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Abstract: Entity alignment is an important task in knowledge fusion, which aims to link entities that
have the same real-world identity in two knowledge graphs. However, in the process of constructing
a knowledge graph, some noise may inevitably be introduced, which must affect the results of
the entity alignment tasks. The triple confidence calculation can quantify the correctness of the
triples to reduce the impact of the noise on entity alignment. Therefore, we designed a method to
calculate the confidence of the triples and applied it to the knowledge representation learning phase
of entity alignment. The method calculates the triple confidence based on the pairing rates of the
three angles between the entities and relations. Specifically, the method uses the pairing rates of
the three angles as features, which are then fed into a feedforward neural network for training to
obtain the triple confidence. Moreover, we introduced the triple confidence into the knowledge
representation learning methods to improve their performance in entity alignment. For the graph
neural network-based method GCN, we considered entity confidence when calculating the adjacency
matrix, and for the translation-based method TransE, we proposed a strategy to dynamically adjust
the margin value in the loss function based on confidence. These two methods were then applied to
the entity alignment, and the experimental results demonstrate that compared with the knowledge
representation learning methods without integrating confidence, the confidence-based knowledge
representation learning methods achieved excellent performance in the entity alignment task.

Keywords: entity alignment; triple confidence; confidence-enhanced; knowledge representation
learning; knowledge graph

MSC: 68T30

1. Introduction

The popularity of the internet and the rise of big data have provided unprecedented op-
portunities for the development of artificial intelligence. The knowledge graph (KG), as an
important part of the field of artificial intelligence, has gradually become a research hotspot,
which enables machines to better understand and use knowledge through structured data.
The applications supported by the knowledge graph are increasingly diverse and have been
successfully applied to tasks such as intelligent question answering [1–3], personalized
recommendations [4–6], and interpretable tools [7–9]. With the increase in the application
of the knowledge graph, people have built large-scale non-domain knowledge graphs,
such as DBpedia [10] and Freebase [11], and also built various knowledge graphs around
domain application [12–14]. The contents of these knowledge graphs are complementary
or duplicate. We can obtain more complete information through knowledge graph fusion,
and the key technology required for knowledge fusion is entity alignment [15–17]. The goal
of entity alignment is to find equivalent entities in two KGs that point to the same object.
Entity alignment can find the same entity in two domain knowledge graphs, and after
entity alignment, additional attribute information can be linked to obtain more complete
entity information, thereby obtaining a more complete and accurate knowledge graph.
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Nevertheless, since the knowledge graph is mainly built automatically using pro-
gramming, it is inevitable that some deviation or even wrong information will be added
in the process of knowledge graph construction. Heindorf et al. [18] found that there are
errors in Wikidata, and such erroneous information is called noise, which reduces the
quality of knowledge in the knowledge graph. In Table 1, we present some noisy triples
from DB15K that negatively affect the accuracy and efficiency of the entity alignment
task. The current knowledge representation learning methods often treat all information in
knowledge graphs equally without adequately considering the impact of noisy data, which
inevitably reduces the feature extraction capability of knowledge representation learning
methods within entity alignment. The triple confidence calculation task can quantify the
correct probability values of triples, and then emphasize the triples with a higher visual
confidence when performing knowledge representation learning and entity alignment
tasks, reducing the focus on low confidence. This can to some extent reduce the impact of
noise and improve the effectiveness of the method.

Table 1. Examples of noise triples in DB15K. According to the information we have reviewed, it
indicates that Alfred Hitchcock was born in the United Kingdom, not in Turkey, suggesting that the
first triple may be incorrect. The errors in the remaining triples in the table are due to a mismatch
between the relations and the tail entities.

Head Entity Relation Tail Entity

Alfred_Hitchcock birthPlace Turkey
Agatha_Christie birthPlace Devonians

Anguilla currency Parliamentary_system
Anguilla officialLanguage Kingdom_of_England
Anguilla language Kingdom_of_England

The triple prefix is ignored, leaving only the entity and the relation names.

In this paper, we added triple confidence to the commonly used knowledge repre-
sentation learning methods to enhance its feature extraction capabilities. Our aim was to
improve the effectiveness of entity alignment by optimizing knowledge representation
learning methods. Specifically, we calculated the confidence for all triples in the knowl-
edge graph and considered this confidence during the knowledge representation learning
process. Finally, we verified the effect of triple confidence on the entity alignment task. The
contributions of this paper are as follows:

• We propose a method to calculate the triple confidence by utilizing the pairing rates of
the entities and relations. This method employs a finer-grained method by using the
pairwise pairing rates between the head entity, the relation, and the tail entity as the
feature vectors of the triple in order to learn its confidence.

• Two general strategies are designed to incorporate confidence into the knowledge
representation learning methods to enhance their feature extraction capabilities. For
methods such as GCN that utilize neighbor information, we propose a dynamic
adjacency matrix strategy where the confidence of the triples is treated as the reliability
of the neighbors, enabling the method to aggregate the adjacent nodes with a higher
confidence. For TransE, which employs a Hinge Loss function, we introduce a dynamic
margin strategy that dynamically adjusts the margin values, allowing the model to
prioritize the triples with a higher confidence and mitigate the impact of the triples
with a lower confidence.

• We apply the two proposed knowledge representation learning methods to the en-
tity alignment tasks and prove the feasibility of using confidence in these tasks
using experiments.

2. Related Work

In this section, we consider two related aspects of work: triple confidence calculation
and entity alignment.



