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Abstract: Fuzzy multi-attribute decision-making is a hot research topic in which weight information
is one of the conditions for forming a complete decision-making model, and it is also an important
factor affecting the decision result. In most fuzzy multi-attribute decision-making problems, the
weight information is often given in the form of real numbers. However, in real life, the weight
information may not be suitable for specific numerical representation, or we cannot accurately
determine the weight information. Therefore, it is very important to use fuzzy numbers to represent
weight information. In this paper, we study the problem of disturbing fuzzy multi-attribute decision-
making in which the attribute weight, decision-maker weight, and attribute information are given
in the form of disturbing fuzzy numbers. Firstly, a new disturbing fuzzy integration operator,
namely the disturbing fuzzy ring and multiplication aggregation (DFRMA) operator, is proposed,
and its characteristics of closure, monotonicity, and boundary are studied. Then, the general steps
of the disturbing fuzzy multi-attribute decision method based on the disturbing fuzzy ring and
multiplication aggregation (DFRMA) operator are given, which include the single decision step and
group decision step. Finally, an example is given to illustrate the practicability and effectiveness of
the method.
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1. Introduction

Due to the uncertainty and complexity of the real world, this makes it impossible
for classical mathematics to solve certain problems. In 1965, Zadeh [1] published an
article called “Fuzzy Sets”, which marked the birth of fuzzy mathematics. The key idea of
fuzzy mathematics is to acknowledge the “ambiguity” of intermediate transitions due to
differences in objective things, allowing for the existence of “gradual relations”, that is, to
admit that a set can have elements that belong partly to it and that a proposition can also
be partly true and partly false. In today’s uncertain and complex society, this idea opens
up a “new way” to solve a certain kind of problem. With the change in the world and
the development of scientific theory, people find that the fuzzy sets established by Zadeh
cannot be well applied to today’s world. Therefore, the value range of the membership
function in general fuzzy set theory has been extended. Examples of these are interval-
valued fuzzy sets [2], intuitive fuzzy sets [3], hesitant fuzzy sets [4], and so on. However, in
the process of determining the degree of membership, there will be such a problem that
when people describe an object, the person who is the subject of knowledge must first know
the object. Due to differences in time, region, and personal cognition, it is impossible for
people to recognize various objects without being affected by these factors [5]. For example,
asking, “What is the membership of ’hot’ when the weather is 25 ◦C?”. Due to differences
in time, region, and knowledge, people in city A think that their membership should be
0.80, people in city B may think that it is 0.73, and people in city C think that it is 0.66. It
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can be seen that people not only have a similar and general understanding of membership
degree or the truth value of a fuzzy proposition but also have “interference” in the general
value because of various objective or subjective factors. Therefore, Liu [5] extended the
Zadeh fuzzy sets and proposed the disturbing fuzzy sets. It is not only better able to deal
with the ambiguity of the real world but also more in line with the laws of human thinking.

At present, the research on disturbing fuzzy set theory is mainly concentrated in China.
The two people who contributed most to this theory are Liu [5], the “mother” of disturbing
fuzzy set theory, and Han [6]. Liu creatively incorporated the characteristic of the difference
in the process of describing objective objects by the human brain into the general fuzzy set
theory and created the disturbing fuzzy set. In addition to that, she introduced the concept
of disturbing fuzzy propositional logic and defined the operators of disturbing fuzzy
propositions; then she extended the 1-dimensional truth value of fuzzy logic operators to
two-dimensional operators, which include disturbing fuzzy negation operators, implication
operators, “and” and “or” operators and continuous operators, the properties of these logic
operators are studied. These theories have laid a solid foundation for the future study of
disturbing fuzzy sets. Han’s main contribution was to combine the theory of disturbing
fuzzy sets with other neighborhoods. Firstly, she compares the disturbing fuzzy set with the
current mainstream interval-valued fuzzy set and intuitionistic fuzzy set and expounds on
the advantages of the disturbing fuzzy set over the former two, that is, complete symmetry.
This excellent property gives the disturbing fuzzy set theory an unprecedented advantage
in tautologies and generalized tautologies. Secondly, she defines some algorithms and
proves that the algebraic structure of disturbing fuzzy sets and their related operations
is a superior soft algebra. She also gives the “bridge” between the disturbing fuzzy set
and the ordinary set, namely the decomposition theorem and the representation theorem
of the disturbing fuzzy set, which are the most basic theorems of the disturbing fuzzy set
theory, and also clarifies the relationship between the ordinary set and the disturbing fuzzy
set. These theories have laid a more solid foundation for the theory of disturbing fuzzy
sets. Thirdly, on the basis of Liu, she conducted a more in-depth study of disturbing fuzzy
logic. She introduced the implication operator in the disturbing fuzzy set and studied
the algebraic structure and properties of the generalized tautologies of disturbing fuzzy
and their mutual relations. Then, she introduces disturbing fuzzy semantics into the
system L∗ and studies disturbing fuzzy subgroups and disturbing fuzzy normal subgroups.
The inference problem of disturbing fuzzy logic is studied, and the triple I algorithm of
disturbing fuzzy inference is given. Fourthly, she combines the disturbing fuzzy set theory
with the rough set theory for the first time and defines the rough, disturbing fuzzy set.
The roughness of rough-disturbing fuzzy sets is given. By introducing the concept of
horizontal upper and lower boundary of rough-disturbing fuzzy sets, the situation of the
upper approximate intersection of two sets and the upper approximation of the intersection
of two sets is not equal is solved. In addition, she defines the inclusion degree of a class of
disturbing fuzzy set, studies some basic properties, and proves that the upper and lower
approximation of rough, disturbing fuzzy set is a special example of the inclusion degree
of disturbing fuzzy set and uses the proposed new knowledge to solve a specific operation
problem of bank credit card application. Fifthly, she applied the theory of disturbing
fuzzy set to the multi-attribute decision-making problem for the first time and proposed
a new kind of fuzzy multi-attribute decision-making problem, namely the disturbing
fuzzy multi-attribute decision-making problem. To solve this new problem, she proposed
the possibility degree comparison method of disturbing fuzzy numbers and solved the
problem that some disturbing fuzzy numbers cannot be compared by partial order relation
(Definition 4). Inspired by the traditional TOPSIS method, three kinds of disturbing fuzzy
multi-attribute decision-making methods based on the TOPSIS method are proposed; the
six disturbing fuzzy integration operators are proposed, and their excellent properties,
relations, and differences are studied. In addition, she proposed the disturbing fuzzy
multi-attribute group decision-making method based on the disturbing fuzzy integration
operator and possibility degree, etc. These methods can solve the disturbing fuzzy multi-
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attribute decision-making problem when the weights are completely known and are real
numbers. She applied the proposed theory to the selection of tourist attractions, the carrying
capacity evaluation of regional water resources, the evaluation of personnel management,
and the selection of machine systems, which provided a new method for managers to
make decisions.

