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Abstract: This paper presents an adaptive dynamic surface sliding mode control technique to address
the issue of system parameter changes in permanent magnet synchronous motor (PMSM) position
servo systems. The proposed method involves adopting a linear parameter varying (LPV) observer-
based parameter identification algorithm and adaptive control technique. Initially, a mathematical
model of the PMSM is established, and the system parameters are divided into nominal and per-
turbation values. This allows for the reconstruction of the system model into a state space equation
that incorporates the unknown perturbation parameters. To accurately estimate these unknown
parameters, an LPV observer is designed based on the reconstructed model. Additionally, an adaptive
dynamic surface sliding mode control technique is explored to achieve the desired tracking perfor-
mance. Meanwhile, an exponential reaching law is introduced to expedite the dynamic behavior of
the system and mitigate chattering. Finally, a suitable Lyapunov function is selected to ensure the
overall stability of the system. The simulation results demonstrate the effectiveness of the parameter
identification and control algorithm in achieving good identification and tracking control ability for
PMSM systems.

Keywords: PMSM system; LPV observer; parameter identification; adaptive dynamic surface sliding
mode control

MSC: 93C10; 93C40

1. Introduction

With the rapid developments in semiconductor devices and the continuous evolution
of control technology, PMSMs have emerged as a focal point of research in the domain of
small and medium-sized power drives. This is primarily attributed to their compact size,
high power density, streamlined structure, and favorable torque-to-inertia ratio. PMSMs
find extensive applications across various control domains [1,2]. Nonetheless, the inherent
characteristics of PMSMs, such as stator current, parameter perturbations, and external in-
terferences, diminish the systems’ dynamic performance. Conventional control techniques
often fall short of achieving the desired objectives. The pursuit of high-performance speed
control systems necessitates enhanced rotor performance, traditionally achieved through
the incorporation of mechanical sensors, thereby escalating motor costs and constraining
its applicability. Diverse parameter identification algorithms are employed; however, some
fail to promptly adapt to changing system parameters, thereby compromising system con-
trol efficacy. Consequently, enhancing the precision of parameter identification, devising
an adaptive control strategy capable of real-time response to external nonlinearities and
mechanical attributes, and refining tracking control efficiency are imperative objectives.

Parameter identification involves the estimation of unknown parameters within a
system through the analysis of input and output data. These parameters encompass the
physical, dynamic, and coupling characteristics of the system. Offline and online identifi-
cation represent the primary categories of parameter identification [3]. Offline methods,
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such as genetic algorithms [4,5], firefly algorithms [6], and particle swarm optimization
algorithms [7,8], necessitate extensive data collection and storage. However, offline tech-
niques may not accurately capture the system’s actual physical models under varying work
conditions. Moreover, the system parameters are often not fixed and may be perturbed
by external factors. Consequently, offline identification may not ensure optimal control
performance. In contrast, online parameter identification techniques offer real-time pa-
rameter values, enabling enhanced tracking control performance of the system. Various
online parameter identification strategies have been proposed by domestic and foreign
scholars, including model reference adaptation, least squares, extended Kalman filter, and
various intelligent algorithms. Ref. [9] focuses on reducing the fluctuation of parameter
identification value changes by improving the distribution identification method and iner-
tia factor. It also solves the problem of identification equations through the distribution
identification method while weakening the stator resistance identification error. In Ref. [10],
a new parameter identification method for deadbeat control of PMSM is proposed. The
model used in this method can effectively express the relationship between parameter
error and control offset, and the parameter identification results are obtained by combining
neural networks. Ref. [11] employs the least square method to identify the parameters
of PMSM. The paper utilizes the simplicity and robustness of the least square method
to effectively estimate the system’s unknown parameters. Ref. [12] tackles the challenge
of identifying motor parameters by utilizing an extended Kalman filter, which enhances
accuracy and convergence speed. Refs. [13,14] employs a neural network algorithm to
conduct parameter estimation. While the estimation outcomes prove to be precise, the
algorithm necessitates a larger dataset and computational resources.

The contemporary landscape of online parameter identification methods reveals a
prevalent focus on system tracking errors, with limited assurance of real-time convergence
to true values. To achieve precise parameter convergence, the incorporation of parameter
identification errors into estimation laws becomes imperative, posing a notable challenge
to overcome in parameter identification.

Currently, in light of advancements in control technology, scholars both domesti-
cally and internationally have put forth a variety of control strategies to satisfy control
performance for motors. These strategies include identification algorithms, slide mode
control, adaptive control, and fuzzy control, etc. In one study documented in Ref. [15],
adaptive control is combined with slide mode control, resulting in a control method that
incorporates sliding mode current regulation and adaptive backstepping speed regulation.
This algorithm utilizes an extended observer to observe load torque, ultimately enhancing
control accuracy. Another study documented in Ref. [16] proposes a sliding mode con-
troller for PMSM control. This study introduces a novel double power reaching law and
establishes a feedback linearized sliding mode control system for PMSM, which yields
favorable control effects.

