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Abstract: Online multi-object tracking (MOT) techniques are instrumental in monitoring workers’
positions and identities in construction settings. Traditional approaches, which employ deep neural
networks (DNNs) for detection followed by body similarity matching, often overlook the significance
of clear head features and stable head motions. This study presents a novel bidirectional tracking
method that integrates intra-frame processing, which combines head and body analysis to minimize
false positives and inter-frame matching to control ID assignment. By leveraging head information
for enhanced body tracking, the method generates smoother trajectories with reduced ID errors. The
proposed method achieved a state-of-the-art (SOTA) performance, with a multiple-object tracking
accuracy (MOTA) of 95.191%, higher-order tracking accuracy (HOTA) of 78.884% and an identity
switch (IDSW) count of 0, making it a strong baseline for future research.

Keywords: multi-object tracking; worker tracking; head-integrated; intra-frame processing; inter-
frame matching; Kalman filter

MSC: 68U10

1. Introduction

The efficacy of worker tracking in construction safety management, both on-site [1]
and off-site [2], has been widely acknowledged. The real-time monitoring of workers’
locations and identities enables managers to monitor working conditions closely, facilitating
prompt interventions to prevent potential accidents [3], such as ensuring helmet usage,
maintaining safe distances and avoiding collisions with vehicles [4]. By analyzing tracking
data, valuable insights can be derived into workers’ productivity, intensity, movement
patterns and other critical aspects, ultimately optimizing construction processes and labor
allocation, enhancing efficiency, minimizing resource waste and reducing labor-intensive
tasks for workers [5].

Nonetheless, complex construction scenarios pose challenges in feature extraction and
identity matching, leading to identity-tracking errors. Four types of errors are illustrated in
Figure 1: identity missing, identity increase, identity switch (IDSW) and identity transfer
(IDTR) [6]. Identity missing occurs when false negatives (FNs) in deep learning models
result in missed identifications, as demonstrated by worker ID = 2 in Figure 1a, who was
occluded by “Bar shop” in frame #78. Identity increase is due to false positives (FPs), as
exemplified by worker ID = 7 in Figure 1b, where an incorrect bounding box detection led to
an additional ID. IDSW refers to a single person being assigned different IDs consecutively,
as in Figure 1c, where worker ID = 5 had different IDs in frames #99 and #130. Conversely,
IDTR occurs when two individuals are mistakenly assigned the same ID, as shown in
Figure 1d, where worker ID = 3 switched to ID = 4 between frames #140 and #259. Both
IDTR and IDSW stem from issues with association algorithms, which can be interpreted as
“accepting false ID” and “rejecting truth ID”.
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Figure 1. Types of identity errors in tracking workers. 
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which can enhance whole-body tracking by leveraging bidirectional matching algorithms. 
Head tracking, as it aids in body detection and tracking, exploits this relationship to im-
prove robustness. 

The main innovation of this article is to provide a simple bidirectional method for 
tracking workers under complex construction scenarios. This bidirectional interaction im-
proves the accuracy and robustness of body tracking while also addressing issues such as 
occlusion and environmental changes. The proposed method can significantly improve 
the safety and efficiency of construction sites by enabling the tracking of worker positions 
and movements with fewer ID errors. 

The contributions of this research are as follows:  
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(2) In the case where KF cannot be abandoned for movement estimation, modifying 
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Figure 1. Types of identity errors in tracking workers.

Current MOT methods have some intrinsic limitations:
(1) Relying on detection DNNs [7] limits the number of tracked individuals to the de-

tected count per frame. Missed detections lead to a lost person’s re-identification (ReID) [8]
information and, subsequently, motion estimation for the corresponding sequence, resulting
in tracking ID loss.

(2) Current motion estimation techniques are confined to the Kalman filter (KF) [9],
which may not converge mathematically. In cases of divergence, the KF’s estimates become
meaningless and can cause incorrect motion predictions.