In addition to the above two scholars who have contributed the most, there are other
scholars who have also studied the disturbing fuzzy set theory. For example, Li [7] proved
that the roughness measure of a disturbing fuzzy set is bounded and applied to the problem
of grouping different students in a competition. Jiang [8] applies disturbing fuzzy set theory
to R0-algebra, gives the concept of disturbing fuzzy subalgebra and disturbing fuzzy MP
filter, and discusses the equivalent characterization of disturbing fuzzy subalgebra on R0-
algebra and some properties of disturbing fuzzy MP filter; the homomorphic and inverse
images of disturbing fuzzy MP filters are studied. Liu [9] introduced the concept of the join
of disturbing-valued fuzzy finite-state machines, discussed the operations of disturbing-
valued fuzzy sets on machines, and obtained some about the joining of disturbing-valued
fuzzy finite-state machines. The contributions made by these scholars to the theory of
disturbing fuzzy sets are irreplaceable, which has led to the gradual growth of disturbing
fuzzy sets from a “baby” to an “adult”. In addition, the theory of disturbing fuzzy sets and
its combination with other theories are mainly studied in China, and one of the author’s
writing purposes is to make this new fuzzy set attract attention worldwide.

Fuzzy multi-attribute decision-making problems, such as interval-valued fuzzy multi-
attribute decision-making [10], intuitionistic fuzzy multi-attribute decision-making [11],
disturbing fuzzy multi-attribute decision-making [6], and hesitancy fuzzy multi-attribute
decision-making [12], have been widely concerned because of their ability to better deal
with uncertainty in decision-making. Fuzzy multi-attribute decision-making is mainly
developed in utility theory [13] and hierarchical priority theory [14]. No matter what kind
of theory, the aggregation operator plays an irreplaceable and supreme role. For example,
Xu [15–17] studied some intuitionistic fuzzy aggregation operators, such as the intuitionistic
fuzzy weighted geometric operator, the intuitionistic fuzzy ordered weighted geometric
operator, the intuitionistic fuzzy ordered weighted averaging operator, and the intuitionistic
fuzzy hybrid aggregation operator, for aggregating intuitionistic fuzzy values and establish
various properties of these operators; Xia [18,19] studied some hesitant fuzzy aggregation
operators, several series of aggregation operators are proposed, and the connections of
them are discussed; Han [6] studied some disturbing fuzzy aggregation operators, such
as disturbing fuzzy weighted arithmetic mean aggregation operator, disturbing fuzzy
combination weighted geometric mean aggregation operator, disturbing fuzzy ordered
weighted arithmetic mean aggregation operator, etc. The properties of these operators and
the disturbing fuzzy multi-attribute decision-making methods based on these operators
are studied. The birth of these operators makes the fuzzy multi-attribute decision theory
develop as fast as “the speed of an airplane”.

In addition, weight plays an important role in decision-making. Although sometimes
people cannot give accurate weight information or only give partial weight information,
we can still determine the exact value of the weight through the existing information.
However, there is an extreme situation: the real world is full of ambiguity and uncertainty,
and sometimes we cannot accurately determine the weight, or the weight may not be
suitable for specific numerical representation. Lin [20] defines the weight represented by
a fuzzy number as the “importance degree” of the attribute in the fuzzy sense. In this
case, the fuzzy multi-attribute decision method represented by fuzzy numbers is extremely
important. At present, only Lin has raised this kind of problem and provided a way to
solve it. Other solutions have not been reported.

