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Abstract: When studying Markov chain models and semi-Markov chain models, it is useful to know
which state vectors n, where each component ni represents the number of entities in the state Si, can be
maintained or attained. This question leads to the definitions of maintainability and attainability for
(time-homogeneous) Markov chain models. Recently, the definition of maintainability was extended
to the concept of state reunion maintainability (SR-maintainability) for semi-Markov chains. Within
the framework of semi-Markov chains, the states are subdivided further into seniority-based states.
State reunion maintainability assesses the maintainability of the distribution across states. Following
this idea, we introduce the concept of state reunion attainability, which encompasses the potential of a
system to attain a specific distribution across the states after uniting the seniority-based states into the
underlying states. In this paper, we start by extending the concept of attainability for constant-sized
Markov chain models to systems that are subject to growth or contraction. Afterwards, we introduce
the concepts of attainability and state reunion attainability for semi-Markov chain models, using
SR-maintainability as a starting point. The attainable region, as well as the state reunion attainable
region, are described as the convex hull of their respective vertices, and properties of these regions
are investigated.

Keywords: semi-Markov model; Markov model; attainability; maintainability; state reunion;
manpower planning

MSC: 60K15; 91D35; 60J20

1. Introduction

The notion of attainability first took root in the context of manpower planning [1,2].
While it is possible to study attainability in any (semi-)Markov chain model that allows
for inflow, outflow, and internal transitions, our discussion will conform to the established
norms and use the language typically linked to the context of manpower planning. In a
Markov model, the system’s states represent homogeneous groups that are characterised
by intra-group homogeneity with similar likelihoods of transitioning from one state to
another. For more context regarding population models and Markov chains we refer the
reader to [3,4].

In this domain, the system’s states are often aligned with hierarchical levels in the
organisation, which we call the “organisational states”. Let us denote the organisational
states as S = {S1, . . . , Sl}. The distribution of personnel across these states is captured by
a vector s = (si), which we call the personnel structure. The central question in control
theory within this context is whether a desired distribution of personnel across these states
can be sustained (maintainability) or attained (attainability) through strategic adjustments
to manageable parameters. When investigating maintainability and attainability, one has
to start by precisely defining what should be maintained or attained and how this can be
accomplished. Note, however, that the concepts of maintainability and attainability can be
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used for every discrete-time Markov process that allows for leaving the system, for entering
the system, and for making transitions within the system.

Regarding the means of control, control theory typically considers three primary types
of personnel movements, as outlined in [5]: wastage, internal transitions, and recruitment.
An employee in the organisation at time t is either still in one of the organisational states or
has left the organisation through wastage at time t + 1. The wastage probability from state
Si is denoted as wi, and the wastage probabilities are gathered in the wastage vector w.
Internal transitions account for movements within the organisation, such as promotions or
demotions, and are represented by a transition matrix PI . Recruitment reflects the process
of recruiting new members into the organisation, with a recruitment vector r. In this paper,
only systems with a finite number of states are considered.

The field of control theory is well established and has a significant history within
the engineering domain, as highlighted in [6,7], among others, while the foundations for
control theory in Markov models were first explored in the context of manpower planning
in [5,8–11].

While there are three main approaches to influencing the personnel structure within
organisations, recruitment control is often preferred. Controlling through recruitment is
viewed as a more ethical alternative compared to using wastage, which involves dismissing
employees and can negatively affect morale and job satisfaction. Adjusting promotion and
demotion rates can also lead to dissatisfaction, particularly among those who perceive it as a
hindrance to their career advancement [12]. Such adjustments may also result in promoting
underqualified individuals or demoting competent ones. Therefore, recruitment control is
generally favoured as it avoids immediate negative impacts on existing employees, as was
already discussed in Bartholomew’s work [5].

Investigations into attainable configurations under different Markov system conditions
have been conducted by a number of researchers, including continuous-time Markov
chains [13] and non-homogeneous Markov chains [14–16].