(3) Worker tracking, unlike pedestrian tracking, encounters more occlusion challenges
in complex scenarios [10], posing higher ID error risks. While pedestrian tracking algo-
rithms typically overlook ID-related metrics, worker tracking, which is crucial for safety
management, necessitates their consideration, particularly in MOT challenge-like con-
texts [11,12].

(4) Head information, which is vital for worker identification, has often been over-
looked [2]. Its use is pivotal due to workers’ upright posture and less obstructed heads,
which can enhance whole-body tracking by leveraging bidirectional matching algorithms.
Head tracking, as it aids in body detection and tracking, exploits this relationship to
improve robustness.

The main innovation of this article is to provide a simple bidirectional method for
tracking workers under complex construction scenarios. This bidirectional interaction
improves the accuracy and robustness of body tracking while also addressing issues such
as occlusion and environmental changes. The proposed method can significantly improve
the safety and efficiency of construction sites by enabling the tracking of worker positions
and movements with fewer ID errors.

The contributions of this research are as follows:
(1) Adopting head-tracking-to-body-tracking models in the construction field for the

first time and using head motion state to correct whole-body movement.
(2) In the case where KF cannot be abandoned for movement estimation, modifying

the body speed into head speed and making it comply with the basic “near-big, far-small”
perspective principle.
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(3) Changing the unidirectional method to bidirectional and letting tracking outputs
correct current frame detections.

(4) Demonstrating the effectiveness of this method from a mathematical perspective.

2. Related Works

Vision-based MOT methods aim to identify target IDs (humans, vehicles, etc.) across
successive frames. MOT usually consists of three subtasks [13]: object detection, feature
extraction and data association.

• Object detection (observation model): using a DNN such as Faster R-CNN [14],
YOLO [15], CenterNet [16], or Transformer [17] to obtain the region of interest (ROI) [18],
also called the bounding box.

• Feature extraction (appearance model): employing a person re-identification (ReID) [8]
network to extract a unidimensional vector from the ROI.

• Data association (motion estimation and linear assignment): matching the IDs [7]
between the targets detected by the DNN at the current frame and estimated using
the KF at the former frame and the similarity cost matrix with Hungarian [19] or
Jonker–Volgenant [7] algorithms.

According to the literature [2], instance segmentation has been posited to enhance
detection performance, as exemplified by Xiao et al.’s [2] adaptation of the Mask R-CNN [20]
for worker tracking. However, their study relies on datasets without annotations for
heavily occluded individuals (occlusion rate above 70%), which precludes the possibility of
improving the data association process, as previously noted by [10].

There are two basic paradigms for MOT [21]: tracking by detection (TBD) and joint
detection and tracking (JDT).

• TBD treats object detection as a separate detector, while feature extraction and data
association are considered trackers [8]. TBD offers the advantage of flexibility in
replacing modules with better DNNs or association methods. However, the detector
and the tracker cannot enhance each other’s performance. If the detector produces
missing or false bounding boxes, this will result in the tracker’s failure to track or
accurately identify the target.

• JDT integrates the detector and tracker into one unified network that can be trained
end-to-end, such as Siamese [22] or Transformer networks [23]. JDT relies exclusively
on appearance features, but the training of DNNs often demands better GPUs and
takes significant time. For instance, TransTrack [24] demands 16.1 GB of GPU memory
for inference, making it incompatible with the NVIDIA Tesla T4 (15 GB) on Google
Colaboratory [25]. To provide a simple and training-free tracking method, TBD is the
better choice.

Matching algorithms in TBD use various cues, including motion information [9], ap-
pearance features [26], velocity direction, confidence and height state [27], to calculate
the different similarity distances (the cosine distance, the squared Mahalanobis distance,
the intersection over union (IoU) distance, etc.) for the cost matrix in the linear assign-
ment problem.