Therefore, based on the above discussion and the existing research shortcomings,
this paper proposes a disturbing fuzzy multi-attribute decision-making method with if
weight information is a disturbing fuzzy number. This paper proposes a new disturbing
fuzzy aggregation operator and discusses and proves some properties of the operator,
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such as closure, monotonicity, and boundary. The detailed steps of a disturbing fuzzy
multi-attribute decision-making method with if weight information is disturbing fuzzy
number are given, including individual decision-making step and group decision-making
step, so that the decision-maker can choose different decision steps according to different
situations, so the method is more flexible. In addition, the method not only enriches the
application range of disturbing fuzzy multi-attribute decision-making, but it also needs
smaller calculations, and it can provide a useful way to efficiently help the decision-maker
to make his decision. Furthermore, demonstrates the practicability and feasibility of the
method with examples.

2. Preliminaries

In this section, we will discuss the concept of disturbing fuzzy sets, the relationship
between fuzzy sets and disturbing fuzzy sets, and the similarities and differences between
interval-valued fuzzy sets and disturbing fuzzy sets.

Definition 1 ([1]). If X is a collection of objects denoted generically by x, then a fuzzy set Ã in X is
a set of ordered pairs:

Ã = {(x, µA(x))|x ∈ X} (1)

µA(x) is called the membership function or grade of membership of x in Ã, which maps X to
the membership space M.

Definition 2 ([5]). Let a set X be fixed; a disturbing fuzzy set Ω in X is given by as follows:

Ω =
{〈

x, Aµ(x), Aδ(x)
〉∣∣x ∈ X

}
(2)

where
Aµ : X → [0, 1], x ∈ X → Aµ(x) ∈ [0, 1] (3)

Aδ : X → [0, 1], x ∈ X → Aδ(x) ∈ [0, 1] (4)

Aµ(x) represents people’s overall understanding of the object and Aδ(x) represents
the “disturbing” caused by the “interference” of the understanding of the object caused by
the subjective or objective difference of the individual. A(x) = (Aµ(x), Aδ(x)) changes in
[max

{
0, Aµ(x)− Aδ(x)

}
, min

{
1, Aµ(x) + Aδ(x)

}
].

Remark 1. There are two differences between the disturbing fuzzy sets and the fuzzy sets. First,
the membership function of the disturbing fuzzy sets does not take a single value inside but takes a
pair of ordered arrays above. Second, from the definition of disturbing fuzzy sets, it can be seen that
disturbing fuzzy sets are more consistent with the law of human thinking than fuzzy sets.

Some scholars confuse the disturbing fuzzy sets with the interval-valued fuzzy sets
when they first contact it. Here, we will analyze the two types of fuzzy sets.

Definition 3 ([2]). Let a set X be fixed; an interval-valued fuzzy set AI[0,1]
in X is given by

as follows:
AI[0,1]

=
{
[x, A−(x), A+(x)]

∣∣x ∈ X
}

(5)

where
A−(x) : X → [0, 1], A+(x) : X → [0, 1], A−(x) ≤ A+(x) (6)

A−(x) and A+(x) are called a lower fuzzy of AI[0,1]
and an upper fuzzy set of AI[0,1]

,
respectively.

Remark 2. From the definition point of view, the logarithms of interval-valued fuzzy sets respectively
indicate that people’s understanding of objects changes in the interval formed by the upper and
lower bounds of these two numbers. The logarithms of disturbing fuzzy sets respectively indicate
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that people’s understanding of the object has a general “consensus”, which is also affected by
time, region, and personal opinions, and the “disturbing” above and below the “consensus” are
respectively proposed by adapting to different human thinking angles, with both commonalities and
differences. On the one hand, when A−(x) = A+(x), the interval-valued fuzzy sets degenerate
into a fuzzy set; when δ= 0, the disturbing fuzzy set also degenerates into fuzzy sets so both of
them are generalizations of fuzzy sets, which is their common point. On the other hand, each
disturbing fuzzy number corresponds to an interval fuzzy number, such as (0.6, 0.3) corresponding
to [0.3, 0.9]. However, an interval fuzzy number can correspond to multiple disturbing fuzzy
numbers (when µ ≤ δ), such as [0, 0.6] corresponding to (0.3, 0.3) and (0.2, 0.4). Therefore,
the relationship between interval-valued fuzzy sets and disturbing fuzzy sets is not a one-to-one
correspondence, which is the difference between them.

Definition 4 ([6]). If α =
(
αµ, αδ

)
and β =

(
βµ, βδ

)
are two disturbing fuzzy numbers, then the

size relationship between them is defined as follows:

α ≤ β ⇔ αµ ≤ βµ, αδ ≥ βδ (7)

α < β ⇔ αµ < βµ, αδ ≥ βδ or αδ ≥ βδ, αδ > βδ (8)

α = β ⇔ αµ = βµ, αδ = βδ (9)

There are some disturbing fuzzy numbers whose magnitude cannot be compared by defining 4,
such as α = (0.25, 0.53) and β = (0.35, 0.63). Therefore, we propose a Boolean matrix ranking
method for disturbing fuzzy numbers.