In recent years, the backstepping method has garnered significant attention among
scholars as a research topic. The adaptive backstepping control method possesses several
desirable characteristics, such as a simple structure, easy design, and fast response. This
methodology employs a partitioning technique to break down high-order systems into
multiple subsystems, which facilitates controller design. In the design of the backstepping
controller, a step-by-step process is followed to design the virtual control law function for
each subsystem, ensuring the convergence of each subsystem. Consequently, the control
input of the system gradually evolves, leading to the asymptotic stability of the entire
system [17]. A joint control algorithm that integrates backstepping design and genetic
algorithms is introduced in [18] to address nonlinear friction disturbances in the direct-
acting proportional directional valve under actual operating conditions. The proposed
algorithm focuses on model-based friction compensation and incorporates an adaptive
controller. Ref. [19] combines the backstepping method with the Luenberger observer
to design a robust adaptive controller for PMSM. This controller addresses parameter
uncertainty and achieves accurate control of the system. To combat dynamic performance
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deterioration resulting from integrated speed regulator saturation, a new integral anti-
saturation method based on the PI control strategy with perturbation compensation and
desaturation is proposed in [20]. In [21], an adaptive robust dynamic surface control
algorithm is proposed to enhance tracking speed and control performance. Ref. [22] resolves
the problem of dynamic performance degradation caused by load perturbation in the PMSM
servo system. It presents a new PMSM dynamic surface controller that incorporates an
observer to obtain load torque feedback, resulting in reduced speed fluctuation during
load changes and precise control of the PMSM servo system. A non-smooth optimization
method is proposed in [23] for selecting the mathematical model at the primary operating
point of the rotor speed, designing optimization parameters, and adjusting PI control
parameters through parameter synthesis. An LPV control strategy combined with the
backstepping method for PMSM is introduced in [24] to enable effective motor control,
notwithstanding the lack of consideration for system uncertain parameter influences on
system control performance.

Based on the above analysis, this paper proposes an adaptive dynamic surface sliding
mode control strategy utilizing an LPV observer to address the challenge of parameter
perturbation in PMSM systems. The system model involves partitioning the parameters into
nominal and perturbed values, followed by the development of an LPV observer for real-
time estimation of system perturbation parameters. Then, a dynamic surface sliding mode
controller based on the estimated system parameters is designed. The implementation of
a novel exponential reaching law sliding mode method enhances the system’s dynamic
performance and effectively reduces the chattering. Additionally, the dynamic surface
control resolves the differential explosion issue present in traditional backstepping control
methods. The simulations indicate that the implemented design method significantly
enhances the tracking control efficacy within the system. The main contributions are
summarized as follows:

(1) This paper deviates from the parameter identification methods as outlined in
Refs. [9–14], by presenting a novel method that incorporates parameter identification errors
within the parameter estimation process through the implementation of an LPV observer.
It is demonstrated that as the parameter identification error diminishes, the parameters
have the capability to converge towards their actual values.

(2) The integration of sliding mode control technology into the adaptive dynamic
surface control method is presented for the purpose of formulating the system’s controller.
This integration aims to streamline the architecture of high-order controllers and bolster
the system’s ability to withstand disturbances. Moreover, the exponential reaching law is
devised to expedite the system’s dynamic performance and mitigate the issue of chattering
associated with sliding mode control.

This paper is structured as follows. The second section delineates the model of the
PMSM system. The third section focuses on the design of the LPV observer. The fourth
section presents the adaptive dynamic surface sliding mode control. Section 5 offers the
simulation results, while the conclusion is presented in Section 6.

2. Mathematical Model of PMSM

The inductance and resistance of the alternating direct axis in a surface-mounted
PMSM are nearly equal, denoted as ld = lq = l, Rd = Rq = R. The mathematical model
equations governing a PMSM in the d-q axis reference coordinate system were detailed
in [19]: 

.
θ = ω

.
ω = −a1ω + b1iq − c1

.
iq = − 1

l b2iq − c2ωid − 1
l a2ω + 1

l uq

.
id = − 1

l b2id + c2ωiq +
1
l ud

(1)
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where a1 = B
J ; b1 = 3nλ

2J ; c1 = τl
J ; a2 = nλ; b2 = R; c2 = n; ud and uq are the system control

inputs, representing the stator voltage on the d-axis and q-axis, respectively; θ indicates the
angle of the motor rotor; ω is the angular speed of the motor; id and id are the currents on
the d-axis and q-axis, respectively; n is the number of poles of the motor; λ is the motor flux;
τl is the load torque; R is the stator resistance; l is equivalent inductance; J is the moment
of inertia; and B is the viscous friction coefficient.

For the convenience of representing the model of the PMSM servo system, x1 = θ,
x2 = ω, x3 = iq, and x4 = id are defined and the system model is reformulated into state
space representation in the following form:

.
x1 = x2

.
x2 = −a1nx2 + b1nx3 − c1 − a1mx2 + b1mx3

.
x3 = − 1

l a2nx2 − 1
l b2nx3 +

1
l uq − c2x2x4 − 1

l a2mx2 − 1
l b2mx3

.
x4 = − 1

l b2nx4 +
1
l ud + c2x2x3 − 1

l b2mx4

(2)

where a1 = a1n + a1m; b1 = b1n + b1m; a2 = a2n + a2m; b2 = b2n + b2m; a1n, b1n, a2n, b2n are
the nominal parameters, and a1m, b1m, a2m, b2m, c1, c2 are perturbed parameters.

The state variable is chosen as x =
[
x1 x2 x3 x4

]T , with the control input denoted

by u =
[
uq ud

]T . The representation of the PMSM system model is formulated in LPV
form as outlined below: { .

x = Ax + Bu + ν(x, Θ)
y = Cx

(3)

where A =


0 1 0 0
0 −a1n b1n 0
0 − 1

l a2n − 1
l b2n 0

0 0 0 − 1
l b2n

; B =


0 0
0
1
l
0

0
0
1
l

;

C =
[
0 1 0 0

]
; ν(x, Θ) = χ(x)Θ denotes the state variable matrix and perturbed pa-

rameters of the system, with χ(x) =


0 0 0 0 0 0
−1 −x2 x3 0 0 0
0 0 0 −x2x4 − 1

l x2 − 1
l x3

0 0 0 x2x3 0 − 1
l x4

,

Θ =
[

c1 a1m b1m c2 a2m b2m
]T .