However, unlike pedestrian tracking on roads, the motion of workers always features
long stays or frequent crossings [28], which may lead to the continuous growth of the
covariance matrix in KF. In practical scenarios, a large covariance matrix can lead to the
acceptance of false IDs. Conversely, a small covariance matrix can result in the rejection of
the true ID. Hence, it is essential to carefully consider the covariance matrix size to ensure
accurate identification. Convergence failure of the covariance matrix implies a mismatch
between the selected motion model of the KF and actual motion behavior, but it does not
seem to offer an alternative solution for the linear estimator [9].

To provide a comprehensive overview of data association techniques in the MOT
domain, we present the technical aspects in Table 1. Contemporary methods focus on
retraining detection DNNs for improved input accuracy, while others refine Kalman fil-
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ter state vectors. Given our emphasis on data association, object detection and feature
extraction details are not elaborated upon in this section.

The SOTA tracking-by-detection methods, as depicted in Table 1, are unidirectional,
relying solely on the outputs of detection DNNs. Consequently, their tracking capacity
is inherently limited to the number of detected objects, and the tracking ID count never
exceeds the detection ID count. Our proposed bidirectional tracking approach encompasses
two types of interactions, namely, head-to-body and detector–tracker, which enable the
mutual correction of tracking and detection results, enhancing the overall performance.

Table 1. Strengths and limitations of SOTA methods.

No. SOTA Methods Year Information Types Advantages (A) & Shortcomings (S)

1 SORT [19] 2016
O: Faster R-CNN;
A: None;
M: KF + IoU + Hungarian.

A: presented as the baseline; KF state is
xt =

[
xc, yc, s, r, vx , vy, vs

]T , s = aspect ratio and r = area.
S: highly dependent on detection performance and many
IDSWs; no occlusion-solving considerations.

2 DeepSORT [8] 2017

O: Faster R-CNN;
A: ReID (128-d);
M: KF + Cosine distance + IoU +
Hungarian.

A: presented as the baseline integrate appearance information.
KF state is xt =

[
xc, yc, γ, h, vx , vy, vγ, vh

]T , γ = aspect ratio
and h = height.
S: detection performance dependency; occlusion-related
IDSWs reduced but still frequent; constant-velocity model.

3 ByteTrack [7] 2022

O: re-trained YOLOX-x on 1400 videos;
A: ReID (1024-d);
M: KF + Cosine distance + IoU +
Hungarian + low scores re-match.

A: best performance in MOT20 and with already published
codes. KF state is xt =

[
xc, yc, a, h, vx , vy, va, vh

]T ; a = aspect
ratio and h = height.
S: highly dependent on detection performance and many
IDSWs; no occlusion considerations; constant-velocity model.

4 OC_SORT [9] 2022

O: baseline detections in
MOTChallenge;
A: None;
M: KF + IoU + Hungarian + re-update
of KF + motion direction difference.

A: first to explain the KF predict errors accumulation in detail;
motion direction difference is added in the association cost
matrix. KF state is xt =

[
xc, yc, a, s, vx , vy, va

]T , a = area and
s = aspect ratio.
S: no real online method for KF update; needs future frame;
constant-velocity assumption during occlusion, cannot remain
effective during long-term occlusions; detection performance
dependency; constant-velocity model.

5 Deep OC_SORT [26] 2023

O: YOLOX;
A: ReID (SBS50, 287MB) + Camera
Motion Compensation + Dynamic
Appearance;
M: KF + IoU + Hungarian + re-update
of KF + motion direction difference.

A: Apply Camera Motion Compensation to correct the KF
state for better locations of the bounding box; apply detection
confidence to modify ReID output vectors. KF state is
xt =

[
xc, yc, a, s, vx , vy, va

]T ; a = area and s = aspect ratio.
S: the same as the OC_SORT; constant-velocity model.

6 BoTSORT [29] 2022

O: Faster R-CNN;
A: ReID + Camera Motion
Compensation;
M: KF + cosine distance + IoU +
Hungarian.