Definition 5 ([6]). If α =
(
αµ, αδ

)
and β =

(
βµ, βδ

)
are two disturbing fuzzy numbers,

p(α ≥ β) = min
{

max(
αµ + αδ − βµ + βδ

2(αδ + βδ)
, 0), 1

}
(10)

then p(α ≥ β) is called the probability of α ≥ β.

Theorem 1 ([6]). If α =
(
αµ, αδ

)
and β =

(
βµ, βδ

)
are two disturbing fuzzy numbers, and p(α ≥ β)

is the probabilityof α ≥ β, then

(1) 0 ≤ p(α ≥ β) ≤ 1;
(2) p(α ≥ β) + p(β ≥ α) = 1, in particular p(α ≥ α) = 1/2.

Definition 6 ([6]). If αi = (αi
µ, αi

δ) is a set of disturbing fuzzy numbers, 1 ≤ i ≤ m, denoted p(αi ≥
αj) = pij, 1 ≤ i ≤ m, 1 ≤ j ≤ m, then P = (pij)m×m is called the possibility matrix.

Definition 7. If P = (pij)m×m is the possibility matrix, then Q = (qij)m×m is the Boolean
matrix, where

qij =

{
1, pij ≥ 0.5
0, pij < 0.5

(11)

The specific steps of the Boolean matrix sorting method of disturbing fuzzy numbers:

Step 1: If αi = (αi
µ, αi

δ) is a set of disturbing fuzzy numbers, 1 ≤ i ≤ m, the possibility
matrix is constructed by Formula (10);

Step 2: The Boolean matrix is constructed by the Formula (11);
Step 3: Let ρi = ∑m

j=1 qij obtain the ranking vector ρ = (ρ1, · · · , ρm)
T ;

Step 4: The disturbing fuzzy numbers are ranked according to the ρ = (ρ1, · · · , ρm)
T ; the

larger ρi, the larger αi.
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Example 1. Let α1 = (0.4, 0.4), α2 = (0.69, 0.21), and α3 = (0.72, 0.5). We find that α1 and α2 can
be sized by defining 4, but α1 and α3, α2 and α3 cannot be sized by defining 4, so we use the Boolean
matrix method of disturbing fuzzy numbers to rank the size of these three disturbing fuzzy numbers.

From Formula (10), we can obtain:

p(α1 ≥ α2) = 0.26, p(α1 ≥ α3) = 0.32, p(α2 ≥ α3) = 0.48;

Constructing the possibility matrix P:

P =

0.50
0.74
0.68

0.26
0.50
0.52

0.32
0.48
0.50

;

The Boolean matrix Q is constructed from Equation (11):

Q =

1
1
1

0
1
1

0
0
1

;

Obtaining the ranking vector ρ = (1, 2, 3)T , so α3 ≻ α2 ≻ α1.

3. Disturbing Fuzzy Ring and Multiplication Aggregation Operator

In this section, we construct a new disturbing fuzzy aggregation operator, that is, the
disturbing fuzzy ring and multiplication aggregation (DFRMA) operator, inspired by the
ring operator and multiplication operator, and prove that the DFRMA operator has closure,
monotonicity, and boundary.

Definition 8 ([21]). Let Ã, B̃ be fuzzy set on X , and ∀x ∈ X, define:
Ring operator(+̂):

(A+̂B)(x) = A(x) + B(x)− A(x)B(x);

Multiplication operator (•):

(A•B)(x) = A(x)B(x).

If Sp(x, y) = x + y − xy, then Sp(x, y) has the following properties [21]:

(1) Boundary: Sp(1, 1) = 1, Sp(x, 0) = Sp(0, y) = 0;
(2) Monotonicity: If x ≤ x1, y ≤ y1, then Sp(x, y) ≤ Sp(x1, y1);
(3) Replacement invariance: Sp(x, y) = Sp(y, x);
(4) Associative law: Sp(Sp(x, y), z) = Sp(x, Sp(y, z)).

If Tp(x, y) = xy, then Tp(x, y) has the following properties [21]:

(1) Boundary: Tp(0, 0) = 0, Tp(y, 1) = 1;
(2) Monotonicity: If x ≤ x1, y ≤ y1, then Tp(x, y) ≤ Tp(x1, y1);
(3) Replacement invariance: Tp(x, y) = Tp(y, x);
(4) Associative law: Tp(Tp(x, y), z) = Tp(x, Tp(y, z)).

The ring operator and multiplication operator have some good properties. Therefore,
in order to solve the disturbing fuzzy multi-attribute decision problem with the weight of
disturbing fuzzy number, we construct a new operator.
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Definition 9. Let α = (α1, α2, · · · , αn) be a set of disturbing fuzzy numbers, where αi =
(µαi , δαi ), i = 1, 2, · · · , n; The disturbing fuzzy number wi = (µwi , δwi ) is the weight of αi, and
w = (w1, w2, · · · , wn) is the weight vector, then

DFRMAw(α1, α2, · · · , αn) = +̂n
i=1(αi•wi)

= (+̂n
i=1(µαi•µwi ), •n

i=1(δαi +̂δwi ))
(12)

it is called the disturbing fuzzy ring and multiplication aggregation operator.