Remark 1. Permanent magnet synchronous motors are intricate nonlinear systems with strong
coupling, posing challenges in accurate modeling due to complex electromagnetic relationships.
Simplifying the mathematical model of these motors involves assuming an ideal motor state and
making specific assumptions: neglecting magnetic core saturation and parameter variations during
operation, excluding eddy current and hysteresis losses, assuming a sinusoidal distribution of the
stator winding’s magnetic electromotive force, considering a linear magnetic circuit without satura-
tion impact, disregarding temperature and frequency effects on the winding, presuming no damping
effect on the permanent magnet, etc. These assumptions significantly streamline the complexity of
permanent magnet synchronous motors without compromising their fundamental nature.

3. Design of LPV Observer

This section presents an LPV adaptive observer utilizing the model derived from (3),
followed by a demonstration of the asymptotic convergence of the algorithm through the
application of Lyapunov theory in conjunction with the Lipschitz property as detailed
in [25].
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Selecting a specific form of state observer is essential in designing an LPV observer, as
it allows for the estimation of both the state vector and unknown parameters.{ .

x̂ = Ax̂ + Bu + ν(x̂, Θ̂) + L(y − ŷ)
ŷ = Cx̂

(4)

where x̂, Θ̂ and ŷ are the estimation of x, Θ and y; L is the observer gain matrix.
By utilizing the original matrices A, B, and C, the reconstruction of the system state

information is achieved, and the discrepancy in output is rectified by means of gain
matrix L to systematically approach the observer to the original system. Consequently,
the observer’s design quandary can be reformulated as determining the parameter L that
ensures system stability. To guarantee the eventual decline of the error in asymptotic
convergence concerning system state and parameter estimation towards zero, the existence
of a symmetric positive definite matrix P, matrix M, and Y laden with the subsequent
unequal equation is imperative:

AT PT + PA − MC − CT MT + PQ−1PT + Y < 0 (5)

M = PL (6)

Then, the adaptive parameter estimation law is designed as:

.
Θ̂ = TχT(x̂)Px̃ (7)

where T = diag(γ11,γ12,γ13,γ14,γ15,γ16), and γ11, γ12, γ13, γ14, γ15, γ16 are constants;
TT = T > 0, χ(x̂) is the estimated vector of χ(x), x̃ = x − x̂ is the error vector of state
estimation; Θ̃ = Θ − Θ̂ is the parameter estimation error vector. Ω = A − LC is defined;
then, the state estimation error is calculated as:

.
x̃ = Ωx̃ + ν̃ + χ(x̂)Θ̃ (8)

where ν̃ = ν(x, Θ)− ν(x̂, Θ).

Remark 2. Detailed analysis regarding the convergence properties of the LPV observer is available
in Appendix A. The analysis reveals that the parameter identification technique utilizing the LPV
observer imparts pertinent insights into parameter estimation errors. As the parameter estimation
error diminishes, the parameters exhibit a precise convergence towards their true values. This stands
in contrast to conventional parameter adaptive laws that solely focus on tracking error generation.
As the tracking error approaches zero, the parameters converge to a fixed value, but not necessarily
the actual parameters. Furthermore, the LPV observer encompasses state estimation capabilities,
facilitating the formulation of controllers for systems characterized by challenging-to-observe states.

Remark 3. The control object utilizes a surface mounted PMSM, where the permanent magnet is
positioned on the outer surface of the rotor core. This configuration leads to a high-air-gap magnetic
flux density in the motor. The cross-axis inductance is equivalent to the direct axis inductance,
resulting in a simple structure and low moment of inertia. However, the motor’s overall performance
and robustness are considered relatively lacking. It is crucial to acknowledge that variations in load
torque can significantly affect the dynamic performance of the PMSM. Additionally, the viscous
friction coefficient of the system fluctuates with speed and temperature changes. Promptly identifying
these variations in the viscous friction coefficient and load torque are essential for maintaining the
system’s robustness. The LPV parameter identification algorithm presents a state-space model that
includes unknown disturbed parameters. This feature allows us to identify changes in load torque
and viscous friction coefficient as unknown disturbance parameters for real-time identification. This
compensatory mechanism effectively mitigates the negative impacts of load torque, temperature, and
speed variations, thereby enhancing the system’s robustness.
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4. Main Results

Dynamic surface control offers several benefits over alternative control methods,
including a straightforward algorithm, uncomplicated implementation, and rapid conver-
gence. Leveraging the framework of the LPV observer outlined above, this section will
proceed to develop a dynamic surface sliding mode controller aimed at enhancing the
tracking control efficacy within the system.

Step 1: Define the system tracking error z1 and error z2 as follows:

z1 = x1 − xr (9)

z2 = x2 − α1 (10)

where α1 is the virtual controller; xr is the desired tracking trajectory.
Then, the time derivative of z1 is as follows:

.
z1 = z2 + α1 −

.
xr (11)

Define the following Lyapunov function:

V1 =
1
2

z1
2 (12)

Then, it has .
V1 = z1(z2 + α1 −

.
xr) (13)

Based on the backstepping recurrence control method and reaching law sliding mode
technique, the first virtual control law is designed as follows:

α1 = − k11

E(z1)
z1 +

.
xr (14)

where E(zi) = ρ + (1 − ρ)e−|z1|; k11 and ρ are constants and k11 > 0, 0 < ρ ≤ 1.
In conventional sliding mode control, the gain term is often set as a fixed value,

resulting in undesirable chattering effects within the sliding mode controller. In (23), we
opted to define the gain value of the sliding mode as k11/E(z1), enabling the control gain
to dynamically adjust based on the tracking error z1. When the tracking error z1 deviates
significantly from the equilibrium point, with E(z1) assuming a value ρ where 0 < ρ ≤ 1,
the sliding mode control gain is determined as k11/ρ. This configuration results in a higher
gain value, thereby enhancing the convergence of the tracking error z1. When the tracking
error converges to the equilibrium point, the value of E(z1) is around 1, and the control
gain is denoted as k11. This situation is characterized by a relatively low control gain, which
serves to efficiently mitigate chattering issues.

