lattice paths are distinguished in [17]:

1. Walk: a directed lattice path that ends at (n, m), where m is not specified;
2. Bridge: a directed lattice path that ends at (n, 0);
3. Meander: a directed lattice path that ends at (n, m), where m is not specified and never

falls below the x-axis;
4. Excursion: a directed lattice path that ends at (n, 0) and never falls below the x-axis.

Next, we consider these types of lattice paths for simple directed lattice paths. Simple
walks and bridges are the special cases of the simple directed lattice paths from Theorem 1.
Therefore, we can calculate the number of all simple walks or bridges through Wm

n .

Corollary 1. The number of all simple walks that begin at (0, 0), end at (n, m), where m is not
specified, and consist of steps in the set {(1, b1), (1, b2), . . . , (1, bk)} can be calculated using the
following formula:

Wn =
n·max bi

∑
m=n·min bi

Wm
n . (9)

Proof. Simple walks differ from the simple directed lattice paths from Theorem 1 in that
m is not specified. Therefore, we need to consider all possible values of m and sum up
the number of simple directed lattice paths for each of them. The minimum possible value
of m will be obtained if all n steps of the form (1, bmin) are performed in a simple directed
lattice path, where bmin = min

i
bi. The maximum possible value of m will be obtained

if all n steps of the form (1, bmax) are performed in a simple directed lattice path, where
bmax = max

i
bi. Combining all the conditions, we obtain the desired formula (9).

Corollary 2. The number of all simple bridges that begin at (0, 0), end at (n, 0) and consist of
steps in the set {(1, b1), (1, b2), . . . , (1, bk)} can be calculated using the following formula:

Bn = W0
n .

To calculate the number of simple meanders and excursions, it is necessary to prevent
them from falling below the x-axis. Therefore, we add the appropriate initial condition to
recurrence (1) and obtain the following theorem:

Theorem 2. The number of all simple directed lattice paths that begin at (0, 0), end at (n, m),
consist of steps in the set {(1, b1), (1, b2), . . . , (1, bk)} and never fall below the x-axis can be
calculated using the following recurrence:

Mm
n =

k

∑
i=1

Mm−bi
n−1 ,

where M0
0 = 1, Mm

0 = 0 for m ̸= 0 and Mm
n = 0 for m < 0.

Proof. In contrast to Theorem 1, for the considered simple directed lattice paths, it is
impossible to reach the point (0, m), where m < 0. Therefore, we obtain an initial condition
that Mm

n = 0 for m < 0.
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Since the considered simple directed lattice paths never fall below the x-axis, only the
following additional initial conditions can be added to Mm

n :

Mm
n = 0 for m > n · max

i
bi,

Mm
n = 1 for m = n · max

i
bi.

According to the applied method for developing combinatorial generation algorithms
based on AND/OR trees, we obtain algorithms for ranking (Algorithm 5) and unranking
(Algorithm 6) simple directed lattice paths that begin at (0, 0), end at (n, m), consist of steps
in the set S = {s1, s2, . . . , sk} = {(1, b1), (1, b2), . . . , (1, bk)} and never fall below the x-axis.

Algorithm 5: An algorithm for ranking a simple directed lattice path
that begins at (0, 0), ends at (n, m), consists of steps in the ordered set
S = {(1, b1), (1, b2), . . . , (1, bk)} and never fall below the x-axis.

1 Rank_SDLPx(P = (ps1, ps2, . . . , psn), n, m)
2 begin
3 if (n = 0 and m = 0) or m = n · maxi bi then r := 0
4 else
5 I := index of psn in the ordered set S

6 sum :=
I−1
∑

i=1
Mm−bi

n−1

7 r := sum+ Rank_SDLPx((ps1, ps2, . . . , psn−1), n − 1, m − bI)
8 end
9 return r

10 end

Algorithm 6: An algorithm for unranking a simple directed lattice path
that begins at (0, 0), ends at (n, m), consists of steps in the ordered set
S = {(1, b1), (1, b2), . . . , (1, bk)} and never fall below the x-axis.