However, variations in control methods have been explored in the literature, including
the concept of pressure in states introduced by [17] and restricted recruitment as discussed
in [18]. Control theory in the context of semi-Markov processes has received limited
attention. The concepts of attainability and maintainability in non-homogeneous semi-
Markov chains, particularly through maintaining the number of members in each seniority
class within an organisational state, was first examined by [19], where Vassiliou and
Papadopoulou extended the concept of maintainability by imposing that the number of
members is maintained for each seniority class within an organisational state. Recently,
a new concept of maintainability was developed for semi-Markov chains [20], namely state
reunion maintainability (SR-maintainability), where the number of members is maintained
for each organisational state. Building upon this foundation, our work introduces the
parallel concept of state reunion attainability, wherein we explore the possibility of reaching
a specified distribution of members across organisational states.

The definition of SR-maintainability will be our starting point to discuss attainability
in the setting of time-homogeneous semi-Markov chains, as maintainability and attain-
ability go hand in hand. In practical scenarios, the goal may involve initially achieving a
specific personnel structure and subsequently ensuring its sustainability over time using
consistent control mechanisms. Alternatively, starting from an already maintainable per-
sonnel structure, the objective might shift towards transforming this stable configuration
to achieve a different, desired personnel structure, all while employing adaptive control
strategies to navigate the complexities of such a transition. These processes necessitate a
thorough understanding of how control strategies can be effectively applied to first reach
the desired state distribution and then to preserve it. The dual focus on attainability and
maintainability underscores the importance of strategic planning in managing population
dynamics, where the initial phase of reaching an optimal structure is seamlessly followed
by efforts to maintain that structure through careful control and management practices.
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In Section 3 we first review the concept of attainability for Markov chains and extend
this work to systems with a growth factor 1 + α, where the parameter α signifies the rate of
change in the size of the system over time. When α is negative, this indicates a contraction
in the system size, i.e., a decline of the number of people in the system. Conversely, when α
is positive, the system expands over time. Thereafter, in Section 4, we introduce and study
attainability as well as state reunion attainability for semi-Markov chains starting from the
concept of SR-maintainability for semi-Markov chains. We show that a general approach
to state reunion attainability, where a structure is said to be state reunion attainable if there
exists an arbitrary initial structure from which it can be attained, is not appropriate and
introduce the concept of (n-step) state reunion attainability starting from a subset S of
structures. We provide a method to determine the associated region of attainable structures
and illustrate these results.

2. Time-Homogeneous Markov Chain and Semi-Markov Chain Models

In this section, we provide fundamental concepts and notations that are common in
previous studies on Markov and semi-Markov chain models [3,4].

For a Markov chain model with states S1, . . . , Sl :

• Let PI ∈ Rl×l denote the internal transition matrix, where the ijth element PI
ij repre-

sents the probability of transitioning from state Si to state Sj within one time unit.
• The vector w = (wi) ∈ Rl captures the wastage probabilities for each state, where wi

is the probability of an entity leaving the system from state Si within one time unit.
• The recruitment vector r = (ri) ∈ Rl gathers the probabilities ri of entering the system

into state Si.

Let us further introduce ∆k−1 as the (k − 1)-probability simplex, i.e., the set of all
vectors x ∈ Rk where xi ≥ 0 for all i, and ∑k

i=1 xi = 1. This set represents the space of
all possible population structures in a k-state system. In this paper, we will be primarily
interested in ∆l−1.

Population structures at times t and t + 1 are represented by vectors s(t) and s(t + 1),
respectively, where s(t), s(t + 1) ∈ ∆l−1. These vectors describe the distribution of entities
across l states at specific time points.

Then, the evolution of the population structure in a constant-sized Markov chain from
time t to t + 1 is described by the following equation:

s(t + 1) = s(t)(PI + w′r)

where the notation w′ refers to the transpose of the row vector w.
A population structure s ∈ ∆l−1 is said to be attainable with respect to a constant-

sized Markov process defined by the internal transition matrix PI if there exists a structure
y ∈ ∆l−1 such that s can be achieved from y in one step using control by recruitment,
formally stated as follows:

∃ y, r ∈ ∆l−1 : s = y(PI + w′r)