A: modify KF state to xt =
[
xc, yc, s, a, vx , vy, vs

]T , s = area and
a = aspect ratio; apply Camera Motion Compensation to
reduce errors of moving cameras; apply new cost matrix with
weights of appearance cost and motion cost.
S: the same as the OC_SORT; constant-velocity model; slow
when working with sparse optical flow.

7 Strong_SORT [30] 2022

O: YOLOX-x;
A: ReID (BoT) + Camera Motion
Compensation;
M: NSA-KF + cosine distance + IoU +
Hungarian.

A: apply a new cost matrix with weights of appearance cost
and motion cost; KF state is xt =

[
xc, yc, a, h, vx , vy, va, vh

]T ;
a = aspect ratio and h = height.
S: MOTA is slightly lower, mainly due to the high detection
score threshold leading to many missing detections; working
speed is not high.

8 TransTrack [24] 2020
O: re-trained transformer;
A: None;
M: None.

A: Self-Attention Mechanism and Query-Key pipeline.
S: hard to train; no motion information utilization; JDT not
better than TBD in performance.

9 UniTrack [31] 2021

O: ResNet-50;
A: ImageNet-supervised appearance
model;
M: KF + cosine distance + IoU +
Hungarian.

A: can support different tracking tasks and leverage many
existing general appearance models. KF state is
xt =

[
xc, yc, a, h, vx , vy, va, vh

]T ; a = aspect ratio and h = height.
S: not better in terms of metrics performance.
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Table 1. Cont.

No. SOTA Methods Year Information Types Advantages (A) & Shortcomings (S)

10 FairMOT [32] 2020

O: encoder–decoder;
A: encoder–decoder;
M: KF + cosine distance + IoU +
Hungarian.

A: one encoder–decoder network to obtain observation and
appearance at the same time, with no need for an
independent ReID model;
S: need training for about 30 h on two RTX 2080 Ti GPUs; still
a SORT-related method.

11 TransMOT [33] 2021

O: spatial–temporal graph
Transformer;
A: None;
M: KF + cosine distance + IoU +
Hungarian.

A: A cascaded association structure to handle low confidence
detection and long-term occlusion.
S: relatively large computing resources and data; no public
codes.

12 Hybrid-SORT [27] 2023

O: YOLOX-x;
A: ReID + Camera Motion
Compensation;
M: KF + cosine distance + IoU +
Hungarian + weak cues.

A: apply a new cost matrix with weights of appearance cost,
motion cost, four corners’ velocity direction, and
height-modulated IoU. KF state is
xt =

[
xc, yc, s, c, r, vx , vy, vs, vc

]T ; r = aspect ratio, s = area and
c = confidence score.
S: detection performance dependency.

13 Xiao et al. [2] 2023

O: Mask R-CNN;
A: ReID (128-d);
M: KF + cosine distance + IoU +
Hungarian.

A: baseline in worker tracking;
S: needs retraining on a new dataset; does not address severe
occlusions; no public codes.

Observation DNN: O; appearance DNN: A; motion estimation model and assignment algorithm: M.

3. Motion Estimation with KF
3.1. Basic KF Formula

Motion data, including position and velocity, can be effectively extracted using a
linear Kalman filter (KF) [10]. The KF estimates the state of a dynamic system from noisy
measurements, employing a state equation and an observation equation, as depicted in
Equations (1) and (2).

In Equation (1), the prior state vector estimate (denoted by xt) is predicted based on
the posterior distribution from the previous frame (denoted by x̂t−1). The state vector
xt =

[
xc, yc, a, h, vx, vy, va, vh

]T is (8 × 1) in frame t and consists of the bounding box center,
with dimensions, width, height, a = w/h and velocity. The transition matrix Ft governs the
system dynamics, while Qt (8× 8) represents process noise, following a normal distribution.

xt = Ft x̂t−1 + ωt, ωt ∼ N(0, Qt) (1)