Mathematics 2024, 12, 1214 3 of 19

2.1. Triple Confidence Calculation

Confidence is one of the indicators of knowledge graph quality evaluation, which
defines the probability of the information being accepted as correct. This indicator is used
for error detection and quality evaluation of the knowledge graph [19]. In recent years, with
the development of TransE [20] and other knowledge representation learning technologies,
more knowledge representation learning methods have been used in confidence assessment,
such as TransH [21], TransR [22], and TransD [23].

In order to more comprehensively utilize confidence measures to evaluate the quality
of knowledge graphs, many studies have adopted a combined confidence evaluation
strategy to comprehensively evaluate from multiple perspectives. Xie et al. [24] proposed
the CKRL method, which aggregated the internal information on the triples and the external
path information on the triples to calculate confidence. Jia et al. [25] proposed a knowledge
graph triple confidence measurement model KGTtm, based on cross-neural networks,
which comprehensively utilized the semantic information of the triples and path resource
information to measure the reliability probability of the triples.

For the task of the uncertain knowledge graph, Chen et al. proposed UKGE [26],
which obtained the correlation between the head and tail entities with the help of relations,
and inferred triples using logical soft rules. Yang et al. [27] proposed UKGsE, which used
the entity and relation feature vectors obtained by Word2Vec, and then fed these feature
vectors to a LSTM [28] neural network to learn the confidence of all triples.

Inspired by the resource flow in KGTtm [25], we propose a method that uses the entity
and relation pairing rate in a triple to calculate the confidence of the triple.

2.2. Entity Alignment

The task of entity alignment is a significant research direction in the field of knowl-
edge graphs, aiming to discover and link the entities in two knowledge graphs that are
named differently or described from varying perspectives but refer to the same object in
the real world. By merging these equivalent entities, a more comprehensive knowledge
graph can be constructed. In recent years, embedding-based methods have been widely
used for entity alignment. The entity alignment methods can be divided into two main
categories: translation-based methods and graph neural network-based methods. The
translation-based methods utilize translation techniques to convert text into knowledge rep-
resentations, while the convolutional neural network-based methods utilize the structure
of convolutional neural networks to learn language features and represent knowledge.

TransE is the most commonly used translation-based method. This method sets
the triple (h, r, t) to satisfy h + r ≈ t, where h, r and t, respectively, represent the head
entity, the relation, and the tail entity. MtransE [29] employs this method to learn the
embeddings of the entities and relations and introduces multiple formulas to compute
the loss function. The graph neural network-based methods model the information of
the graph using graph convolutional networks. GCN-Align [30] employs two two-layer
GCNs [31] to model the structural and attribute information of the entities, integrating the
structural and attribute embeddings to obtain more accurate entity alignment results. In
addition to using GCN to extract the entity relations and attribute information, HMAN [31]
also utilizes BERT to extract the textual description information about the entities for entity
information modeling. MHNA [32] improves the alignment performance by designing
a variable attention mechanism based on heterogeneous graphs. To better utilize the
entity attribute information, GRGCN [33] employs a combination of graph convolutional
neural networks and graph attention networks for entity alignment. EMGCN [34] is
an unsupervised KG entity alignment approach that utilizes a late fusion mechanism to
integrate the rich relational triples. DvGNet [35] alleviates the structural heterogeneity
of KG from the perspective of entity interaction and relational interaction. Furthermore,
a growing number of methods combine multiple embedding methods to accomplish
multimodal entity alignment tasks. For example, EVA [36] creates initial alignment seeds
by leveraging the entity image information, providing a completely unsupervised solution.
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HMEA [37] maps the multimodal information of the entities to the hyperbolic space for
entity alignment. The MMEA [38] and MultiJAF [39] methods train feature vectors for
the multimodal information of the entities and then align more entities based on the
alignment seeds. Unlike MMEA, MultiJAF designs a numerical processing module that
directly computes the similarity between the two entities based on numerical values.
MEAformer [40] introduced the Transformer model, which enables finer solid-level modal
fusion and alignment by dynamically predicting the inter-modal correlation coefficients.

As shown in Table 2, most of the methods are predominantly based on GCN or
TransE and add other methods to perform entity alignment. We note that the noise in
the knowledge graph can be avoided using confidence, but we can see that the existing
methods do not use confidence. Considering that existing knowledge representation
learning methods treat each triple equally, we propose a confidence-based knowledge
representation learning method to solve this problem. By adding triple confidence to
TransE and GCN, we achieved unequal treatment of triples, allowing the knowledge
representation learning methods to adjust the importance of the triples according to their
confidence. We calculated the confidence of all the triples, and then tested our proposed
confidence-based knowledge representation learning method in GCN-Align and MMEA.

Table 2. Entity Alignment Methods.

Methods GCN TransE Confidence 1

MTransE -
√

-
GCN-Align

√
- -

HMAN
√

- -
MHNA

√
- -

GRGCN
√

EMGCN
√

DvGNet
√

EVA
√

- -
HMEA -

√
-

MMEA -
√

-
MultiJAF

√
- -

1 Confidence refers to triple confidence. “
√

” means that the corresponding method is used.

3. Method Overview

Our aim was to develop a method to enhance the feature extraction ability of knowl-
edge representation learning by distinguishing the importance of high confidence and low
confidence in the training process, thereby improving the effect of entity alignment. We
combined confidence with two commonly used knowledge representation learning meth-
ods and proposed two knowledge representation learning methods based on confidence.
We also used these two methods in the entity alignment methods to test the effectiveness
of the knowledge representation learning methods based on confidence. Specifically, the
method steps were as follows:

Step 1: We calculated the confidence scores for both the source knowledge graph and
the target knowledge graph. After the calculation, each triple in the two knowledge graphs
was assigned a corresponding confidence value.