Semi-Markov chain models are extensions of Markov chain models that can take
into account the duration of stay in the states. Define Jn as the state following the nth
transition and Tn as the time at which the nth transition occurs in a semi-Markov process.
The semi-Markov kernel q is then given by the following [21]:

qij(k) = Pr(Jn+1 = Sj, Tn+1 − Tn = k|Jn = Si)

where qij(k) represents the probability that the process transitions from state Si to state Sj
after exactly k time units. The semi-Markov kernel q can be used to obtain the sequence of
transition matrices {P(k)}k in the following way:
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Theorem 1 ([22]). For all k such that ∑h∈S ∑k−1
m=0 qih(m) ̸= 1, we have the following:

Pij(k) =


qij(k)

1 − ∑h∈S ∑k−1
m=0 qih(m)

if i ̸= j

1 − ∑i ̸=j
qij(k)

1 − ∑h∈S ∑k−1
m=0 qih(m)

if i = j

Let K denote the maximum seniority level considered within the system. The sequence
of matrices {P(k)}K

k=0, with each P(k) ∈ Rl×l , is derived from the semi-Markov kernel
q. Here, P(k) specifically represents the transition probabilities for entities with state
seniority k.

3. Attainability for Markov Chains
3.1. Attainability for Constant-Sized Markov Systems

When examining attainability, one needs to clarify three things: a starting structure,
the means to attain a certain structure, and an optional time limit to attain the desired struc-
ture. Regarding the means to attain a certain structure, we assume that the system is under
control by recruitment. The starting point and the optional time limit will be discussed in
the next sections. Bartholomew [5] defined the concept of attainability as follows:

Definition 1 ([5]). A structure s is called attainable with respect to a constant-sized Markov
process defined by PI if there exists a structure y such that s is reachable from y in one step using
control by recruitment.

The attainable region, which we will denote as A RM, was characterised for a constant-
sized system as well [5]. We restate the theorem and formulate a slightly different proof,
which will be the basis of the remainder of the results, where we will write ei for the
standard basis vectors in Rl .

Theorem 2 ([5]). The attainable region for a constant-sized Markov system, A RM, is the convex
hull of the vectors {eiPI + wiej}i,j, i.e., the following is true:

A RM = conv{eiPI + wiej}i,j

Proof. Suppose that a is an arbitrary attainable structure. This implies that there exist
probability vectors y = ∑l

i=1 yiei and r = ∑l
j=1 rjej such that the following is true:

a = y(PI + w′r)

Rewriting this equation, we obtain the following equalities:

a =y(PI + w′r)

=
( l

∑
i=1

yiei
)
(PI + w′r)

=
l

∑
i=1

yi

(
eiPI + (ei · w)r

)
=

l

∑
i=1

yi

(
eiPI + wi

( l

∑
j=1

rjej

))
=

l

∑
i=1

yi

( l

∑
j=1

rj

(
= eiPI + wiej

))
(1)
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where we use ei · w as the notation for the scalar product of ei and w. We conclude
that a ∈ conv{eiPI + wiej}i,j. Note that the reverse inclusion is trivial, as every convex
combination of vectors of the set {eiPI + wiej}i,j can be rewritten in the form y(PI + w′r),
where y and r are probability vectors.

This region can be useful as we know for certain that the points that belong to the
complement of A RM are definitely not attainable, no matter what the starting point y is.
One can also define the concept of attainability starting from a set of structures S .

Definition 2 (n-step attainability from S ). A structure s is called n-step attainable from S
with respect to a constant-sized Markov process defined by PI if there exists a structure y ∈ S such
that s is reachable from y in n steps using control by recruitment.

Since Equation (1) can be rewritten as ∑l
j=1 rj

(
yPI + (y · w)ej

)
, the following lemma

holds:

Lemma 1. If S = {v}, it follows that, for a constant-sized Markov process defined by PI ,
the one-step attainable region from S is given by the following:

A R1,S
M = conv{vPI + (v · w)ej}j

Lemma 1 can be used to determine, in a straightforward way, the attainable region for
a finite set S . If the set S is a convex set, the same technique yields the following:

Lemma 2. If the starting region S is a convex set with vertices {v1, v2, . . . , vk}, it follows that,
for a constant-sized Markov process defined by PI , the one-step attainable region from S is given
by the following:

A R1,S
M = conv{viPI + (vi · w)ej}i,j

To obtain A Rn,S
M , one could calculate A R1,S

M and use this as the new starting region
to calculate A R2,S

M , and by iteratively following this procedure, one can obtain the desired
A Rn,S

M .