1 Unrank_SDLPx(r, n, m)
2 begin
3 if n = 0 and m = 0 then P := ( )
4 else if m = n · maxi bi then P := (ps1, . . . , psn) = ((1, max

i
bi), . . . , (1, max

i
bi))

5 else
6 sum := 0
7 for i := 1 to k do
8 s := Mm−bi

n−1
9 if sum + s > r then

10 r := r − sum
11 I := i
12 break
13 end
14 sum := sum + s
15 end
16 P :=concat(Unrank_SDLPx(r, n − 1, m − bI), (sI))
17 end
18 return P
19 end
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Simple meanders and excursions are the special cases of the simple directed lattice
paths from Theorem 2. Therefore, we can calculate the number of all simple meanders and
excursions through Mm

n .

Corollary 3. The number of all simple meanders that begin at (0, 0), end at (n, m), where m is not
specified, consist of steps in the set {(1, b1), (1, b2), . . . , (1, bk)} and never fall below the x-axis can
be calculated using the following formula:

Mn =
n·max bi

∑
m=0

Mm
n .

Proof. The proof is similar to the proof of Corollary 1.

Corollary 4. The number of all simple excursions that begin at (0, 0), end at (n, 0), consist of
steps in the set {(1, b1), (1, b2), . . . , (1, bk)} and never fall below the x-axis can be calculated using
the following formula:

En = M0
n.

As an example, we consider the applications of Algorithms 5 and 6 for Dyck paths [7].
A Dyck n-path is a lattice path that begins at (0, 0), ends at (n, n), consists of steps in the set
S = {s1, s2} = {(0, 1), (1, 0)} and never rises above the diagonal y = x. The number of all
Dyck n-paths is equal to the Catalan numbers Cn (the sequence A000108 in the OEIS [38]).

Dyck paths are not directed lattice paths. If we change the basis and consider another
coordinate system (red x∗-axis and y∗-axis in Figure 7), then the Dyck paths are transformed
into simple directed lattice paths. The obtained simple directed lattice paths begin at (0, 0),
end at (2n, 0), consist of steps in the set S∗ = {s∗1 , s∗2} = {(1,−1), (1, 1)} and never fall
below the x∗-axis in the new coordinate system.

y

x

y = x

(0, 0)

(n, n)

s1 = (0, 1)

s2 = (1, 0)

y

x(0, 0)

(n, n)

s1 = (0, 1)

s2 = (1, 0)

y∗

x∗
(n∗, m∗)

s∗1 = (1,−1)

s∗2 = (1, 1)

Figure 7. Transformation of Dyck paths into simple directed lattice paths.

The number of all simple directed lattice paths that begin at (0, 0), end at (2n, 0),
consist of steps in the set S∗ = {(1,−1), (1, 1)} and never fall below the x∗-axis is equal
to M0

2n. Hence, Cn = M0
2n = E2n. Applying Algorithms 5 and 6 for the considered

simple directed lattice paths, we obtain algorithms for ranking and unranking Dyck paths.
For example, to rank a Dyck path P = (ps1, . . . , psn), psi ∈ S = {(0, 1), (1, 0)}, that begins
at (0, 0) and ends at (n, n), it is necessary to change the basis, obtain the corresponding
simple directed lattice path P∗ = (ps∗1 , . . . , ps∗n), ps∗i ∈ S∗ = {(1,−1), (1, 1)}, and execute

Rank_SDLPx (P∗ = (ps∗1 , ps∗2 , . . . , ps∗n), 2n, 0).
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3.3. Directed Lattice Paths

All obtained results on recurrent formulas and combinatorial generation algorithms
for simple directed lattice paths can be generalized to the case of directed lattice paths.
Similar results in obtaining recurrences for directed lattice paths were obtained in [39]
(Example 8).

Theorem 3. The number of all directed lattice paths that begin at (0, 0), end at (n, m) and consist
of steps in the set {(a1, b1), (a2, b2), . . . , (ak, bk)} can be calculated using the following recurrence:

Ẇm
n =


0, n = 0 and m ̸= 0 or n < 0;
1, n = m = 0;

k
∑

i=1
Ẇm−bi

n−ai
, otherwise.

(10)

Proof. The proof is similar to the proof of Theorem 1.

Theorem 4. The number of all directed lattice paths that begin at (0, 0), end at (n, m), consist of
steps in the set {(a1, b1), (a2, b2), . . . , (ak, bk)} and never fall below the x-axis can be calculated
using the following recurrence:

Ṁm
n =


0, n = 0 and m ̸= 0 or n < 0 or m < 0;
1, n = m = 0;

k
∑

i=1
Ṁm−bi

n−ai
, otherwise.