Step 2: The feature vectors of the entities were learned using the proposed confidence-
based knowledge representation learning (KRL) method.

Step 3: For the entities in the two knowledge graphs, we calculated their similarity to
find the aligned entities.

This method aimed to reduce the impact of noise in knowledge graphs and enhance
the quality of entity alignment. The method process is shown in Figure 1.
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4. Method

The symbols used in this paper are defined as follows: a triple (h, r, t) in a triple set T
includes the head entity h, the tail entity t, and the relation r connecting the head and the
tail entities. We had h, t ∈ E, and r ∈ R, where E and R represent the sets of entities and
relations, respectively.

4.1. Triple Confidence Calculation

We proposed a method to calculate the triple confidence using the pairing rate of the
entities and relations, named Paired Triple Confidence (PTC). The pairing rate was the
probability that two objects form a relationship. The first step of the method constructed
a pairing rate table for all the entities and relations, which included three parts: the head
entity and relation pairing rate table Phr, the relation and tail entity pairing rate table Prt,
and the head entity and tail entity pairing rate table Pht. These three pairing rate tables
represented the probabilities of the entities and relations being paired with each other. For
example, Phr recorded the probability of all the head entities in a triple being paired with all
the relations. To avoid the impact of data incompleteness, we assumed that the minimum
probability of each entity and relation being paired was 0.5. It can be considered that the
more times that h and r, as well as r and t, and h and t appear, the greater the corresponding
pairing rates. Then we used Formulas (1)–(3) to quantify the pairing rates.

Phr =
1

1+e−Num(h, r)
(1)

Prt =
1

1+e−Num(r, t)
(2)

Pht =
1

1+e−Num(h, t)
(3)

where Num(a, b) represents the number of times “a” and “b” appear in pairs.
The pairing rates reflected the probability of a triple being correct from multiple angles.

We used Phr, Prt, and Pht as features to calculate the confidence level of the triple and
concatenated the three pairing rates as the feature vector N of the triple, as shown in
Formula (4). Then, a feedforward neural network was designed to calculate the confidence
level of the triple. The feature vector N was fed into the neural network, and through the
hidden layer, the final output was the confidence level of the triple.

N = [Phr, Prt, Pht] (4)
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CP(h, r, t) = σ
(
∑(WN + b)

)
(5)

In Formula (5), b is the bias term, W is the parameter, and the network will auto-
matically adjust b and W through backpropagation. σ represents the sigmoid activation
function, and CP(h, r, t) represents the confidence of (h, r, t). Figure 2 shows the framework
of PTC.
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Figure 2. Framework of PTC.

As shown in Figure 3, we took triple (e2, r5, e9) as an example. To demonstrate the
numerical relationship more intuitively, we only focused on the bolded part, without
distinguishing the other connecting relationships. Among them, Num(e2, r5) = 3, Num(r5,
e9) = 1, and Num(e2, e9) = 2. Therefore, we obtained the values of Pe2 r5, Pr5 e9, and Pe2 e9 by
querying the pairing rate table.
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In Figure 3, the reason for the higher Pe2r5 value was that e2 appeared more frequently
as a head entity with r5 as the relationship, while in comparison, the occurrence of both
the relationship r5 and the tail entity e9 was relatively low. As a result, the corresponding
pairing rates after the transformation function were also low. The embedding vector of the
triple (e2, r5, e9) was obtained by concatenating the pairing rates of its three components.
This embedding vector was then fed through a feed-forward neural network to obtain the
final confidence score CP(e2, r5, e9).

4.2. Confidence-Based KRL

The existing knowledge representation learning approaches treat triples equally dur-
ing training, which are affected by the noise in the knowledge graph. Therefore, we
attempted to combine confidence with the knowledge representation learning methods
to reduce the impact of noise on knowledge representation learning and achieve better
learning performance. However, in practice, leveraging confidence to enhance knowledge
representation learning posed a challenge due to the varying methodologies of knowledge
representation learning. In this study, we explored two approaches. Considering that
the current entity alignment methods based on knowledge representation learning can
be divided into graph neural network-based methods and translation-based methods, we
conducted experiments using the GCN and TransE methods, using confidence to enhance
GCN and TransE, respectively.

4.2.1. Confidence-Enhanced GCN

GCN is a feature extractor for the graph data, and the propagation between its layers
is shown in Formulas (8) and (9). It should be noted that the GCN method does not take
into account the existence of noise in the knowledge graph when calculating the adjacency
matrix and treating all connections equally. Therefore, we designed a confidence-based
GCN (Confidence-GCN) to reduce the impact of noise, which differs from GCN in that we
used a confidence adjacency matrix.

The confidence adjacency matrix takes into account the confidence between the entities,
which is based on the confidence of the corresponding triples. To elaborate, let us assume
that there are N nodes in the knowledge graph. The relations between these nodes form an
N × N matrix, denoted as C, which is the confidence adjacency matrix. Its elements are
represented as a(i, j), and their calculation is outlined in Formula (6). When there exists a
relationship between entities i and j, the value of the confidence adjacency matrix is defined
as the maximum of CP(i, ∗, j) and CP(j, ∗, i). We chose the maximum value because the
adjacency matrix describes the level of connection between the two entities. When the two
entities have multiple connection relations, the connection level between them should be
higher. Additionally, we only focused on whether or not there was a relationship between
the entities instead of on the specific nature of the relationship.