Then, we have
.
z1 = z2 −

k11

E(z1)
z1 (15)

According to the dynamic surface control principle, a low-pass filter may be devised
for variable α1, facilitating an approximation of the filtered variable to effectively convey
α1, thereby mitigating the issue of differential explosion. The low-pass filter is designed
as follows: {

τ1
.
αd1 + αd1 = α1

α1(0) = αd1(0)
(16)

where τ1 > 0 is the time constant of the filter.
Then, the filtered differential variable can be represented as

.
αd1 = (α1 − αd1)/τ1 (17)
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Substituting (14) into (12) yields the following:

.
V1 = z1z2 −

k11

E(z1)
z1

2 (18)

From (2), we can obtain the following:

.
z2 = −a1nx2 + b1nz3 + b1nα2 − c1 − a1mx2 + b1mx3 −

.
α1 (19)

The following Lyapunov function is defined for the second step:

V2 = V1 +
1
2

z2
2 +

1
γ11

c̃2
1 +

1
γ12

ã2
1m +

1
γ13

b̃2
1m (20)

•̃ = • − •̂ is set, where • denotes the variables c1, a1m, and b1m, •̃ denotes the error
of •, and •̂ represents the estimated value of •.

Taking the derivative of (20) gives the following:

.
V2 = z1z2 − k11

E(z1)
z1

2 + z2(−a1nx2 + b1nz3 + b1nα2 − c1 − a1mx2 + b1mx3 −
.
α1)

−2( 1
γ11

c̃1
.
ĉ1 +

1
γ12

ã1m
.
â1m + 1

γ13
b̃1m

.
b̂1m)

(21)

The second virtual control law is designed as follows:

α2 =
1

b1n
(a1nx2 + ĉ1 + â1mx2 − b̂1mx3 +

.
α1 −

k12

E(z2)
z2 − z1) (22)

Similar to (16), filtering is performed on α2:{
τ2

.
αd2 + αd2 = α2

α2(0) = αd2(0)
(23)

where τ2 > 0 is the time constant of the filter.
Then, it has

.
αd2 = (α2 − αd2)/τ2 (24)

Substituting (22) into (19), we can obtain the following:

.
z2 = −c̃1 − ã1mx2 + b̃1mx3 −

k12

E(z2)
z2 − z1 + b1nz3 (25)

Step 2: Define the error variable:

z3 = x3 − α2 (26)

Taking the derivative of (26) yields the following:

.
z3 = −1

l
a2nx2 −

1
l

b2nx3 +
1
l

uq − c2x2x4 −
1
l

a2mx2 −
1
l

b2mx3 −
.
α2 (27)

Define the new Lyapunov function as follows:

V3 = V2 +
1
2

z3
2 +

1
γ14

c̃2
2 +

1
γ15

ã2
2m +

1
γ16

b̃2
2m (28)

where c̃2, ã2m, and b̃2m represent the estimation error of c2, a2m, and b2m.
The derivative of (28) is as follows:
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.
V3 = − k11

E(z1)
z1

2 − k12
E(z2)

z2
2 + b1nz2z3 − c̃1z2 − ã1mx2z2 + b̃1mz2x3 + z3(− 1

l a2nx2 − 1
l b2nx3 +

1
l uq − c2x2x4

− 1
l a2mx2 − 1

l b2mx3 −
.
α2)− 2( 1

γ11
c̃1

.
ĉ1 +

1
γ12

ã1m
.
â1m + 1

γ13
b̃1m

.
b̂1m + 1

γ14
c̃2

.
ĉ2 +

1
γ15

ã2m
.
â2m + 1

γ16
b̃2m

.
b̂2m)

(29)

We select the actual control law uq as follows:

uq = a2nx2 + b2nx3 + lĉ2x2x4 + â2mx2 + b̂2mx3 + l
.
α2 −

k13

E(z3)
lz3 − lb1nz2 (30)

By plugging (30) into (27), we can obtain the following:

.
z3 = −c̃2x2x4 −

1
l

ã2mx2 −
1
l

b̃2mx3 −
k13

E(z3)
z3 − b1nz2 (31)

Step 3: The error variable is defined:

z4 = x4 − α3 (32)

The absence of weak field control in the presented strategy results in the d-axis current
being zero, leading to a condition where α3 = 0.

Taking the derivative of (32), it yields the following:

.
z4 = −1

l
b2nx4 +

1
l

ud + c2x2x3 −
1
l

b2mx4 (33)

The Lyapunov function is defined as follows:

V4 = V3 +
1
2

z4
2 (34)

The derivative of (34) is as follows:
.

V4 = − k11
E(z1)

z1
2 − k12

E(z2)
z2

2 − k13
E(z3)

z3
2 − c̃1z2 − ã1mx2z2 + b̃1mz2x3 − c̃2x2x4z3 − 1

l ã2mx2z3 − 1
l b̃2mx3z3

−2( 1
γ11

c̃1
.
ĉ1 +

1
γ12

ã1m
.
â1m + 1

γ13
b̃1m

.
b̂1m + 1

γ14
c̃2

.
ĉ2 +

1
γ15

ã2m
.
â2m + 1

γ16
b̃2m

.
b̂2m)

+z4(− 1
l b2nx4 +

1
l ud + c2x2x3 − 1

l b2mx4)

(35)

Then, the actual control law ud is selected as follows:

ud = b2nx4 − lĉ2x2x3 + b̂2mx4 −
k14

E(z4)
lz4 (36)

Substituting (36) into (33), it has the following:

.
z4 = c̃2x2x3 −

1
l

b̃2mx4 −
k14

E(z4)
z4 (37)

The parameters adaptive estimation law is designed as follows:

.
Θ̂ = −1

2
TH + Tχ(x̂)T Px̃ (38)

where H =
[

z2 x2z2 −x3z2 z3x2x4 − z4x2x3
1
l z3x2

1
l z3x3 +

1
l z4x4

]T .