Proposition 1 (Closure). Let α = (α1, α2, · · · , αn) be a set of disturbing fuzzy numbers,
where αi = (µαi , δαi ), i = 1, 2, · · · , n; the disturbing fuzzy number wi = (µwi , δwi ) is the
weight of αi, and w = (w1, w2, · · · , wn) is the weight vector; then, DFRMAw(α) is a disturbing
fuzzy number.

Proof. Because αi = (µαi , δαi ), wi = (µwi , δwi ) are disturbing fuzzy numbers, so µαi , δαi

and µwi , δwi ∈ [0, 1]. Because (+̂) and (•) are boundary, so δαi +̂δwi and µαi•µwi ∈ [0, 1],
i = 1, 2, · · · , n.

When n = 1, µα1•µw1 ∈ [0, 1];
When n = 2, µα1•µw1 and µα2•µw2 ∈ [0, 1], the boundary of (+̂) tells us that

+̂2
i=1(µαi•µwi ) ∈ [0, 1];

When n = k, there is +̂k
i=1(µαi•µwi ) ∈ [0, 1]; then, when n = k + 1, there is

+̂k+1
i=1 (µαi•µwi ) = (+̂k

i=1(µαi•µwi ))+̂(µαk+1•µwk+1).

Because +̂k
i=1(µαi•µwi ) and (µαk+1•µwk+1) ∈ [0, 1], we know +̂k+1

i=1 (µαi•µwi ) ∈ [0, 1]
from n = 2, and then we know +̂n

i=1(µαi•µwi ) ∈ [0, 1] by mathematical induction;
When n = 1, δα1+̂δw1 ∈ [0, 1];
When n = 2, δα1 +̂δw1 and δα2 +̂δw2 ∈ [0, 1], the boundary of (•) tells us that

•2
i=1(µαi +̂µwi ) ∈ [0, 1];

When n = k, there is •k
i=1(µαi +̂µwi ) ∈ [0, 1]; then, when n = k + 1, there is

•k+1
i=1 (µαi +̂µwi ) = (•k

i=1(µαi +̂µwi ))•(µαk+1+̂µwk+1).

Because •k
i=1(µαi +̂µwi ) and (µαk+1+̂µwk+1) ∈ [0, 1], we know •k+1

i=1 (µαi +̂µwi ) ∈ [0, 1]
from n = 2, and then we know •n

i=1(µαi +̂µwi ) ∈ [0, 1] by mathematical induction. □

Proposition 2 (Monotonicity). If α = (α1, α2, · · · , αn) and β = (β1, β2, · · · , βn) are two sets
of different disturbing fuzzy numbers, where αi = (µαi , δαi ), βi = (µβi , δβi ), and µαi ≤ µβi ,
δαi ≥ δβi , that is αi ≤ βi, i = 1, 2, · · · , n; thedisturbing fuzzy number wi = (µwi , δwi ) is the
common weight of αi, βi, w = (w1, w2, · · · , wn) is the weight vector; then,

DFRMAw(α) ≤ DFRMAw(β).

Proof. Because ∀i, i = 1, 2, · · · , n, there is µαi ≤ µβi , δαi ≥ δβi , and by the monotonicity of
(•) and (+̂), then

µαi•µwi ≤ µβi•µwi and δαi +̂δwi ≥ δβi +̂δwi ;

When n = 1,
µα1•µw1 ≤ µβ1•µw1 and δα1+̂δw1 ≥ δβ1+̂δw1

We can see from Definition 4 that DFRMAw(α) ≤ DFRMAw(β);
When n = 2,

µα1•µw1 ≤ µβ1•µw1 and δα1+̂δw1 ≥ δβ1+̂δw1 ,

µα2•µw2 ≤ µβ2•µw2 and δα2+̂δw2 ≥ δβ2+̂δw2
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We know from the monotonicity of (•) and (+̂):

+̂2
i=1(µαi•µwi ) ≤ +̂2

i=1(µβi•µwi ),

•2
i=1(δαi +̂δwi ) ≥ •2

i=1(δβi +̂δwi )

So
DFRMAw(α) = (+̂2

i=1(µαi•µwi ), •
2
i=1(δαi +̂δwi )),

DFRMAw(β) = (+̂2
i=1(µβi•µwi ), •

2
i=1(δβi +̂δwi ))

We can see from Definition 4 that DFRMAw(α) ≤ DFRMAw(β);
If when n = k there is DFRMAw(α) ≤ DFRMAw(β), then

+̂n
i=1(µαi•µwi ) ≤ +̂n

i=1(µβi•µwi ),

•n
i=1(δαi +̂δwi ) ≥ •n

i=1(δβi +̂δwi )

When n = k + 1, there is

µαk+1•µwk+1 ≤ µβk+1
•µwk+1 ,

δαk+1+̂δwk+1 ≥ δβk+1
+̂δwk+1 ;

So, we know from n = 2

(+̂n
i=1(µαi•µwi ))+̂(µαk+1•µwk+1) ≤ (+̂n

i=1(µβi•µwi ))+̂(µβk+1
•µwk+1),

(•n
i=1(δαi +̂δwi ))•(δαk+1+̂δwk+1) ≥ (•n

i=1(δβi +̂δwi ))•(δβk+1
+̂δwk+1);