3.2. Attainability for Markov Systems Subject to Growth and Contraction

In his doctoral dissertation [3], Bartholomew suggested the extension of these findings
to organisations that experience growth or contraction. This research gap will be addressed
in this section.

The evolution of the total size of a system that is subject to growth or contraction can
be described by the following:

N(t + 1) = (1 + α)N(t)

where N(t) corresponds to the total number of people in the organisational states at time
t, and the parameter α refers to the rate of change in the size of the system over time.
When α is negative, this indicates a contraction in the system size; conversely, when α is
positive, this signifies growth. Note that in the case of growth or contraction, starting from
a personnel structure y(t) at time t, y(t + 1) is given by the following

y(t + 1) = y(t)PI
M + r+(t)

where the additive recruitment vector r+(t) is chosen such that the sum of the components
of y(t + 1) equals 1 + α instead of 1. So, when talking about the structures, we need to
normalise with respect to the L1 norm and consider y(t+1)

||y(t+1)||1
. Observe that the vector r+(t)
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should not be confused with the classical recruitment vector r(t), which is a probability
vector that corresponds to r+(t)

||r+(t)||1
.

Now, note that the maximal amount of contraction is limited by maxi wi, as being part
of the wastage vector is the only way to leave the system, i.e., α ≥ −maxi wi. Furthermore,
note that the procedure sketched in the proof of Theorem 2 is rooted in the fact that the
vectors of the form eiPI have to be supplemented to achieve the desired vector, which has
to sum to 1, as a constant-sized system is considered in Theorem 2. As long as wi ≥ −α
holds for all i, the same reasoning can be repeated, i.e., we need to supplement the vectors
eiPI to achieve the desired vector, of which the elements have to sum to 1 + α. This
immediately yields the following:

Theorem 3. The attainable region for a Markov system with growth factor 1 + α, where wi ≥ −α
for all i, A RM(1 + α), is the convex hull of the vectors {eiPI + (wi + α)ej}i,j, i.e., the following
is true:

A RM(1 + α) = conv{eiPI + (wi + α)ej}i,j (2)

This result covers the case of a growing system, as α > 0 implies that wi ≥ −α.
However, this result does not indicate how to compute the attainable region for contracting
systems with wi < −α for some i. In the latter case, the sums of the components of some
of the vectors of the form eiPI are simply too big, i.e., their L1 norm exceeds (1 + α);
therefore, they cannot be used as building blocks of the attainable region. Now, suppose
that there exist just one i for which wi < −α. For all j ̸= i, we can still supplement ejPI

with the [(wj + α)el]l to take into account all of the attainable convex combinations where
ejPI contributes with a non-zero coefficient. But, for eiPI , it is impossible to do this, as
∥eiPI∥1 > (1 + α). Simply discarding eiPI is no option either, as there might still exist
convex combinations of eiPI with the ejPI that do result in attainable structures. To resolve
this problem, we should simply take into account these convex combinations. If we write

{β0eiPI + ∑
i ̸=j

β jejPI}β :=

{β0eiPI + ∑
i ̸=j

β jejPI | ∑
s

βs = 1; ∀s : 0 ≤ βs ≤ 1, β0 ̸= 0, with

||β0eiPI + ∑
i ̸=j

β jejPI ||1 = (1 + α)}

we can use this result to state the following theorem, which includes growth as well as
contraction:

Theorem 4. The attainable region for a Markov system with growth factor 1 + α, A RM(1 + α),
is the convex hull of the vectors {eiPI

∗}i, where

eiPI
∗ =

{
{eiPI + (wi + α)ej}j, if wi ≥ −α,
{β0eiPI + ∑i ̸=j β jejPI}β, if wi < −α.

With the use of Theorem 4, one can easily generalise Lemmas 1 and 2 to systems with
growth factor 1 + α.