Theorem 1. The system under investigation, denoted as system (2) subject to parameter pertur-
bations, and controlled by controllers (30) and (36) in conjunction with the parameter adaptive
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estimation law (38), is expected to exhibit asymptotic convergence to
∣∣zi

∣∣≤ √
D/k1i for the system

tracking error.

Remark 4. Conventional dynamic surface control offers the benefits of uncomplicated configuration,
straightforward design, and rapid response for high-order systems. Nonetheless, it lacks the advan-
tage in terms of system disturbance resistance performance. Sliding mode control, on the other hand,
is distinguished by its exceptional disturbance resistance capabilities. By amalgamating these two
methodologies in the controller design, the resultant control exhibits the strengths of both techniques,
thereby enhancing tracking control performance.

Remark 5. Theorem 1 pertains to a permanent magnet synchronous motor system characterized by
Equation (1), experiencing parameter perturbations from operational conditions and varying loads,
akin to the system delineated in [26]. Any system satisfying these criteria can utilize the parameter
identification law (38) formulated in this paper to precisely estimate the perturbed parameters in real
time, while leveraging controllers (30) and (36) to guarantee the system’s tracking error converges
asymptotically to a small threshold. The proof of Theorem 1 can be found in Appendix B.

5. Simulation

Simulation experiments were conducted, and are described in this section, to
validate the parameter identification and control efficacy of the linear parameter
varying observer and adaptive dynamic surface sliding mode control (LPV+ADSSMC)
strategy implemented in the PMSM servo system. Traditional parameter identification
adaptive dynamic surface control (TPI+ADSC) methods were also employed for a compre-
hensive comparative analysis. The TPI+ADSC virtual control laws are given as
α1 = −k21z1 +

.
xr; α2 = 1

b1n
(a1nx2 + ĉ1 + â1mx2 − b̂1mx3 +

.
α1 − k22z2 − z1); the control

input is presented as uq = a2nx2 + b2nx3 + lĉ2x2x4 + â2mx2 + b̂2mx3 + l
.
α2 − lk23z3 − lb1nz2;

ud = b2nx4 − lĉ2x2x3 + b̂2mx4 − lk24z4; and the adaptive law is given as
.
ĉ1 = − 1

2 γ21z2;
.
â1m = − 1

2 γ22z2x2;
.
b̂1m = 1

2 γ23z2x3;
.
ĉ2 = − 1

2 γ24(z3x2x4 − z4x2x3);
.
â2m = − 1

2l γ25z3x2;
.
b̂2m = − 1

2l γ26(z3x3 + z4x4).
We set the initial parameters’ conditions for the experiment. The system parame-

ters were as follows: J = 0.008, B = 0.009, n = 2, l = 0.008, R = 3.1, λ = 0.167,
τl = 0.001; a1 = 1.125, b1 = 62.625, c1 = 0.125, a2 = 0.334, b2 = 3.1, c2 = 2; the con-
trol parameters of LPV+ADSSMC were given as follows: k11 = 30, k12 = 100, k13 = 60,
k14 = 20, γ11 = 1, γ12 = 0.0001, γ13 = 0.005, γ14 = 0.5, γ15 = 0.0001, γ16 = 0.001,
τ1 = 0.02, τ2 = 0.02; for fair comparison, the parameters of TPI+ADSC were set to be the
same: k21 = 30, k22 = 100, k23 = 60, k24 = 20, γ21 = 1, γ22 = 0.0001, γ23 = 0.005, γ24 = 0.5,
γ25 = 0.0001, γ26 = 0.001; and the initial condition was as follows: a1m(0) = 0, b1m(0) = 0,
a2m(0) = 0, b2m(0) = 0, c1m(0) = c2m(0) = 0. In light of the saturation constraints of the
system, the control inputs uq and ud were restricted to

∣∣uq
∣∣ ≤ 4 and |ud| ≤ 0.04, respectively.