Equation (2) accounts for imperfect estimation, where the measurement
zt−1 = [xc, yc, a, h]T (a 4 × 1 vector in frame t − 1) and the projected posterior distri-
bution are subject to observation noise (denoted by Rt, a 4 × 4 matrix). The observation
matrix H facilitates dimensional transformation between state and measurement vectors.

zt−1 = Htxt−1 + νt, νt ∼ N(0, Rt) (2)

The KF’s prediction for the covariance matrix Pt is shown in Equation (3). Since
elements in the vector can vary widely, a covariance matrix is used to quantify the variation
between elements. Pt (8 × 8) is updated regardless of the presence of a tracking ID, with a
“dummy update” [9] occurring during tracking, which can lead to error accumulation and
non-convergence.

Pt = Ft P̂t−1F⊤t + Qt (3)

The Kalman gain, denoted in Equation (4), determines the influence of the current
observation on state estimation. A higher value of Kt indicates greater confidence in the
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detection, while a lower value suggests a greater confidence in the prediction. Elements of
Kt(an 8 × 4 matrix) are confined to the range [0, 1] during normal operation.

Kt =
PtH⊤t(

HtPtH⊤t + Rt
) = P̂tH⊤t Rt

−1 (4)

Finally, Equations (5) and (6) describe the posterior update of the state vector and co-
variance matrix, respectively, incorporating the prior estimate and current observation data.

x̂t = xt + Kt(zt − Htxt) = Ft x̂t−1 + Kt(zt − HtFt x̂t−1) (5)

P̂t = (I − Kt Ht)Pt (6)

3.2. KF Divergence Proof

This section elucidates the mechanism behind the non-convergence of the covariance
matrix in the KF. When the employed motion estimation model in the KF mismatches the
actual dynamics, iterative updates lead to divergence. Given the practical challenge of
acquiring a precise motion model for humans, the KF often encounters the following issue:

If the KF divergence→ elements in the covariance matrix Pt is larger→ elements in the
inverse covariance matrix Pt

−1 is smaller→Mahalanobis distance of two different persons’
IDs is smaller than the threshold→ leading to “accepting false ID” errors

Consequently, addressing the KF divergence problem is crucial for reducing such
identity errors. From the perspective of Bayesian probabilities, (1) can be expressed as
p(xt) = N

(
µ, Pt

)
, and if xt is given, (2) can be expressed as p(zt|xt ) = N(Htµ, R); then,

p(x̂t|zt ) = p(zt|xt )× p(xt), so the corresponding equation of the covariance matrix is as
described as follows (7):

P̂t
−1

= Ht
T R−1Ht + Pt

−1 (7)

Assuming a simple constant-velocity model, the ground truth motion yields (8):

xt
∗ = xt−1

∗ + v∗ = x0
∗ + tv∗

zt
∗ = xt

∗ + εt = x0
∗ + tv∗ + εt

(8)

Assuming the estimation model is not the same as the ground truth yields (9):

xt = xt−1 + v = x0 + tv, v ̸= v∗& x0 = x0
∗

zt = xt + εt = x0 + tv + εt
(9)

For one element pt in the covariance matrix, assuming there is no relevant prior
knowledge of noise and initial value at t = 0, let r0 = σ2, p0 = ∞. For the constant-velocity
model, ft = ht = 1, the following is obtained (10):

pt
−1 =

[
ft pt−1 f T

t
]−1

+
[
htrhT

t
]−1

=
[
pt−1

−1]+ [
σ−2]

=
([

pt−2
−1]+ [

σ−2])+ [
σ−2]

. . .

=
[
p0
−1]+ t×

[
σ−2]

= 1
∞ + t

σ2 = t
σ2

(10)

(4) can be rewritten in one element of the vector, which yields (11):

kt = p̂th⊤t rt
−1 =

σ2

t
1
σ2 =

1
t

(11)
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Substituting (2) into (5) as one element of the posterior state vector yields (12):

x̂t = ft x̂t−1 + kt(zt − ht ft x̂t−1) = (x̂t−1 + v) + 1
t (zt − x̂t−1 − v)

= t−1
t (x̂t−1 + v) + 1

t zt

=

 t− 2
t︸ ︷︷ ︸
→0

(x̂t−2 + v) + 1
t zt−1

+ 1
t zt

. . .