Because
DFRMAw(α) = (+̂k+1

i=1 (µαi•µwi ), •
k+1
i=1 (δαi +̂δwi )),

DFRMAw(β) = (+̂k+1
i=1 (µβi•µwi ), •

k+1
i=1 (δβi +̂δwi ));

We can see from Definition 4 that DFRMAw(α) ≤ DFRMAw(β). □

Proposition 3 (Boundary). Let α = (α1, α2, · · · , αn) be a set of disturbing fuzzy numbers,
where αi = (µαi , δαi ), i = 1, 2, · · · , n; The disturbing fuzzy number wi = (µwi , δwi ) is the weight
of αi, and w = (w1, w2, · · · , wn) is the weight vector, let

x1 = +̂n
i=1(min(µαi )•µwi ), y2 = •n

i=1(max(δαi )•µwi ),

x2 = +̂n
i=1(max(µαi )•µwi ), y1 = •n

i=1(min(δαi )•µwi ),

and α− = (x1, y2), α+ = (xx, y1), then

α− ≤ DFRMAw(α) ≤ α+.

Proof. ∀i, i = 1, 2, · · · , n, there is

min(µαi ) ≤ µαi ≤ max(µαi ),

min(δαi ) ≤ δαi ≤ max(δαi ).

So
+̂n

i=1(µαi•µwi ) ≥ +̂n
i=1(min(µαi )•µwi ) = x1,

•n
i=1(µαi +̂µwi ) ≤ •n

i=1(min(µαi )+̂µwi ) = y2,

+̂n
i=1(µαi•µwi ) ≤ +̂n

i=1(max(µαi )•µwi ) = x2,
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•n
i=1(µαi +̂µwi ) ≥ •n

i=1(min(µαi )+̂µwi ) = y1,

We can see from Definition 4 that α− ≤ DFRMAw(α) ≤ α+. □

4. Disturbing Fuzzy Multi-Attribute Decision-Making Method Based on
DFRMA Operator

A complete decision is usually made up of five parts: decision-maker, alternative,
attribute, attribute information, and weight information. Disturbing fuzzy multi-attribute
decision-making means that the number of decision alternatives is limited, and the attribute
information is represented by a disturbing fuzzy number. The disturbing fuzzy multi-
attribute decision-making problem is given a limited set of alternatives and the data value
of each option under the corresponding attribute through some scientific and reasonable
methods or theories to comprehensively evaluate these alternatives and then select the
most suitable solution or choose a solution that is most satisfactory to decision-makers.

In the fields of management, economy, and military, such as personnel promotion,
investment decision-making, and military system effectiveness evaluation, sometimes
decision-makers cannot give accurate attribute weight information or decision-maker
weight information, or even the value range of the above two weight information. At
this time, the use of disturbing fuzzy numbers to represent the weight information is
particularly important. Based on the advantages of the DFRMA operator, we propose a
disturbing fuzzy multi-attribute decision-making method based on the DFRMA operator,
which is used to solve the problems in the above decision theory.

Let Y = {Y1, · · · , Yn}: a discrete set of n feasible alternatives; G = {G1, · · · , Gm}: a
finite set of attributes, whose weight vector is w = (w1, · · · , wm), where the weights are
known and disturbing fuzzy number; A = (aij)n×m be the disturbing fuzzy decision matrix,
where aij = (µaij , δaij) is the attribute value expressed by the disturbing fuzzy number,
and µaij indicates the overall degree that the attribute Gj by the alternative Yi, and δaij

indicates decision-maker consider the degree of “disturbing” by the subjective or objective
difference in the cognition of the attribute Gj by the alternative Yi. Our goal is to obtain
the comprehensive attribute value of the alternative and rank its size. Specific steps are
as follows:

Step 1: In order to eliminate the impact of different types of attributes on the final decision
result, the benefit-type attribute and cost-type attribute in the disturbing fuzzy
decision matrix A = (aij)n×m are normalized by Equations (13) and (14), and then
the disturbing fuzzy normalized decision matrix R = (rij)n×m is obtained.

If the attribute Gj is a disturbing benefit-type attribute, making

rij = (
aij

µ
n
∑

i=1
aij

µ+
n
∑

i=1
aij

δ

,
aij

δ
n
∑

i=1
aij

µ+
n
∑

i=1
aij

δ

) (13)

If the attribute Gj is a disturbing cost-type attribute, making

rij = (
1/aij

δ
n
∑

i=1
1/aij

µ+
n
∑

i=1
1/aij

δ

,
1/aij

µ
n
∑

i=1
1/aij

µ+
n
∑

i=1
1/aij

δ

) (14)

Step 2: Using attribute weight w = (w1, w2, · · · , wm) and DFRMA operator to aggregate
the data in the disturbing fuzzy normalized decision matrix R = (rij)n×m, the
decision-maker’s comprehensive evaluation value Di for alternative Yi is obtained.

Step 3: The comprehensive evaluation value Di of alternative Yi is ranked by using the
Boolean matrix ranking method of disturbing fuzzy numbers (the detailed steps
will be presented in the example) and the decision result is obtained.
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If there are multiple decision-makers involved in the decision, you can proceed as follows.