Case 1: The reference signal is given as xr1 = 3 sin(2t). Figures 1 and 2 demonstrate
the tracking trajectory and tracking error of LPV and TPI systems. In Figure 1, the tracking
error of the state variable is compared under the reference signal xr1. It is evident from
the figure that TPI+ADSC exhibits considerable tracking error, whereas LPV+ADSSMC
showcases minimal tracking error, approaching zero in a steady state, reflecting superior
tracking performance. Figure 2 illustrates a comparison of the tracking trajectories of the
state variable with LPV+ADSSMC displaying faster convergence speed and higher tracking
accuracy compared to TAI+ADSC. Additionally, Figure 3 compares the error of the state
variable and virtual control law under two distinct methods, indicating that LPV+ADSSMC
incurs smaller errors. Furthermore, Figure 4 contrasts the virtual control laws of the
state variable under LPV+ADSSMC and TPI+ADSC methods, demonstrating the superior
tracking performance of the proposed method. Figures 5 and 6 further compare the state
variable and virtual control laws under the two methods, with LPV+ADSSMC showing
remarkable tracking effectiveness and minimal tracking error, while TPI+ADSC exhibits
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larger errors with fluctuations. Figures 7–12 compare the estimation results of unknown
parameters under LPV+ADSSMC and TPI+ADSC methods, revealing the effectiveness
of the adaptive dynamic surface control method integrated with LPV+ADSSMC state
observer. The parameter convergence effect of LPV+ADSSMC is highlighted, ensuring
continuous adaptation to real parameter values, whereas TPI+ADSC exhibits significant
convergence errors and fluctuations. Figures 13 and 14 showcase controllers uq and ud,
while Figures 15 and 16 depict the tracking errors of virtual control laws α1 and α2 in the
low-pass filter versus αd1 and αd2, confirming the validity of the virtual control law.
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Figure 1. The tracking errors z1 for xr1.
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Figure 2. The tracking trajectories for xr1.
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Figure 3. The tracking errors z2 for xr1.
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Figure 5. Comparison of virtual controllers α2, and x3 for xr1.
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Figure 6. The tracking errors z3 for xr1.
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Figure 7. The parameter identification c1 for xr1.
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Figure 8. The parameter identification a1m for xr1.
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Figure 9. The parameter identification b1m for xr1.
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Figure 10. The parameter estimation c2 for xr1.
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Figure 11. The parameter identification a2m for xr1.
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Figure 12. The parameter identification b2m for xr1.
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Figure 13. The control inputs uq of LPV+ADSSMC for xr1.
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Figure 14. The control inputs ud of LPV+ADSSMC for xr1.
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convergence process. Furthermore, Figures 29 and 30 illustrate tracking errors of virtual 
control laws 1α  and 2α  in a low-pass filter in comparison to 1dα  and 2dα . Figures 31 and 

32 display controllers qu  and du . The results of the simulation experiments show that 
the utilization of the dynamic surface sliding mode control technique with an 
LPV+ADSSMC observer for a PMSM allows for the accurate estimation of system pa-
rameters and promotes effective tracking control with high performance. 
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Figure 15. The tracking error y1 for xr1.
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Figure 16. The tracking error y2 for xr1.

Case 2: The reference signal is set as xr2 = 5t for the purpose of examining perfor-
mance under changing reference signals. Figures 17–22 depict the tracking trajectories and
errors of state variables using the LPV+ADSSMC and TPI+ADSC techniques. Analysis of
Figures 17–22 reveals that LPV+ADSSMC exhibits superior tracking capabilities compared
to TPI+ADSC in response to signal variations. The parameter estimation outcomes for
LPV+ADSSMC and TPI+ADSC are presented in Figures 23–28. Notably, Figures 23–28
demonstrate that the LPV+ADSSMC parameters can converge accurately to their true
values with high precision upon signal variations. Conversely, the TPI+ADSC parameter
identification results exhibit inaccuracies and substantial jitter during the convergence
process. Furthermore, Figures 29 and 30 illustrate tracking errors of virtual control laws
α1 and α2 in a low-pass filter in comparison to αd1 and αd2. Figures 31 and 32 display
controllers uq and ud. The results of the simulation experiments show that the utilization of
the dynamic surface sliding mode control technique with an LPV+ADSSMC observer for
a PMSM allows for the accurate estimation of system parameters and promotes effective
tracking control with high performance.
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Figure 17. The tracking errors z1 for xr2.
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Figure 18. The tracking trajectories for xr2.
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Figure 19. The tracking errors z2 for xr2.
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Figure 20. Comparison of virtual controllers α1, and x2 for xr2.

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 20. Comparison of virtual controllers 1α , and 2x  for 2rx . 

 
Figure 21. Comparison of virtual controllers 2α , and 3x  for 2rx . 

 

Figure 22. The tracking errors 3z  for 2rx . 

0 5 10 15 20 25 30

time(s)

0

2

4

6

8

10

12

14

tra
ck

in
g 

tra
je

ct
or

y

x
2

1
-LPV+ADSSMC

1
-TPI+ADSC

22 24 26 28

4.99

4.995

5

5.005

0 5 10 15 20 25 30

time(s)

-10

-5

0

5

10

15

20

25

30

35

tra
ck

in
g 

tra
je

ct
or

y

x
3

2
-LPV+ADSSMC

2
-TPI+ADSC

20 22 24 26 28

0.08

0.09

0.1

0.11

0.12

0.13

0 5 10 15 20 25 30

time(s)

-35

-30

-25

-20

-15

-10

-5

0

5

10

tra
ck

in
g 

er
ro

r

z
3

-LPV+ADSSMC

z
3

-TPI+ADSC

28.5 29 29.5

time(s)

-1

0

1

2

tra
ck

in
g 

er
ro

r

10 -3

Figure 21. Comparison of virtual controllers α2, and x3 for xr2.
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Figure 22. The tracking errors z3 for xr2.
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Figure 23. The parameter estimation c1 for xr2.
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Figure 24. The parameter estimation a1m for xr2.
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Figure 25. The parameter estimation b1m for xr2.
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Figure 26. The parameter estimation c2 for xr2.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 26. The parameter estimation 2c  for 2rx . 

 

Figure 27. The parameter estimation 2ma  for 2rx . 

 

Figure 28. The parameter estimation 2mb  for 2rx . 

0 5 10 15 20 25 30

time(s)

-1

-0.5

0

0.5

1

1.5

2

2.5

pa
ra

m
et

er
 id

en
tif

ic
at

io
n 

of
 c

2 

0 5 10 15 20 25 30

time(s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

pa
ra

m
et

er
 id

en
tif

ic
at

io
n 

of
 a

2m
 

23 24 25 26

0.038

0.04

0.042

0.044

0 5 10 15 20 25 30

time(s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

pa
ra

m
et

er
 id

en
tif

ic
at

io
n 

of
 b

2m
 

14 16 18 20
-0.15

-0.1

-0.05

0

0.05

0.1

Figure 27. The parameter estimation a2m for xr2.
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Figure 28. The parameter estimation b2m for xr2.
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Figure 29. The tracking error y1 for xr2.
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Figure 30. The tracking error y2 for xr2.
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Figure 31. The control inputs uq of LPV+ADSSMC for xr2.