= 1
t (z1 + z2 + z3 + . . . + zt)

= 1
t (x0 + v + ε1) +

1
t (x0 + 2v + ε2) + . . . + 1

t (x0 + tv + εt)

= x0 +
1
t
(1+t)∗t

2 (v + ε) = x0 +
(t+1)

2 v + 1
t

t
∑

i=1
εi

(12)

Under the constant-velocity assumption, the discrepancy between the ground truth
and posterior estimates (13) exhibits an increasing trend with time. This observation
implies that the error grows over time, leading to the divergence of the KF under constant
perturbations. Consequently, when the employed motion estimation model deviates
from the true dynamics, KF performance is significantly compromised, as it is prone
to divergence issues. Given the complexity of worker movements, current research efforts,
as exemplified by [7], have not been able to establish accurate motion models, resulting in
the persistent challenge of mitigating KF divergence still needing a reasonable mathematical
solution. Therefore, it is necessary to find ways to bypass the divergence problem.

∆ = xt
∗ − x̂t = x0

∗ + tv∗ − x0 − (1+t)
2 v− 1

t

t
∑

i=1
εi =

t−1
2 (v∗ − v)− 1

t

t
∑

i=1
εi

E(∆) = t−1
2 (v∗ − v)

D(∆) =
(

t−1
2 (v∗ − v)

)2
+ σ2

t

(13)

3.3. KF Processing Example

In this section, we demonstrate that despite the inherent limitations of the KF’s motion
estimation, achieving convergence can still be accomplished through continuous and
accurate detection measurements.

The state equation initialization requires understanding the motion model of the object,
such as the uniformly moving, two-dimensional object in (14). On occasions where there
was no fixed frame interval time in videos, ∆t was assigned the value 1.0, and could be
adjusted through velocity.

xt = xt−1 + vx
t−1 × ∆t

yt = yt−1 + vy
t−1 × ∆t

vx
t−1 = vx

t−1

vy
t−1 = vy

t−1

(14)

Similar to (14), Equation (1), rewritten into the matrix form, can be presented as (15).
At this point, our estimation motion model will be fixed.
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→
xt =



xt
yt
at
ht
vx

t
vy

t
va

t
vh

t


=



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


×



xt−1
yt−1
at−1
ht−1
vx

t−1
vy

t−1
va

t−1
vh

t−1


= F8×8 ×

→
xt−1 (15)

The initialization of the observation Equation (16):

→
zt−1 =


xt−1
yt−1
at−1
ht−1

 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

×



xt−1
yt−1
at−1
ht−1
vx

t−1
vy

t−1
va

t−1
vh

t−1


= H4×8 ×

→
xt−1 (16)

The initial noise covariance is empirical and exhibits a weight–height dependency.
Vanilla DeepSORT assigns a position noise of 1/20 and a velocity noise of 1/160, assuming
higher positional accuracy compared to velocity. Both the Q and R matrices are diagonal,
with their values being determined by the height of each detection. It is commonly observed
that larger bounding boxes imply higher noise levels, but concurrently, they indicate closer
proximity to the camera, leading to less noisy images. This aspect has not been previously
addressed in the literature. Consequently, we have revised the noise equation to achieve a
more uniform and simplified treatment, as detailed in Equations (17) and (18).

Let a bounding box in frame t = 1 be

zt−1 = [xc, yc, a, h]T = np.array ([1062.161303, 316.998036, 0.405503, 273.269825])

Then, the height is 273.269825, so the (273.269825× 1/20)2 = 186.690993.