Step 1: The benefit-type attribute and cost-type attribute in the disturbing fuzzy decision
matrix As = (as

ij)n×m
given by the S-th place expert are normalized and converted

into the disturbing fuzzy normalized decision matrix Rs = (rs
ij)n×m

of the S-th place
expert by Equations (13) and (14);

Step 2: Using attribute weight w = (w1, w2, · · · , wm) and DFRMA operator to aggregate
the data in the disturbing fuzzy normalized decision matrix Rs = (rs

ij)n×m
of the

S-th place expert, the comprehensive evaluation value Ds
i of the S-th place expert to

the alternative Yi is obtained;
Step 3: The expert weight ξ = (ξ1, ξ2, · · · , ξl) and DFRMA operator are used to aggre-

gate the comprehensive evaluation Ds
i of all experts on alternative Yi, and the

comprehensive evaluation Di of all experts on alternative Yi is obtained;
Step 4: The comprehensive evaluation value Di of alternative Yi is ranked by using the

Boolean matrix ranking method of disturbing fuzzy numbers and the decision
result is obtained.

5. Example
5.1. Example Analysis

A university evaluates four colleges under the school Yi(i = 1, 2, 3, 4), and now
invites an expert to evaluate Yi. The evaluation indicators are G1 (teaching), G2 (scientific re-
search), G3 (administration), and G4 (service); attribute weight w = ((0.30, 0.10), (0.25, 0.15),
(0.60, 0.05), (0.15, 0.10)), disturbing fuzzy decision matrix given by experts:

A =


(0.40, 0.25)
(0.60, 0.30)
(0.70, 0.55)
(0.55, 0.30)

(0.50, 0.30)
(0.45, 0.15)
(0.60, 0.25)
(0.40, 0.20)

(0.35, 0.25)
(0.55, 0.25)
(0.65, 0.20)
(0.45, 0.40)

(0.40, 0.10)
(0.35, 0.20)
(0.25, 0.15)
(0.30, 0.25)


Ranking the four colleges:

Step 1: Because the attributes are the benefit attribute, it is unnecessary to normalize the
disturbing fuzzy decision matrix;

Step 2: Using attribute weight w = ((0.30, 0.10), (0.25, 0.15), (0.60, 0.05), (0.15, 0.10)) and
DFRMA operator to aggregate the data in the disturbing fuzzy decision matrix
A, the decision-makers comprehensive evaluation value Di for the alternative Yi
is obtained:

DFRMAw((0.40, 0.25), (0.50, 0.30), (0.35, 0.25), (0.40, 0.10)) = (0.428, 0.005) = D1
DFRMAw((0.60, 0.30), (0.45, 0.15), (0.55, 0.25), (0.35, 0.20)) = (0.538, 0.006) = D2
DFRMAw((0.70, 0.25), (0.60, 0.25), (0.65, 0.20), (0.25, 0.15)) = (0.606, 0.005) = D3
DFRMAw((0.55, 0.30), (0.40, 0.20), (0.45, 0.40), (0.30, 0.25)) = (0.476, 0.012) = D4

Step 3: The possibility matrix P is constructed from Equation (10):

P =


0.5
1
1
1

0
0.5
1
0

0
0

0.5
0

0
1
1

0.5

;

The Boolean matrix Q is constructed from Equation (11):

Q =


1
1
1
1

0
1
1
0

0
0
1
0

0
1
1
1

;
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Obtaining the ranking vector ρ = (1, 3, 4, 2)T , so Y3 ≻ Y2 ≻ Y4 ≻ Y1; therefore, College
Y3 wins.

In the case that the alternatives, attributes, attribute weight, and the disturbing fuzzy
decision matrix given by the first expert remain unchanged, suppose that the disturbing
fuzzy matrix given by two more experts is

A2 =


(0.60, 0.30)
(0.65, 0.25)
(0.70, 0.25)
(0.80, 0.35)

(0.65, 0.15)
(0.70, 0.35)
(0.65, 0.20)
(0.50, 0.20)

(0.50, 0.10)
(0.65, 0.40)
(0.75, 0.20)
(0.45, 0.20)

(0.55, 0.35)
(0.25, 0.15)
(0.35, 0.35)
(0.55, 0.30)



A3 =


(0.55, 0.35)
(0.55, 0.20)
(0.75, 0.25)
(0.70, 0.30)

(0.60, 0.35)
(0.65, 0.20)
(0.70, 0.15)
(0.55, 0.20)

(0.55, 0.15)
(0.70, 0.15)
(0.65, 0.10)
(0.55, 0.25)

(0.45, 0.15)
(0.30, 0.25)
(0.25, 0.20)
(0.35, 0.10)


where the expert weight ξ = ((0.60, 0.15), (0.55, 0.20), (0.70, 0.25)) is to rank the four colleges.