Although this definition can be used for general starting regions S , we argue that it
can often be useful in practice to use the maintainability region MRM as a starting region,
as a maintainable structure might already be in place within the company, or a company
could be actively working towards such a structure. Furthermore, the maintainable region
is the a priori smallest known state reunion attainable set, regardless of the starting position.
Note that in this case, A Rn−1,S

M ⊂ A Rn,S
M .
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4. SR-Maintainability and SR-Attainability for Semi-Markov Chains
4.1. State Re-Union Maintainability

In order to study the attainability of a semi-Markov chain, we need to incorporate all of
the information in the matrices P(k) into one matrix PSM that characterises the semi-Markov
(SM) model. This involves segregating the states S by their levels of organisational state
seniority, with PSM serving as the transition matrix for these seniority-based disaggregated
states. This leads to Definitions 3 and 4, which were initially developed to facilitate the
study of maintainability for semi-Markov chains [20]. Suppose we have l organisational
states and one state that corresponds to leaving the system, which is called the wastage
state. If the sequence {P(k)}k is of length K + 1, we define the following:

Definition 3. The set of seniority-based states is given by

SSB = {Sa(b) | 0 ≤ a ≤ K and 1 ≤ b ≤ l}

where the state Sa(b) corresponds to the staff in organisational state b that has organisational state
seniority equal to a.

Definition 4. For 0 ≤ k ≤ K, the elements of PSM are equal to the following:

(PSM)ij = 0 for i − 1 ̸≡K+1 k

and, if i − 1 ≡K+1 k, then the following is true:

(PSM)ij =

 P(k)⌈ i
K+1 ⌉,⌈ i

K+1 ⌉
if ⌈ i

K+1⌉ = ⌈ j
K+1⌉ and (j − 1 − i) ≡K+1 0

P(k)⌈ i
K+1 ⌉,⌈ j

K+1 ⌉
if ⌈ i

K+1⌉ ̸= ⌈ j
K+1⌉ and (j − 1) ≡K+1 0

If we redefine the state set, we can view this matrix PSM as the transition matrix
with state space SSB. In this way, all of the information regarding transitions is stored
in one matrix PSM, which can be used to elegantly state the definitions of state reunion
maintainability and attainability. By writing the state vector at time t as nSB(t) and the
non-normalised recruitment vector, which entails the absolute recruitment counts, at time t
as r+SB(t), we obtain the following equations that describe the evolution of the stock vector
for a system with a growth factor 1 + α:

nSB(t + 1) = nSB(t)PSM + r+SB(t)

N(t + 1) = (1 + α)N(t)

The concepts of state reunion maintainability as well as state reunion attainability can
be stated by the use of a reunion matrix U, which encodes the specific seniority-based states
that are to be fused.

Definition 5. For a transition matrix PSM with state space SSB, a (K + 1)l × l matrix U = (Uij)

is called the reunion matrix if each of its l columns
[
U
]

j consists of K + 1 ones through the following:

Uij =

{
1 if (j − 1)(K + 1) ≤ i ≤ j(K + 1)
0 else

We can now restate the concept of state reunion maintainability.

Definition 6 (State reunion maintainability [20]). A structure s is called state reunion main-
tainable (SR-maintainable) for a system with growth factor 1 + α under control by recruitment if
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there exists a path of seniority-based stock vectors (nSB(t))t and if a sequence of recruitment vectors
(r+SB(t))t can be chosen such that for every t ∈ N, the following is true:

nSB(t + 1) = nSB(t)PSM + r+SB(t) (3)

(1 + α)nSB(t)U = nSB(t + 1)U (4)

s =
nSB(t)U

||nSB(t)U||1
(5)

A sequence of seniority-based stock vectors (nSB(t))t that satisfies Equations (3)–(5) will be called
a seniority-based path associated to the SR-maintainable personnel structure s.

4.2. Attainability for Semi-Markov Chains

For semi-Markov chains, we follow a similar approach as the one in Section 3. This
would yield the following definition for attainability:

Definition 7. A structure sSB is called attainable with respect to a semi-Markov process defined by
PSM if there exists a structure ySB such that sSB is reachable from ySB in one step using control by
recruitment.

Remark 1. As recruitment is only allowed in the seniority-based states with state seniority zero,
most of the components of rSB are zero.

However, in the context of real-world applications, it might often be deemed less
restrictive and more efficacious to focus on preserving the proportions in the organisational
states instead, as is the case for state reunion maintainability.

4.3. State Re-Union Attainability

A natural way to define state reunion attainability would be the following.