Similar to GCN, when using a confidence adjacency matrix, the node features were
solely derived from the features of their neighbors, disregarding the features of the node
itself. Therefore, we added the identity matrix I to C. The resulting adjacency matrix was
denoted as Ĉ, and the computation of Ĉ was as shown in Formula (7). This approach
ensured that the features of the node itself were not lost during the calculation.

a(i, j) = a(j, i) = Max(CP(i, ∗, j), CP(j, ∗, i)) (6)

Ĉ = C + I, (7)

H = ϕ(D̂−
1
2 ĈD̂−

1
2 XW(1)), (8)

O = ϕ(D̂−
1
2 ĈD̂−

1
2 HW(2)). (9)
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where X is the feature matrix of entities, D̂ is the diagonal node degree matrix of Ĉ, ϕ is the
activation function Relu(·) = Max(0, ·), W(l) denotes the weight matrix for the l-th layer, H is
the output of the first layer of the model, and O is the final output of the model.

The adjacency matrix is illustrated in Figure 4. Taking the triple (/m/0677ng, /mu-
sic/artist/genre, /m/03ckfl9) as an example, with a confidence level of 0.7831. Consequently,
in the adjacency matrix, a(/m/0677ng, /m/03ckfl9) = a(/m/03ckfl9,/m/0677ng) = 0.7831 (values are high-
lighted in bold in the figure). For the triple (/m/05hs4r, /music/genre/artists, /m/01pbxb) with a
confidence score of 0.5354, and the triple (/m/01pbxb, /music/artist/genre, /m/05hs4r) with a
confidence score of 0.9864, wherein both triples involved the same entities, the maximum
confidence value was chosen within the adjacency matrix. Therefore, the values at the
corresponding positions for /m/05hs4r and /m/01pbxb in the adjacency matrix were set
to 0.9864.
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The details of the proposed Confidence-GCN are presented in the Algorithm 1. First
of all, the confidence adjacency matrix C was initialized, the maximum confidence be-
tween the entity pairs was initialized as the value of the corresponding position in the
adjacency matrix. Secondly, to prevent the node’s own features from being ignored during
computation, an identity matrix I was added to Ĉ to generate Ĉ, then the degree matrix D̂
and the initialized weight matrix W were calculated. Finally, the confidence was obtained
using training.

The crux of the algorithm lay within lines 2 to 10, where the focus was on processing
the confidence adjacency matrix. Specifically, lines 3–6 determined if entities h and t did
not exist in the adjacency matrix and C, a(h, t) was assigned the value of CP(h, r, t); yet if
they existed, a comparison between a(h, t) and CP(h, r, t) took place, with a(h, t) being set
to the greater value. Similarly, lines 7–10 determined if the entities t and h did not exist
in the adjacency matrix and C, a(t, h) was established as CP(h, r, t); should they exist, a
comparison was made between a(t, h) and CP(h, r, t), and subsequently, a(t, h) was assigned
the greater value.

4.2.2. Confidence-Enhanced TransE

TransE-based models learn embeddings by calculating the distance between the em-
beddings of h, r and t in a triple, and hope to achieve h + r ≈ t. Its energy function [20] is
shown in Formula (10).

E(h, r, t) = ||h + r− t||22, (10)

Loss = ∑(h, r, t)+∈T+ ∑(h, r, t)−∈T−

(
max

(
0, M + E

(
(h, r, t)+

)
− E

(
(h, r, t)−

)))
(11)
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Algorithm 1 Confidence-GCN.

Input: T, X, CP // T = {(h, r, t)} is a set of triple id forms in the training set, X is the entity feature
matrix, CP is the confidence set of the triple obtained through the confidence calculation.
Output: O // O is embedded representation set of triple T learned from the knowledge
representation and confidence.
1. C ← Initialize adjacency matrix
2. for (h, r, t) ∈T do
3. if (a(h, t) not in C) then
4. a(h, t) = CP(h, r, t)
5. else
6. a(h, t) = max(a(h, t), CP(h, r, t))
7. if (a(t, h) not in C) then
8. a(t, h) = CP(h, r, t)
9. else
10. a(t, h) = max(a(t, h), CP(h,r,t))
11. Ĉ← Ĉ + I
12. D̂←D̂ is the diagonal node degree matrix of Ĉ
13. W← Normal distribution randomly generates parameter matrix
14. for epoch in range(epochs) do
15. H← The first Confidence-GCN layer
16. O← The second Confidence-GCN layer
17. Calculate Loss
18. Update parameters using GradientDescentOptimizer
19. return O

In Formula (11), M is a fixed value, representing the threshold for penalizing triples.
We considered that due to the different confidence levels of the different triples, the current
loss function learned triples indiscriminately during learning, which may have led to the
inability of the method to focus on triples with a higher confidence. Therefore, this study
proposed a confidence-based TransE method called Confidence-TransE. Confidence-TransE
mainly changes the loss function of TransE. The global fixed M value cannot fully leverage
the influence of the different triples, and the threshold M should vary according to the
confidence values of the different triples. Confidence-TransE expects to distinguish the
different triples more by the confidence of the triples and pays more attention to the triples
with a higher confidence. We proposed a dynamic margin (Dynamic Margin, DM) strategy,
where the dynamic margin was calculated as shown in Formula (12). The loss function
definition using dynamic margin is shown in Formula (13).