Step 1: Because the attributes are the benefit attribute, it is unnecessary to normalize the
disturbing fuzzy decision matrix;

Step 2: Using attribute weight w = ((0.30, 0.10), (0.25, 0.15), (0.60, 0.05), (0.15, 0.10)) and
DFRMA operator to aggregate the data in the disturbing fuzzy decision matrix As,
the comprehensive evaluation value Ds

i of alternative Yi by the s-th place decision-
maker is obtained;

DFRMA1
w((0.40, 0.25), (0.50, 0.30), (0.35, 0.25), (0.40, 0.10)) = (0.428, 0.005) = D1

1
DFRMA1

w((0.60, 0.30), (0.45, 0.15), (0.55, 0.25), (0.35, 0.20)) = (0.538, 0.006) = D1
2

DFRMA1
w((0.70, 0.25), (0.60, 0.25), (0.65, 0.20), (0.25, 0.15)) = (0.606, 0.005) = D1

3
DFRMA1

w((0.55, 0.30), (0.40, 0.20), (0.45, 0.40), (0.30, 0.25)) = (0.476, 0.012) = D1
4

DFRMA2
w((0.60, 0.30), (0.65, 0.15), (0.50, 0.10), (0.55, 0.35)) = (0.559, 0.005) = D2

1
DFRMA2

w((0.65, 0.25), (0.70, 0.35), (0.65, 0.40), (0.25, 0.15)) = (0.610, 0.010) = D2
2

DFRMA2
w((0.70, 0.25), (0.65, 0.20), (0.75, 0.20), (0.35, 0.35)) = (0.655, 0.007) = D2

3
DFRMA2

w((0.80, 0.35), (0.50, 0.20), (0.45, 0.20), (0.55, 0.30)) = (0.555, 0.008) = D2
4

DFRMA3
w((0.55, 0.35), (0.60, 0.35), (0.55, 0.15), (0.45, 0.15)) = (0.557, 0.006) = D3

1
DFRMA3

w((0.55, 0.20), (0.65, 0.20), (0.70, 0.15), (0.30, 0.25)) = (0.613, 0.004) = D3
2

DFRMA3
w((0.75, 0.25), (0.70, 0.15), (0.65, 0.10), (0.25, 0.20)) = (0.625, 0.003) = D3

3
DFRMA3

w((0.70, 0.30), (0.55, 0.20), (0.55, 0.25), (0.35, 0.10) = (0.576, 0.009) = D3
4

Step 3: The expert weight ξ = ((0.60, 0.30), (0.55, 0.20), (0.70, 0.40)) and DFRMA operator
are used to aggregate the comprehensive evaluation value Ds

i of the s-th place
expert on alternative Ds

i , and the comprehensive evaluation value Di of all experts
on alternative Yi is obtained;

D1 = (0.686, 0.025), D2 = (0.743, 0.026), D3 = (0.771, 0.025), D4 = (0.704, 0.026)

Step 4: The possibility matrix P is constructed from Equation (10):

P =


0.50

1
1

0.71

0
0.50
0.77
0.15

0
0.23
0.50

0

0.29
0.85

1
0.50

;
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The Boolean matrix Q is constructed from Equation (11):

Q =


1
1
1
1

0
1
1
0

0
0
1
0

0
1
1
1

;

Obtaining the ranking vector ρ = (1, 3, 4, 2)T , so Y3 ≻ Y2 ≻ Y4 ≻ Y1; therefore, College
Y3 wins.

5.2. Comparative Analysis

In order to demonstrate the effectiveness and superiority of the proposed methods,
we adopt the method of comparative analysis. Therefore, we use the ideas of Lin [20]
to solve the examples given in this paper and compare and analyze the results obtained
in this paper. Lin’s method uses attribute value information to construct the objective
function, and the requirements for attribute weights should not only meet the normalization
but also meet the weight changes of each attribute within a specific range. MATLAB is
used to solve linear programming problems to obtain the optimal attribute weight vector.
Finally, the comprehensive attribute value of the alternative is obtained through a specific
method. By solving the linear programming problem, we obtain the most weighted vector
w = (0.30, 0.10, 0.55, 0.05), and the comprehensive attribute values of the alternative are
D1 = (0.383, 0.248), D2 = (0.545, 0.253), D3 = (0.640, 0.308), and D4 = (0.468, 0.343),
respectively. Using the Boolean matrix ranking method of disturbing fuzzy numbers, the
ranking result is Y3 ≻ Y2 ≻ Y4 ≻ Y1. This is the same as the result obtained by the method
proposed in this paper, which further shows the effectiveness of the method proposed in
this paper.

However, the advantages of the method proposed in this paper are as follows: it
can directly aggregate the attribute value information and the weight information and
can directly obtain the comprehensive attribute value of the scheme without solving it
by computer software. It not only greatly reduces the calculation time and simplifies the
decision-making process but also retains the originality of the weight information. In addi-
tion, this method allows the weight information to be represented by the disturbing fuzzy
number, which solves this kind of problem well, so it has important guiding significance
and application value, and the information represented by the disturbing fuzzy number
can better reflect the uncertainty of human thinking.

6. Conclusions

In this paper, a new disturbing fuzzy aggregation operator is proposed to solve the
disturbing fuzzy multi-attribute decision-making problem with the weight of disturbing
fuzzy numbers. Some excellent properties of the operator are studied, and the concrete
steps to solve the problem are given. This method is not only simple in the calculation but
can also make full use of known information and retain the originality of information.
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