Definition 8 (General state reunion attainability). A structure s = sSBU is called state reunion
attainable with respect to a semi-Markov process defined by PSM if there exists a structure ySB such
that sSB is reachable from ySB in one step using control by recruitment.

Yet, it turns out that this approach is not informative with regard to state reunion
attainability:

Lemma 3. All structures s = sSBU ∈ ∆l−1 are state reunion attainable for every semi-Markov
process defined by PSM.

Proof. For the structure ySB with all the personnel in one of the SK(b) states at time t, we
know that none of these people will be in an internal state at time t + 1, i.e., the stock
vector at time t + 1 will be completely determined by the recruitment vector rSB, which
implies that under control by recruitment, each structure s = sSBU would be attainable in
this way.

A more suitable definition of state reunion attainability would be the n-step state
reunion attainability, starting from a set S .

Definition 9 (n-step state reunion attainability from S ). A structure s = sSBU is called
n-step state reunion attainable from S with respect to a semi-Markov process defined by PSM if
there exists a structure ySB ∈ S such that sSB is reachable from ySB in n steps using control
by recruitment.
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We will denote, for a system subject to a growth factor of (1 + α), the n-step attain-
able set starting from S and the n-step state reunion attainable set starting from S as
A Rn,S

SM (1 + α) and A Rn,S
SM (1 + α) · U, respectively.

Remark 2. Definition 9 is a generalisation of Definition 8 in the sense that they coincide for n = 1
with S = ∆l−1.

To calculate the n-step state reunion attainable structures in practice, one could use
the same technique as in the proof of Theorem 2. Furthermore, this technique also yields
the following results:

Lemma 4. If S = {v}, it follows that the one-step state reunion attainable region from S for a
semi-Markov process with growth factor (1 + α) defined by PSM is given by the following:

A R1,S
SM (1 + α) · U = conv{vPSM + (v · wSB + α)ej}j|S0(b)

· U

Remark 3. Note that A R1,S
SM (1 + α) · U is empty if v · wSB < −α and that only the ej are

considered that correspond to states with zero seniority, as these are the only states were recruitment
can take place. We denote this restriction on the index j as j|S0(b)

.

Lemma 4 can be used to determine the attainable region for a finite set S = {v1, v2, . . . , vk}.
We will first introduce the following notation:

{β0viPSM + ∑
i ̸=j

β jvjPSM}β :=

{β0viPSM + ∑
i ̸=j

β jvjPSM | ∑
s

βs = 1; ∀s : 0 ≤ βs ≤ 1, β0 ̸= 0, with

||β0viPSM + ∑
i ̸=j

β jvjPSM||1 = (1 + α)}

If the set S is a convex set, we obtain the following:

Lemma 5. If the starting region S is a convex set with vertices {v1, v2, . . . , vk}, it follows that
the one-step state reunion attainable region from S for a semi-Markov process with growth factor
(1 + α) defined by PSM is given by the convex hull of the vectors {viP∗

SM}i · U, where

{viP∗
SM}i :=

{viPSM + (vi · w + α)ej}j|S0(b)
, if wi ≥ −α,

{β0viPSM + ∑i ̸=j β jvjPSM}β, if wi < −α.

To obtain A Rn,S
SM one could calculate A R1,S

SM and use this as the new starting region
to calculate A R2,S

SM . By iteratively following this procedure, one can obtain the desired
A Rn,S

SM .

4.4. Illustrations

In this section, we illustrate our findings by constructing the attainable and state
reunion attainable regions for different growth factors (1 + α).

First, consider the Markov system defined by

PI =

 0.5 0.4 0
0 0.6 0.3
0 0 0.8

, w = (0.1, 0.1, 0.2)

for which we determine the maintainable region for the cases α ∈ {0, 1,−0.15}.
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For α = 0, Theorem 2 yields that

A RM(1) = conv{eiPI + wiej}i,j

so it follows that A RM(1) is the convex span of the vectors (0.6, 0.4, 0), (0.5, 0.5, 0), (0.5,
0.4, 0.1), (0.1, 0.6, 0.3), (0, 0.7, 0.3), (0, 0.6, 0.4), (0.2, 0, 0.8), (0, 0.2, 0.8), and (0, 0, 1).