DM(h, r, t)= gamma–CP(h, r, t), (12)

Loss = ∑(h, r, t)+∈T+ ∑(h, r, t)−∈T−

(
max

(
0, DM(h, r, t) + E

(
(h, r, t)+

)
− E

(
(h, r, t)−

)))
(13)

where CP(h, r, t) represents the confidence of the triple (h, r, t), and gamma is a hyperpa-
rameter. In Table 3, we illustrate how Confidence-TransE dynamically adjusted the margin
value for the triples of different confidence levels.

Table 3. Dynamic margin adjustment example.

Triple CP(h, r, t) DM(h, r, t)

(/m/0sxg4, /film/film/genre, /m/04xvlr) 0.8734 gamma – 0.8734
(/m/028_yv, /film/film/country, /m/03rjj) 0.4897 gamma – 0.4897

(/m/01tv3x2, /music/artist/genre, /m/06rqw) 0.9546 gamma – 0.9546
(/m/04h68j, /film/writer/film, /m/01g3gq) 0.4947 gamma – 0.4947

(/m/02_1sj, /film/film/language, /m/02h40lc) 0.8892 gamma – 0.8892
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Table 3 demonstrates, through examples, how Confidence-TransE dynamically ad-
justed the margin value for the triples with different confidences. Specifically, for each
triple (head entity, relationship, tail entity), a corresponding margin value was set based on
its confidence. The triples with a high confidence were assigned a smaller margin value,
allowing the model to precisely fit each high-confidence triple in the training data. On the
other hand, the triples with low confidence were assigned a larger margin value, which
required the model to have a greater discrimination between correct and incorrect classifi-
cations. This adjustment helped the model to better learn the knowledge representations
for the different levels of confidence.

4.3. Entity Alignment Based on Confidence KRL

We applied the confidence-based knowledge representation learning method to the
entity alignment task using the method proposed in Section 4.2.

4.3.1. Entity Alignment Based on Confidence-Enhanced GCN

We proposed Confidence-GCN to learn more accurate triplet embeddings in the KG.
To validate this idea, we applied the confidence-based representation learning method
Confidence-GCN proposed in Section 4.2 to GCN-Align [30].

GCN-Align is an entity alignment method based on GCN. It uses two two-layer
GCNs to learn the structure information and attribute information of the entities, and
combines the results of the structure embedding and attribute embedding to obtain
accurate aligned entities.

The Confidence-GCN-Align proposed in this paper differs from the GCN-Align in the
calculation of the adjacency matrix. GCN-Align employs a specific approach to compute
the adjacency matrix C of the KG. The elements a(i, j)∈C represent the degree of alignment
information from the i-th entity to the j-th entity, which is computed using a function (fun)
and an inverse function (ifun). In this paper, we improved on this method by incorporating
the Confidence-GCN proposed in Section 4.2.1. Firstly, both knowledge graphs were input
into the confidence calculation module to compute the confidence for all the triples in the
knowledge graphs. Then, these confidences were used to construct the adjacency matrix
for the entities. Finally, the entities were trained using two two-layer GCNs. The loss
function and embedding dimension of the method were consistent with GCN-Align. The
Confidence-GCN-Align method framework diagram is shown in Figure 5.

4.3.2. Entity Alignment Based on Confidence-Enhanced TransE

The method proposed was also applied to the multi-modal entity alignment task.
In order to validate the effectiveness of Confidence-TransE in enhancing multi-modal
entity alignment, we evaluated the Confidence-TransE method within the framework
of MMEA [38]. Specifically, we used Confidence-TransE to learn the relational triple
embedding representations.

The MMEA consists of two parts: the Multimodal Knowledge Embedding module and
the Multimodal Knowledge Fusion module. In order to compare the effect of confidence
enhancement, we proposed a confidence-based entity alignment method, Confidence-
MMEA, which took the knowledge embedding module as its core and extracted the
relational features using Confidence-TransE instead of TransE. Furthermore, due to the
incorporation of a swapping strategy within MMEA to supplement positive samples (the
swapping strategy refers to the process in which, if an entity h is already aligned with h*

in another knowledge graph, the triple (h*, r, t) will be expanded into the set of positive
samples. Similarly, in the case of a tail entity t aligned with t* in a different knowledge
graph, the swapping strategy also generates the triple (h, r, t*) and includes it within the
positive samples), the Confidence-MMEA method specifies that if the confidence of the
triple (e1, r1, e2) in the knowledge graph is α, and there are alignment seeds (e3, e1) and (e4,
e2) in the knowledge graph, the positive samples (e3, r1, e2) and (e1, r1, e4) will be generated,
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with their confidence scores set to α. An example of a confidence swapping strategy is
shown in Figure 6. The specific rules of the swapping strategy are as follows:

T∗ =
{
(h∗, r, t), (h, r, t∗)|(h, r, t) ∈ T+ ∧ (h, h∗) ∧ (t, t∗)} (14)

where h, r, and t represent the head entity, relation, and tail entity of a triple, respectively.
T+ represents the positive triples, T∗ is the added positive sample, and (x, x*) denotes
the alignment seeds. We defined the confidence of the triples generated according to the
swapping strategy, (h*, r, t) or (h, r, t*) as follows:

∀(h, h∗) → CP(h∗, r, t) = CP(h, r, t)
∀(t, t∗) → CP(h, r, t∗) = CP(h, r, t)

(15)
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Similar to MMEA, the TransE is used for the feature extraction of relationship triples.
The scoring function is E(h, r, t) = −

∣∣∣∣h + r− t
∣∣|22 . Different from the MMEA model, our

method utilized the Confidence-TransE proposed in Section 4.2.2. Specifically, this method
aims to differentiate between the different triples based on their confidence. If the confi-
dence of a triple is higher, it should be given more importance and its impact should be
amplified, whereas if the confidence is lower, its impact should be reduced.
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5. Experiments

Our experimental goal was to validate the performance of the knowledge confidence
calculation using a triple classification task, and to verify the performance of our proposed
confidence-based knowledge representation learning method using entity alignment.