(11)

Proof. The proof is similar to the proof of Theorem 2.

The obtained recurrences (10) and (11) also satisfy the requirements of the method
for developing combinatorial generation algorithms based on AND/OR trees. Thus, this
makes it possible to obtain combinatorial generation algorithms for directed lattice paths.
Algorithms 7 and 8 present the obtained algorithms for ranking and unranking directed
lattice paths from Theorem 3. Moreover, if a lattice path can be transformed into a directed
lattice path, then combinatorial generation algorithms can also be obtained for it. For
example, next, we consider the transformation of several well-known lattice paths into
directed lattice paths.

Algorithm 7: An algorithm for ranking a directed lattice path that be-
gins at (0, 0), ends at (n, m) and consists of steps in the ordered set
S = {(a1, b1), (a2, b2), . . . , (ak, bk)}.

1 Rank_DLP(P = (ps1, ps2, . . . , psl), n, m)
2 begin
3 if n = 0 and m = 0 then r := 0
4 else
5 I := index of psl in the ordered set S

6 sum :=
I−1
∑

i=1
Ẇm−bi

n−ai

7 r := sum+ Rank_DLP((ps1, ps2, . . . , psl−1), n − aI , m − bI)
8 end
9 return r

10 end
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Algorithm 8: An algorithm for unranking a directed lattice path that be-
gins at (0, 0), ends at (n, m) and consists of steps in the ordered set
S = {(a1, b1), (a2, b2), . . . , (ak, bk)}.

1 Unrank_DLP(r, n, m)
2 begin
3 if n = 0 and m = 0 then P := ( )
4 else
5 sum := 0
6 for i := 1 to k do
7 s := Ẇm−bi

n−ai

8 if sum + s > r then
9 r := r − sum

10 I := i
11 break
12 end
13 sum := sum + s
14 end
15 P :=concat(Unrank_DLP(r, n − aI , m − bI), (sI))
16 end
17 return P
18 end

A Delannoy path is a lattice path that begins at (0, 0), ends at (n, m) and consists of
steps in the set S = {(0, 1), (1, 0), (1, 1)}. The number of all Delannoy paths is equal to
the Delannoy numbers Dm

n (sequence A008288 in the OEIS [38]). Delannoy paths are not
directed lattice paths. If we change the basis and consider another coordinate system (red
x∗-axis and y∗-axis in Figure 8), then the Delannoy paths are transformed into directed
lattice paths. The obtained directed lattice paths begin at (0, 0), end at (m + n, m − n) and
consist of steps in the set S∗ = {(1, 1), (1,−1), (2, 0)} in the new coordinate system.

y

x(0, 0)

(n, m)

s1 = (0, 1)

s2 = (1, 0)

s3 = (1, 1)

y

x(0, 0)

(n, m)

s1 = (0, 1)

s2 = (1, 0)

s3 = (1, 1)

y∗

x∗

(n∗, m∗)

s∗1 = (1, 1)

s∗2 = (1,−1)

s∗3 = (2, 0)

Figure 8. Transformation of Delannoy paths into directed lattice paths.

The number of all directed lattice paths that begin at (0, 0), end at (m + n, m − n) and
consist of steps in the set S∗ = {(1, 1), (1,−1), (2, 0)} is equal to Ẇm−n

m+n . Hence, Dm
n = Ẇm−n

m+n .
Applying ranking and unranking algorithms for the considered directed lattice paths, we
obtain appropriate algorithms for Delannoy paths.

A Schroder path is a lattice path that begins at (0, 0), ends at (n, n), consists of steps in
the set S = {(0, 1), (1, 0), (1, 1)} and never rises above the diagonal y = x. The number of
all Schroder paths is equal to the Schroder numbers Sn (sequence A006318 in the OEIS [38]).
Schroder paths are not directed lattice paths. If we change the basis and consider an-
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other coordinate system (red x∗-axis and y∗-axis in Figure 9), then the Schroder paths are
transformed into directed lattice paths. The obtained directed lattice paths begin at (0, 0),
end at (2n, 0), consist of steps in the set S∗ = {(1,−1), (1, 1), (2, 0)} and never fall below
the x∗-axis in the new coordinate system.

y

x

y = x

(0, 0)

(n, n)

s1 = (0, 1)

s2 = (1, 0)

s3 = (1, 1)

y

x(0, 0)

(n, n)

s1 = (0, 1)

s2 = (1, 0)

s3 = (1, 1)

y∗

x∗
(n∗, m∗)

s∗1 = (1,−1)

s∗2 = (1, 1)

s∗3 = (2, 0)

Figure 9. Transformation of Schroder paths into directed lattice paths.