For α = 1, Theorem 3 implies that

A RM(2) = conv{eiPI + (wi + 1)ej}i,j

which implies that A RM(2) is the convex span of the following vectors after normalisation:
(1.6, 0.4, 0), (0.5, 1.5, 0), (0.5, 0.4, 1.1), (1.1, 0.6, 0.3), (0, 1.7, 0.3), (0, 0.6, 1.4), (1.2, 0, 0.8), (0,
1.2, 0.8), and (0, 0, 2).

For α = −0.15, Theorem 4 implies that

A RM(0.85) = conv{eiPI
∗}i

which implies that A RM(0.85) is the convex span of the following vectors after normalisa-
tion: (0.25, 0.2, 0.4), (0, 0.3, 0.55), (0.05, 0, 0.8), (0, 0.05, 0.8), and (0, 0, 0.85).

These regions are shown in Figure 1.

Figure 1. A RM(0), A RM(1), and A RM(0.85).

Furthermore, we can use the maintainable region for the constant-sized Markov system
defined by PI as the starting set. We know that the maintainable region is given by the
following [20]:

MRM(1) = conv{
(2

7
,

2
7

,
3
7

)
, (0, 0.4, 0.6), (0, 0, 1)}

If we use this region as the set S0, following Lemma 2, we obtain the following:

A R1,S0
M =conv{viPI + (vi · w)ej}i,j

=conv{(0.2, 0, 0.8), (0, 0.2, 0.8), (0, 0, 1), (0.16, 0.24, 0.6), (0, 0.4, 0.6),

(0, 0.24, 0.76),
(2

7
,

2
7

,
3
7

)
,
(1

7
,

3
7

,
3
7

)
,
(1

7
,

2
7

,
4
7

)
}

=conv{(0.2, 0, 0.8), (0, 0, 1), (0, 0.4, 0.6),
(2

7
,

2
7

,
3
7

)
,
(1

7
,

3
7

,
3
7

)
,
(1

7
,

2
7

,
4
7

)
}
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So, if we define S1 = {(0.2, 0, 0.8), (0, 0, 1), (0, 0.4, 0.6),
(

2
7 , 2

7 , 3
7

)
,
(

1
7 , 3

7 , 3
7

)
}, we obtain

the following:

A R2,S0
M =A R1,S1

M = conv{(0.28, 0.08, 0.64), (0.1, 0.26, 0.64), (0.1, 0.08, 0.82),

(0.2, 0, 0.8), (0, 0.2, 0.8), (0, 0, 1), (0.16, 0.24, 0.6), (0, 0.4, 0.6), (0, 0.24, 0.76),(2
7

,
2
7

,
3
7

)
,
(1

7
,

3
7

,
3
7

)
,
(1

7
,

2
7

,
4
7

)
,
(15

70
,

22
70

,
33
70

)
,
( 5

70
,

32
70

,
33
70

)
,
( 5

70
,

22
70

,
43
70

)
}

=conv{(0.28, 0.08, 0.64), (0.2, 0, 0.8), (0, 0, 1), (0, 0.4, 0.6),
(2

7
,

2
7

,
3
7

)
,(1

7
,

3
7

,
3
7

)
,
( 5

70
,

32
70

,
33
70

)
}

These regions are shown in Figure 2.

Figure 2. MRM = S0 , A R1,S0
M and A R2,S0

M .

Now, consider a semi-Markov system for which P(k) is given by the following:

P(0) =


0.2 0.5 0 0.3
0 0.7 0.2 0.1
0 0 0.9 0.1
0 0 0 1

, P(1) =


0.6 0.3 0 0.1
0 0.5 0.45 0.05
0 0 0.9 0.1
0 0 0 1

 and P(2) =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


We obtain, following Definition 4, the following:

PSM =

S0(1) S1(1) S2(1) S0(2) S1(2) S2(2) S0(3) S1(3) S2(3)