Triple classification was designed to determine whether the triple in the test data was
correct, and evaluate the performance using precision, accuracy, and the F1 score as the
evaluation metrics. The performance of the knowledge representation learning method
based on confidence was evaluated by performing the entity alignment task. In the entity
alignment task, we used the same strategy as the corresponding method to calculate the
similarity between the entities in the two knowledge graphs and used the same evaluation
index as the original method to evaluate.

5.1. Datasets

The confidence calculation was verified using the triple classification task using FB15k,
we used the false triples provided in the paper [25] as negative examples. The classification
labels were assigned as 1 for the correct triples and 0 for the incorrect triples.

In addition, the triples in the uncertain knowledge graph CN15K extracted from
ConceptNet [41] all had confidence scores, so we could calculate the difference between the
predicted confidence and the actual confidence, and used the mean square error (MSE) and
mean absolute error (MAE) as evaluation indicators. The smaller the mean square error
and the mean absolute error, the better the performance of the method.

In the entity alignment experiments, we used the same datasets as GCN-Align and
MMEA, namely DBP15KZH-EN, DBP15KJA-EN, and DBP15KFR-EN for Confidence-GCN-
Align. For Confidence-MMEA, we employed the multimodal datasets FB15K-DB15K and
FB15K-YAGO15K from MMKG [42].

5.2. Triple Confidence Calculation

Experimental setup: We used all 592,213 triples from FB15K to construct the pairing
rate table. We implemented the feedforward network structure of PTC using the Keras
library. The batch size was set to 1024. The input dimension of the feedforward neural
network was set to 3. The hidden layer was designed with 16 units, and a dropout rate of
0.5 was applied. We set the max epoch to 200 and employed an early stopping strategy
to train for the additional epochs based on the performance of the validation set in order
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to obtain more accurate results. The optimization algorithm used was SGD, and the loss
function used was binary cross-entropy.

The output of the method used the sigmoid function to obtain the final result; if the
result was greater than 0.5, it was classified as a positive triple, otherwise it was classified
as an error triple. We evaluated the efficiency of the model through the triple classification
task, and the experimental results are shown in the Table 4.

Table 4. Results on dataset FB15K.

Model Pre Acc F1

MLP * - 0.833 0.861
Bilinear * - 0.861 0.869
TransE + 0.835 0.868 0.874
TransH + 0.904 0.912 0.913
TransD + 0.904 0.913 0.914
TransR + 0.883 0.902 0.904

PTransE + 0.934 0.941 0.941
KGTtm(TransE) * - 0.977 0.975

KGTtm(PTransH) * - 0.978 0.979
KGTtm(TransH) * - 0.981 0.982

PTC 0.989 0.994 0.994
Bold values indicate optimal quantities. “*” marks the results obtained from paper, while “+” marks the results of
our re-experimentation.

The experimental results showed that this method achieved the best performance
compared with the baseline model, which proved that our method can perform the triple
classification task better. Moreover, we used less time and memory. Building the PTC pair-
ing rate table only required a single pass to establish the pairing rates, saving time compared
with constructing a resource graph. The time complexity of building the PTC pairing rate
table was “O(Z)”, where “Z” represented the number of relationships. Additionally, this
method quantified the confidence of the triples and obtained their confidence values, which
can be used for subsequent entity alignment tasks. However, due to the PTC method’s
reliance on pairing rates to calculate the triple confidence, it required a large amount of
data to build a pairing rate dictionary, similar to how a resource graph is constructed in the
KGTtm method. When the dataset was small, the effectiveness was weaker.

We also apply this proposed method to the uncertain knowledge graph CN15K to
calculate MSE and MAE to evaluate the ability of predicting the confidence scores. Further-
more, we considered triples with confidence greater than 0.5 as correct triples and those
less than or equal to 0.5 as incorrect triples in the two graphs, and the results are shown in
Table 5.

Table 5. Results on dataset CN15K.

Model MSE MAE Pre Acc F1

URGE * [43] 0.1032 0.2272 - - -
UKGErect * 0.0861 0.01990 - - -
UKGElogi * 0.0986 0.2074 - - -
UKGsE * 0.0771 0.2134 - - -

PTC 0.0479 0.1771 0.960 0.968 0.980
Bold values indicate optimal quantities. “*” marks the results obtained from paper.

The results showed that the MSE and MAE of PTC are lower, which indicated that
the prediction values of this proposed method were closer to the truth confidence values.
In addition, the Pre, Acc, and F1 metrics in the table evaluated the ability of the triple
classification tasks, and we did not have the data of URGE, UKGE, and UKGsE. The
triple classification results also showed that PTC achieved a good performance. Table 6
shows the comparison between the PTC model prediction and the true confidence. In
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summary, the proposed method effectively predicted the triple confidence scores and
achieved competitive triple classification results.

Table 6. Predicted triple confidence results in CN15K.

Triple True Value Predicted Value

(925, 9, 963) 0.8927087856574166 0.854725
(9935, 3, 5404) 0.8927087856574166 0.85451275
(815, 3, 3843) 0.8927087856574166 0.91402173
(405, 0, 14502) 0.24503988222454764 0.38096955

(8334, 11, 3256) 0.8832813822224633 0.9209904
(2081, 0, 147) 0.39421161184926345 0.38398254
(6854, 0, 5606) 0.26278592891031644 0.38352108

5.3. Entity Alignment

In order to effectively compare the entity alignment model with the confidence and the
original entity alignment model, the parameter settings in the proposed entity alignment
method were the same as those in the original model.