The number of all directed lattice paths that begin at (0, 0), end at (2n, 0), consist of
steps in the set S∗ = {(1,−1), (1, 1), (2, 0)} and never fall below the x-axis is equal to Ṁ0

2n.
Hence, Sn = Ṁ0

2n. Applying ranking and unranking algorithms for the considered directed
lattice paths, we obtain appropriate algorithms for Schroder paths.

A Motzkin path is a lattice path that begins at (0, 0), ends at (n, n), consists of steps in
the set S = {(0, 2), (2, 0), (1, 1)} and never rises above the diagonal y = x. The number of
all Motzkin paths is equal to the Motzkin numbers (sequence A001006 in the OEIS [38]).
Motzkin paths are not directed lattice paths. If we change the basis and consider another
coordinate system (red x∗-axis and y∗-axis in Figure 10), then the Motzkin paths are
transformed into directed lattice paths. The obtained directed lattice paths begin at (0, 0),
end at (n, 0), consist of steps in the set S∗ = {(1,−1), (1, 1), (1, 0)} and never fall below
the x∗-axis in the new coordinate system. Applying ranking and unranking algorithms for
the considered directed lattice paths, we obtain appropriate algorithms for Motzkin paths.

y

x

y = x

(0, 0)

(n, n)

s1 = (0, 2)

s2 = (2, 0)

s3 = (1, 1)

y

x(0, 0)

(n, n)

s1 = (0, 2)

s2 = (2, 0)

s3 = (1, 1)

y∗

x∗
(n∗, m∗)

s∗1 = (1,−1)

s∗2 = (1, 1)

s∗3 = (1, 0)

Figure 10. Transformation of Motzkin paths into directed lattice paths.

4. Discussion

In this article, we have demonstrated the possibilities of applying a method for de-
veloping combinatorial generation algorithms, which is based on the representation of
combinatorial sets in the form of an AND/OR tree structure. In contrast to the original
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method, the rules presented in Section 2 expand the possibilities of constructing AND/OR
tree structures for combinatorial sets based on their cardinality functions.

To develop new combinatorial generation algorithms, the following broad class of
combinatorial sets was chosen: directed lattice paths. The lack of such algorithms confirms
the relevance of this research. For example, lattice paths are used in bioinformatics to
describe molecular structures such as RNA and DNA. Lattice paths can also be used in
the field of physics to describe the motion of particles or in the field of finance to predict
changes in various financial indicators. In addition, there are many other discrete structures
that have practical applications and can be described by lattice paths. Then, the developed
combinatorial generation algorithms can be used to model such discrete structures or to
test systems that work with them.

The main result of this article is that we have found recurrence relations for enumer-
ating simple directed lattice paths that satisfy the requirements of the applied method.
Recurrence (1) from Theorem 1 can be used to calculate the number of all simple directed
lattice paths without restrictions. Theorem 2 and the corollaries of these theorems allow us
to calculate the number of simple directed lattice paths that have restrictions, such as fixing
the end point of the lattice path or prohibiting falling below the x-axis. Based on these
recurrences, the corresponding AND/OR tree structures have been constructed. Applying
the constructed AND/OR tree structure, we have developed new algorithms for ranking
and unranking simple directed lattice paths. To make the developed algorithms efficient,
it is advisable to use other formulas for calculating the values of Wm

n and Mm
n that have

an explicit form with a polynomial computational complexity.
Additionally, the obtained results were generalized to the case of directed lattice paths.

Thus, this makes it possible to obtain combinatorial generation algorithms for any directed
lattice path. The results of computational experiments using software implementations of
developed combinatorial generation algorithms have confirmed their correctness. Note
that the obtained recurrences correspond to the idea of the backtracking method. Thus,
this approach can be generalized to the case of any lattice path (not just directed lattice
paths). At the same time, constructing an appropriate AND/OR tree structure allows us to
develop ranking and unranking algorithms for such lattice paths.
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