S0(1) 0 0.2 0 0.5 0 0 0 0 0
S1(1) 0 0 0.6 0.3 0 0 0 0 0
S2(1) 0 0 0 0 0 0 0 0 0
S0(2) 0 0 0 0 0.7 0 0.2 0 0
S1(2) 0 0 0 0 0 0.5 0.45 0 0
S2(2) 0 0 0 0 0 0 0 0 0
S0(3) 0 0 0 0 0 0 0 0.9 0
S1(3) 0 0 0 0 0 0 0 0 0.9
S2(3) 0 0 0 0 0 0 0 0 0

and wSB = (0.3, 0.1, 1, 0.1, 0.05, 1, 0.1, 0.1, 1).
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Let S = conv{v1, v2, v3} with

v1 =

(
153,867
500,000

,
153,867

2,500,000
,

369,281
10,000,000

,
172,331

1,000,000
,

15,079
125,000

,
603,159

10,000,000
,

177,501
2,000,000

,
399,377

5,000,000
,

718,879
10,000,000

)

v2 =

(
0, 0, 0,

290,221
1,000,000

,
2,031,547
10,000,000

,
2,031,547
20,000,000

,
7,473,191
50,000,000

,
420,367

3,125,000
,

12,106,569
100,000,000

)

v3 =

(
0, 0, 0, 0, 0, 0,

36,900,369
100,000,000

,
8,302,583

25,000,000
,

29,889,299
100,000,000

)

Using Lemma 5, we obtain that A R1,S
SM = conv{a1, a2, a3, · · · , a9} with

a1 =(0.30773359, 0.06154672, 0.03692803, 0.17233081,

0.12063157, 0.06031578, 0.08875037, 0.07987533, 0.0718878)

a2 =(0, 0.06154672, 0.03692803, 0.4800644,

0.12063157, 0.06031578, 0.08875037, 0.07987533, 0.0718878)

a3 =(0, 0.06154672, 0.03692803, 0.17233081,

0.12063157, 0.06031578, 0.39648396, 0.07987533, 0.0718878)

a4 =(0.290221, 0, 0, 0, 0.2031547, 0.10157735, 0.14946382, 0.13451744, 0.12106569)

a5 =(0, 0, 0, 0.290221, 0.2031547, 0.10157735, 0.14946382, 0.13451744, 0.12106569)

a6 =(0, 0, 0, 0, 0.2031547, 0.10157735, 0.43968482, 0.13451744, 0.12106569)

a7 =(0.36900369, 0, 0, 0, 0, 0, 0, 0.33210332, 0.29889299)

a8 =(0, 0, 0, 0.36900369, 0, 0, 0, 0.33210332, 0.29889299)

a9 =(0, 0, 0, 0, 0, 0, 0.36900369, 0.33210332, 0.29889299)

A simple calculation shows that A R1,S
SM = conv{a1, a3, a5, a7}. Multiplying the

vectors a1, a3, a5, and a7 by U yields A R1,S
SM U, the one-step state reunion attainable region,

which is the convex combination of the following vectors:(
0,

58,494
98,317

,
39,823
98,317

)
,

(
59,469

603,901
,

166,010
469,913

,
428,471
781,529

)
,

(
60,941
150,024

,
166,010
469,913

,
126,519
526,037

)
,

(
100
271

, 0,
171
271

)

This region is shown in Figure 3.

Figure 3. A R1,S
SM · U.
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5. Conclusions and Further Research Avenues

In this study, we explore the concept of control through recruitment, broadening the
traditional concept of attainability for constant-sized Markov systems to systems subjected
to growth and contraction. Furthermore, we generalise this concept to semi-Markov chains.
Our exploration is characterised not only by its expansion of existing frameworks but also
by the introduction of an innovative concept known as state reunion attainability (SR-
attainability), based on the concept of state reunion maintainability [20]. This new concept
allows us to gain important theoretical insights and identify the SR-attainable regions. Our
work is distinguished by its novel method of broadening the scope of attainability and the
introduction of SR-attainability, providing both theoretical understanding and practical
algorithms, such as Theorem 4 and Lemma 5, for use in this field.

Future research could explore the broadening of reunion matrices, aiming to extend
SR-attainability to include the attainability of various state combinations based on senior-
ity, such as reclassification by overall seniority or pay scale. This opens the possibility
of preserving selective subsets of seniority-based states, rather than encompassing all
states, giving rise to a concept of partial (SR)-attainability. Consequently, this would
allow for the application of other and more diverse U-matrices, which encode the fu-
sion of seniority-based states (Definition 5), thereby expanding the practical use of the
SR-attainability framework.
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