5.3.1. Confidence-GCN-Align

In order to better demonstrate the effect of confidence-enhanced entity alignment, the
dataset division and parameter settings in Confidence-GCN-Align were the same as those
in GCN-Align, and we employed two embedding modes:

(1) Structural embedding (SE).
(2) Combination of structural embedding and attribute embedding (SE + AE).

We evaluated the performance of the models on three datasets, and the experimental
results are presented in Tables 7–9. In all the datasets, confidence-GCN-Align performed
better than GCN-Align without the confidence. This improvement can be attributed to the
utilization of the confidence-based GCN in confidence-GCN-Align. When aggregating the
neighbor information, the information from the highly confident connected neighbors was
better aggregated, while the information from the low-confidence connected neighbors
had less impact. This showed that confidence-GCN, a knowledge representation learning
method based on confidence, achieved better results in knowledge representation.

Table 7. Results on dataset DBP15KZH-EN.

Model
ZH-EN EN-ZH

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

GCN-Align *
SE 38.42 70.34 81.24 34.43 65.68 77.03

SE + AE 41.25 74.38 86.23 36.49 69.94 82.45

GCN-Align +
SE 38.97 69.98 79.98 36.93 67.34 77.72

SE + AE 42.27 74.5 85.06 39.63 71.48 82.96

Confidence-GCN-Align
SE 41.66 73.23 83.21 38.14 69.36 80.00

SE + AE 45.51 78.00 88.66 41.42 74.09 85.37

Bold values indicate optimal quantities. “*” marks the results obtained from paper [30], while “+” marks the
results of our re-experimentation.

In addition, in the three cross-lingual datasets, focusing on the results for Hits@1,
Hits@10, and Hits@50, the results of GCN-Align with SE + AE improved by 4.163, 3.388,
and 1.872, respectively, compared with the average results of the single SE embeddings.
Similarly, Confidence-GCN-Align also outperformed the single SE embeddings by 4.575,
4.058, and 2.345, respectively, in the three data sets. This demonstrated that incorporating
the confidence measures enhanced the overall embedding performance.
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Table 8. Results on dataset DBP15KJA-EN.

Model
JA-EN EN-JA

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

GCN-Align *
SE 38.21 72.49 82.69 36.90 68.50 79.52

SE + AE 39.91 74.46 86.10 38.42 71.81 83.72

GCN-Align +
SE 40.12 73.16 82.5 37.99 68.95 78.95

SE + AE 42.46 76.08 86.81 39.96 72.63 84.06

Confidence-GCN-Align
SE 41.90 75.4 84.77 39.67 71.73 81.80

SE + AE 44.80 79.17 89.39 42.60 76.13 87.53

Bold values indicate optimal quantities. “*” marks the results obtained from paper [30], while “+” marks the
results of our re-experimentation.

Table 9. Results on dataset DBP15KFR-EN.

Model
FR-EN EN-FR

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

GCN-Align *
SE 36.51 73.42 85.93 36.08 72.37 85.44

SE + AE 37.29 74.49 86.73 36.77 73.06 86.39

GCN-Align +
SE 40.04 75.73 86.03 38.54 72.99 84.37

SE + AE 41.34 77.72 88.16 39.78 75.07 86.95

Confidence-GCN-Align
SE 42.04 78.25 88.78 40.89 77.01 88.05

SE + AE 44.25 80.79 91.19 42.98 79.32 90.56

Bold values indicate optimal quantities. “*” marks the results obtained from paper [30], while “+” marks the
results of our re-experimentation.

5.3.2. Confidence-TransE-Align

We used MMEA to validate the proposed Confidence-TransE. The primary objec-
tive of the experiments was to assess the performance differences between the proposed
Confidence-MMEA and the MMEA in the multimodal knowledge graph entity alignment
task. gamma was set to 1.5 and all the other parameters were set the same as MMEA.

As for Formula (12), the choice of our proposed DM strategy as gamma − CP(h, r, t)
was motivated by the following reasons: we conducted the experiments using various
methods, and took 20% of the data on the FB15K-DB15K dataset for training, systematically
varying the gamma parameter within the range of 1 to 2, in order to achieve the best possible
results. The results of these experiments can be found in Table 10.

Table 10. DM strategy.

Margin Hits@1 Hits@10 Hits@50 MR MRR

+CP(h, r, t) 18.183 31.317 37.811 627.437 0.247957
−CP(h, r, t) 0.133 0.4 0.667 3364.582 0.004295

gamma + CP(h, r, t) 23.332 42.794 51.624 153.007 0.328348
gamma ∗ CP(h, r, t) 27.68 45.307 53.57 298.893 0.363127
gamma− CP(h, r, t) 28.058 46.575 55.194 237.045 0.371267

Bold values indicate optimal quantities.

In Table 10, it is evident that the DM strategy yielded the best results when set as
gamma − CP(h, r, t). To further determine the optimal value for gamma, we conducted
experiments, the findings of which are illustrated in Figure 7, indicating that the most
favorable performance was achieved when gamma was set to 1.5.
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Table 11. Results of MMEA and Confidence-MMEA on FB15K-DB15K. 