Mathematics 2024, 12, 1219 21 of 25

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 32. The control inputs du  of LPV+ADSSMC for 2rx . 

To further compare the tracking error performance and parameter identification 
precision of LPV+ADSSMC and TPI+ADSC, the subsequent two standards are given: 
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Figure 32. The control inputs ud of LPV+ADSSMC for xr2.

To further compare the tracking error performance and parameter identification preci-
sion of LPV+ADSSMC and TPI+ADSC, the subsequent two standards are given:

(1) The absolute integral tracking error: IAZi =
∫
|Zi(t)|dt serves as a measure of system

tracking precision;
(2) The absolute integral errors of the parameter’s estimated value and actual value:

IAC1 =
∫
|ĉ1 − c1|dt, IAA1m =

∫
|â1m − a1m|dt, AB1m =

∫ ∣∣∣b̂1m − b1m

∣∣∣dt,

IAC2 =
∫
|ĉ2 − c2|dt, IAA2m =

∫
|â2m − a2m|dt, and IAB2m =

∫ ∣∣∣b̂2m − b2m

∣∣∣dt serve
as a gauge of parameter estimation accuracy.

The comparative analysis presented in Tables 1 and 2 illustrates the performance
distinction between the LPV+ADSSMC and TPI+ADSC algorithms across the two standards.
The data reveal that the LPV+ADSSMC algorithm consistently exhibits lower values in
both tracking error and parameter estimate variance when compared to the TPI+ADSC
algorithm. These findings suggest that LPV+ADSSMC outperforms TPI+ADSC in terms of
tracking accuracy and parameter identification precision.

Table 1. Comparison of two standards in Case 1.

IAZ1 IAZ2 IAZ3 IAC1 IAA1m IAB1m IAC2 IAA2m IAB2m

LPV+ADSSMC 2.5609 × 10−7 3.2838 × 10−6 2.8937 × 10−6 2.3207 × 10−5 4.1149 × 10−6 1.0343 × 10−5 2.2385 × 10−8 7.9219 × 10−9 3.2192 × 10−8

TPI+ADSC 5.3747 × 10−7 1.4143 × 10−5 1.2502 × 10−5 1.1874 × 10−4 3.2086 × 10−6 1.2878 × 10−4 0.0025 3.9356 × 10−6 1.5670 × 10−4

Table 2. Comparison of two standards in Case 2.

IAZ1 IAZ2 IAZ3 IAC1 IAA1m IAB1m IAC2 IAA2m IAB2m

LPV+ADSSMC 9.297 × 10−10 2.7415 × 10−8 4.6078 × 10−8 1.5567 × 10−5 3.3661 × 10−6 1.2599 × 10−5 2.3239 × 10−9 8.9367 × 10−7 4.3768 × 10−5

TPI+ADSC 1.2691 × 10−7 4.0776 × 10−6 9.4490 × 10−7 3.1766 × 10−4 3.2121 × 10−6 1.2769 × 10−4 0.0022 3.3782 × 10−6 1.2629 × 10−4

6. Conclusions

This paper presents an adaptive parameter identification approach that leverages an
LPV observer, and further devises a dynamic surface sliding mode controller rooted in LPV.
Through the creation of an LPV observer and the introduction of parameter identification
errors, swift and precise identification of the parameters associated with the PMSM system
is achieved, facilitating convergence towards the true values. Furthermore, the incorpo-
ration of the exponential reaching law sliding mode in the design of dynamic surface
controllers significantly enhances the tracking control performance of the system. The
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simulations demonstrate that the proposed parameter identification and control algorithm
exhibits commendable capabilities in terms of identification precision and tracking control
efficiency for PMSM systems. The LPV adaptive parameter identification algorithm pre-
sented in this paper is specifically tailored for linear parameterized systems. It is important
to note its limitations when dealing with nonlinear and coupled parameter systems. The
forthcoming research endeavors will primarily concentrate on enhancing the accuracy
of parameter identification and control performance for systems featuring nonlinear and
coupled parameters.
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Appendix A

The subsequent section presents the stability analysis of the LPV observer.
Define the following quadratic Lyapunov function:

V = x̃T Px̃ + Θ̃TT−1Θ̃ (A1)

where P and T are symmetric positive definite matrices.
Take the derivative of (A1) and substitute (8) into the resultant derivative expression,

giving the following:

.
V =

.
x̃

T
Px̃ + x̃T P

.
x̃ +

.
Θ̃

T
T−1Θ̃ + Θ̃TT−1

.
Θ̃

= (Ωx̃ + ν̃ + χ(x̂)Θ̃)
T

Px̃ + x̃T P(Ωx̃ + ν̃ + χ(x̂)Θ̃) +
.

Θ̃
T

T−1Θ̃ + Θ̃TT−1
.

Θ̃

= x̃TΦx̃ + ν̃T PT x̃ + x̃T Pν̃ + Θ̃TχT(x̂)Px̃ + x̃T Pχ(x̂)Θ̃ +
.

Θ̃
T

T−1Θ̃ + Θ̃TT−1
.

Θ̃

(A2)

where Φ = ΩT PT + PΩ.
For the convenience of analysis, the following lemmas are introduced.