Q8×8 = np.square





weight_position× ht
weight_position× ht
1e− 2
weight_position× ht
weight_velocity× ht
weight_velocity× ht
1e− 5
weight_velocity× ht




× I8×8 →



186.69 0. 0. 0. 0. 0. 0. 0.
0. 186.69 0. 0. 0. 0. 0. 0.
0. 0. 0.0001 0. 0. 0. 0. 0.
0. 0. 0. 186.69 0. 0. 0. 0.
0. 0. 0. 0. 2.92 0. 0. 0.
0. 0. 0. 0. 0. 2.92 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 2.92


(17)

R4×4 = np.square




weight_position× ht
weight_position× ht
1e− 2
weight_position× ht


× I4×4 →


186.69 0 0 0

0 186.69 0 0
0 0 0.01 0
0 0 0 186.69

 (18)

Once initialized, the F and H will not be changed in any frame during the calculations
(independent of t). However, Q and R will be changed in each frame for the height
difference of the bounding box. The noise can be adjusted according to the actual scenarios
to achieve better effects.
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For the covariance matrix P, we follow the traditions presented in (19). The covariance
matrix P is also weight–height dependent but with 2-times magnification for position and
10-times magnification for velocity.

P8×8 = np.square





2× weight_position× ht
2× weight_position× ht
1e− 2
2× weight_position× ht
10× weight_velocity× ht
10× weight_velocity× ht
1e− 5
10× weight_velocity× ht




× I8×8 → Pt=1

8×8 =



746.76 0. 0. 0. 0. 0. 0. 0.
0. 746.76 0. 0. 0. 0. 0. 0.
0. 0. 0.0001 0. 0. 0. 0. 0.
0. 0. 0. 746.76 0. 0. 0. 0.
0. 0. 0. 0. 291.70 0. 0. 0.
0. 0. 0. 0. 0. 291.70 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 291.70


(19)

When the person’s detection is missing for 100 frames without an update of state,
the same state vector [1062.161303, 316.998036, 0.405503, 273.269825] remains unchanged,
while the elements in the covariance matrix can be magnified by more than 5000 times in
(20) (3,894,274.937286/746.763973 = 5214.867).

only_predict : Pt=100
8×8 =



3894274.93 0. 0. 0. 43609.84 0. 0. 0.
0. 3894274.93 0. 0. 0. 43609.84 0. 0.
0. 0. 0.010134 0. 0. 0. 0.000001 0.
0. 0. 0. 3894274.93 0. 0. 0. 43609.84

43609.84 0. 0. 0. 583.40 0. 0. 0.
0. 43609.84 0. 0. 0. 583.40 0. 0.
0. 0. 0.000001 0. 0. 0. 0. 0.
0. 0. 0. 43609.84 0. 0. 0. 583.40


(20)

Once a subject’s detection is consistently stable and stationary at a specific position
[1062.161303, 316.998036, 0.405503, 273.269825], the covariance matrix can be updated in
each frame. The reduction in matrix elements, as observed in (21), is approximately 50%
(363.719862/746.763973 = 0.48706), indicating that convergence is not reliant on motion
and can occur even when the subject is completely stationary. The KF gain also exhibits a
converging pattern in (22). Consequently, the non-convergence issue lies in the prediction
stage, where an inadequate update occurs due to missing detections.

Each worker has two KFs, one for the head and the other for the body; likewise,
different workers maintain different KFs. However, following the above calculations, with
the presence of continuous detection values, even if the motion model is not good enough,
the convergent P can also be achieved.

predict + update : Pt=100
8×8 =



363.71 0. 0. 0. 40.06 0. 0. 0.
0. 363.71 0. 0. 0. 40.06 0. 0.
0. 0. 0.001052 0. 0. 0. 0. 0.
0. 0. 0. 363.71 0. 0. 0. 40.06

40.06 0. 0. 0. 29.39 0. 0. 0.
0. 40.06 0. 0. 0. 29.39 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 40.06 0. 0. 0. 29.39


(21)

Kt=2
8×8 =



0.86 0. 0. 0.
0. 0.86 0. 0.
0. 0. 0.019 0.
0. 0. 0. 0.86
0.21 0. 0. 0.
0. 0.21 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.21


→ Kt=100

8×8 =



0.66 0. 0. 0.
0. 0.66 0. 0.
0. 0. 0.095 0.
0. 0. 0. 0.66
0.073 0. 0. 0.
0. 0.073 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.073


(22)
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Therefore, it is possible to maintain the correct motion if there is a method to retain
detections. The following proposed method can utilize head cues to ensure the approximate
accuracy of the whole-body detections even with heavy occlusions.