FB15K-DB15K Train Hits@1 Hits@5 Hits@10 MR MRR 

MMEA 
20% 26.042 44.946 53.175 143.465 0.353472 
50% 40.697 60.101 67.711 60.654 0.500465 
80% 60. 79.611 85.603 13.658 0.688278 
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Figure 7. The effect of gamma on Hits@k. (a–c) describe the effects of the gamma value on Hits 1,
Hits 10, and Hits 50, respectively.

Tables 11 and 12 show the results of the model on the FB15K-DB15K and FB15K-
YAGO15K datasets, respectively. The data in the table are all derived from the experimental
runs, and the bolded results show that the results were better. The percentages in the table
represent using 20%, 50%, and 80% of the data as the training set, with the remaining data
used as the test set.

Table 11. Results of MMEA and Confidence-MMEA on FB15K-DB15K.

FB15K-DB15K Train Hits@1 Hits@5 Hits@10 MR MRR

MMEA
20% 26.042 44.946 53.175 143.465 0.353472
50% 40.697 60.101 67.711 60.654 0.500465
80% 60. 79.611 85.603 13.658 0.688278

Confidence-MMEA
20% 28.081 47.831 56.383 191.551 0.376452
50% 49.805 69.599 76.372 67.723 0.589590
80% 68.716 85.37 89.494 15.492 0.764087

Bold values indicate optimal quantities.

Table 12. Results of MMEA and Confidence-MMEA on FB15K-YAGO15K.

FB15K-YAGO15K Train Hits@1 Hits@5 Hits@10 MR MRR

MMEA
20% 23.906 40.362 49.024 145.942 0.322338
50% 39.942 57.178 65.461 61.571 0.483185
80% 57.557 76.994 83.914 11.790 0.665495

Confidence-MMEA
20% 26.075 42.289 50.325 217.411 0.342644
50% 48.538 67.292 73.833 69.307 0.572726
80% 67.203 82.574 87.131 13.954 0.745418

Bold values indicate optimal quantities.
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The experimental results showed that the Confidence-MMEA method outperformed
MMEA in all cases on both the FB15K-DB15K and FB15K-YAGO15K datasets. Specifically:

(1) In terms of the Hits@1, Hits@5, and Hits@10 metrics, Confidence-MMEA performed
better than MMEA. It was particularly noteworthy that our method demonstrated
a nearly 9% improvement when trained with 50% of the data. This indicated that
Confidence-TransE possessed a stronger capability for knowledge representation
learning compared with TransE without confidence. This suggested that Confidence-
MMEA was more effective at correctly aligning the entities within the top-ranked predictions.

(2) The MRR metric for Confidence-MMEA was significantly better than MMEA. This
showed that Confidence-MMEA was more likely to find the correct triple relations
among the top-ranking positions.

(3) The MR value for Confidence-MMEA was higher than that of MMEA. This could be
attributed to the fact that, after incorporating the confidence scores, the algorithm
tended to focus more on the entities with a higher confidence. However, there may
have been some errors in the current confidence score calculations, leading to higher
MR values for certain cases.

In general, our method demonstrated better performance across metrics such as
Hits@1, Hits@5, Hits@10, and MRR, with the exception of the MR metric. MRR primarily
focused on the best rankings, while MR was influenced by the rankings of each triple. This
showed that after adding confidence, the increase in the number of high-ranking triples
made MRR’s performance better, but a small number of triples with low-rankings led to
an increase in MR. With the expansion of the training data, the MR index of our proposed
method is gradually improving.

The Confidence-MMEA method outperformed the traditional MMEA methods in the
knowledge graph entity alignment task, exhibiting significant improvements across the
various evaluation metrics. The superior performance of Confidence-MMEA was attributed
to the utilization of Confidence-TransE during relationship extraction, suggesting that
Confidence-TransE is a more promising and practical method.

Summary: The two proposed confidence-based knowledge representation learning
methods in this paper achieved better results in the entity alignment experiments compared
with the methods without the confidence calculation. This suggests that Confidence-GCN
and Confidence-TransE, incorporating confidence, are more effective than GCN and TransE
in knowledge representation learning.

6. Conclusions

In this paper, we proposed a confidence calculation method named PTC, which
calculates the confidence of triples using the pairing rate of the three angles between the
entities and relations. The experimental results showed that this method has a good effect.
In this paper, confidence calculation was used as a tool for entity alignment, and future
experiments will be designed to verify the influence of the confidence strategy on entity
alignment. To assess the influence of confidence on knowledge representation learning in
entity alignment tasks, experiments were conducted on GCN and TransE. We introduced
two knowledge representation learning methods, Confidence-GCN and Confidence-TransE,
which incorporated confidence scores. The experimental results confirmed that Confidence-
GCN and Confidence-TransE were more effective in knowledge representation learning
compared with GCN and TransE.

We applied the knowledge representation learning methods based on confidence to
entity alignment, which can reduce the impact of noise and effectively improve the per-
formance of the entity alignment tasks. In principle, with the correct strategy, we can use
the confidence of triples to enhance the effectiveness of knowledge representation learning.
However, there are still some limitations in these confidence-based knowledge representa-
tion learning methods. They rely on the strategies that use confidence. Additionally, the
improvement effect is weaker when the training data are limited. In the future, adopt-
ing better strategies will enhance the effectiveness of knowledge representation learning.
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Furthermore, our future work will focus on developing advanced models and techniques
for handling the multimodal knowledge graphs and improving alignment performance.
Currently, our method does not introduce the confidence scores for image modality. In the
future, we plan to introduce image confidence scores and combine them with Confidence-
GCN or Confidence-TransE to enhance the model. Ultimately, we aim to combine this
model with other advanced models to propose a multimodal entity alignment framework.
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