Lemma A1 ([27]). The function ν(x, Θ) fulfills the Lipschitz condition with respect to x, indicating
that for all x, ν(x, Θ) can be reformulated based on generalized Lipschitz conditions:

vTQv ≤ xTYx (A3)

It is noted that matrix Q is symmetric and positive definite, whereas matrix Y is
semi-positive definite. Consequently, under the condition that the function ν(x, Θ) exhibits
continuous differentiability with respect to x, it is possible to reformulate any system
represented by (3) into the generalized Lipschitz form.

Lemma A2 ([28]). The subsequent characteristics are maintained for each symmetric positive
definite matrix R

XT J + JTX ≤ XT RX + JT R−1 J (A4)

According to Lemma 1 and Lemma 2, we can obtain the following inequality:

ν̃T PT x̃ + x̃T Pν̃ ≤ ν̃TQν̃ + x̃T PQ−1PT x̃ ≤ xTYx + x̃T PQ−1PT x̃ (A5)
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Then, (A2) can be simplified as follows:
.

V ≤ x̃T(Φ + Y + PQ−1PT)x̃ + Θ̃TχT(x̂)Px̃ + x̃T Pχ(x̂)Θ̃ +
.

Θ̃
T

T−1Θ̃ + Θ̃T T−1
.

Θ̃

= x̃T(Φ + Y + PQ−1PT)x̃ + 2Θ̃TχT(x̂)Px̃ + 2Θ̃T T−1
.

Θ̃
(A6)

The stability of the system can be guaranteed from (A6) if the following inequality can
be satisfied:

Θ̃TχT(x̂)Px̃ + Θ̃TT−1
.

Θ̃ ≤ 0 (A7)

The adaptive law for Θ̂ can be formulated under the premise of a gradual variation,

denoted as
.

Θ = 0; then,
.

Θ̃ = −
.

Θ̂. The parameter adaptive law is given as follows:

.
Θ̂ = TχT(x̂)Px̃ (A8)

Substituting (5) and (A8) into (A6) yields the following:

.
V ≤ x̃T(AT PT + PA − CT MT − MC + PQ−1PT + Y)x̃ ≤ 0 (A9)

The demonstration of convergence for the observer has thus been successfully finished.

Appendix B

Proof of Theorem 1. Define the errors of the low-pass filter as y1 = α1 − αd1 and
y2 = α2 − αd2. Then, the total Lyapunov function is represented as follows:

V5 = V4 +
1
2

y1
2 +

1
2

y2
2 + x̃T Px̃ (A10)

Taking the derivative of (A10) yields the following:

.
V5 = − k11

E(z1)
z1

2 − k12
E(z2)

z2
2 − k13

E(z3)
z3

2 − k14
E(z4)

z4
2 − Θ̃T H − 2Θ̃TT−1

.
Θ̂ + 2Θ̃Tχ(x̂)Px̃

+y1
.
y1 + y2

.
y2 + x̃TΦx̃ + ν̃T PT x̃ + x̃T Pν̃

≤ − k11
E(z1)

z1
2 − k12

E(z2)
z2

2 − k13
E(z3)

z3
2 − k14

E(z4)
z4

2 − Θ̃T H − 2Θ̃TT−1
.

Θ̂ + 2Θ̃Tχ(x̂)Px̃

+y1
.
y1 + y2

.
y2 + x̃T(AT PT + PA − CT MT − MC + PQ−1PT + Y)x̃

≤ − k11
E(z1)

z1
2 − k12

E(z2)
z2

2 − k13
E(z3)

z3
2 − k14

E(z4)
z4

2 − Θ̃T H − 2Θ̃TT−1
.

Θ̂

+2Θ̃Tχ(x̂)Px̃ + y1
.
y1 + y2

.
y2

(A11)

where
.
y1 = −y1

τ1
− .

αd1 (A12)

.
y2 = −y2

τ2
− .

αd2 (A13)

Set B1 =
.
αd1 and B2 =

.
αd2; then, define the following compact sets:

Ωall =
{

z1
2 + z2

2 + z3
2 + z4

2 + y1
2 + y2

2 ≤ 2q
}

where q > 0 is a determinable constant. So B1 and B2 are bounded on the compact set Ωall ,
and can be denoted as |B1| ≤ B1m, |B2| ≤ B2m [22].
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The following inequality holds:

yi
.
yi ≤ −yi

2

τi
+ |yi||Bim| ≤ −yi

2

τi
+

1
2hi

Bim
2 +

hi
2

yi
2 (A14)

where hi(i = 1, 2) > 0 is a design parameter. Then, it has the following:

y1
.
y1 + y2

.
y2 ≤ (

h1

2
− 1

τ1
)y1

2 + (
h2

2
− 1

τ2
)y2

2 +
1

2h1
B1m

2 +
1

2h2
B2m

2 (A15)

Substituting (A15) into (A11), we obtain the following:

.
V5 ≤ −

4
∑

i=1

k1i
E(zi)

z2
i − Θ̃T H − 2Θ̃TT−1

.
Θ̂ + 2Θ̃Tχ(x̂)Px̃

+( h1
2 − 1

τ1
)y1

2 + ( h2
2 − 1

τ2
)y2

2 + 1
2h1

B1m
2 + 1

2h2
B2m

2
(A16)

Select the following parameter settings:
1
τ1

≥ h1
2

1
τ2

≥ h2
2

D = 1
2h1

B1m
2 + 1

2h2
B2m

2
(A17)

Then, we have the following:

.
V5 ≤ −

4

∑
i=1

k1i
E(zi)

z2
i + D − Θ̃T H − 2Θ̃TT−1

.
Θ̂ + 2Θ̃Tχ(x̂)Px̃ (A18)

It can be concluded that the system tracking error will eventually converge to the
region

∣∣zi
∣∣≤ √

D/k1i . The theorem has been successfully demonstrated. □
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