4. Methods

The bidirectional method can make the detector and tracker interact with each other,
instead of only using the outputs of the previous step without changes.

As depicted in Figure 2, the proposed method consists of the detector, imputers,
refiners and tracker; among them, the first three items are detailed and discussed in [10]
while the tracker is our concern in this paper. Whereas the unidirectional method only
contains the body_tracker, our tracker contains four parts:

• Head_tracker for tracking heads (in Section 4.1).
• Body_tracker for tracking bodies (in Section 4.1).
• Intra-frame processing to delete false positives of heads and bodies (in Section 4.2).
• Inter-frame matching to find the pairing relationship between heads and bodies (in

Section 4.3).
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4.1. Head Tracker and Body Tracker

The head tracker and body tracker are responsible for associating the head or body
with detections, respectively.

The implementation of the head_tracker is basically the same as the body_tracker,
which contains two steps of matching (shown in Algorithm 1), although the body_tracker
will adopt the velocity of a head other than its own:

(1) The first match: the cascade matching with the appearance vector’s cosine distance
and the bounding box center’s Euclidean distance.

(2) The second match: the bounding box’s IoU distance matching for the remaining
unmatched detections and tracks.

As shown in Figure 3, there are seven tracks of frame t − 1 and five detections of
frame t; after the first match, (1-B), (2-A) and (4-C) were matched; the remaining (3-D) and
(6-E) were successfully obtained in the second match. The tracking ID and detection ID
are represented by the rows and columns in the cosine distance cost matrix. To match the
tracking ID with the current frame, the Hungarian algorithm (Algorithm 1) is used. If the
value is below the cosine similarity threshold of 0.2 and meets the tracking ID criteria, it is
considered a successful match.
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We modify the trackers in four ways:
(1) The Mahalanobis distance is modified to the Euclidean distance (23) in KF, to

avoid the influence of covariance matrix divergence. xt =
[
xc, yc, a, h, vx, vy, va, vh

]T is
the predicted vector of frame t over the state distribution (8-d) from frame t − 1, and it
yt = [xc, yc, a, h, 0, 0, 0, 0]T refers to the detector’s measurements in frame t.

Mahalanobis distance =
√
(xt − yt)

T P−1(xt − yt)

Euclidean distance =
√
(xt − yt)

T(xt − yt)
(23)

(2) The head trajectory can be used as a reference to improve body accuracy. Because
the head has limited motion and a fixed size, its use helps reduce errors in direction
detection, ensuring that the tracker and imputer are not misled by incorrect detection
results.

(3) The cost matrix uses a variable threshold (2 × head width), which reduces the
number of for-loops to two. The vanilla DeepSORT cost matrix utilizes a fixed threshold
of 9.4877, but variable thresholds maintain the visual principle of “near-big, far-small”.
Therefore, a smaller threshold is crucial when a worker is far from the camera, has a small
head size, and shows minimal movement.

(4) Additional constraints to add a new body ID. The unmatched detections of vanilla
DeepSORT were directly added as a new ID, which might have resulted in inflation. The
confidence level must be approximately 0.8 or no less than 0.95 during the range intervals
near the edge. This effectively filters out most false positives.

In this study, we utilized a Market-1501-based [34] 512-d vector for appearance in-
formation, which was better than the original 128-d vector of ReID (see Appendix A) in
DeepSORT because an extensive feature dimension is appropriate for small objects such
as heads.

Algorithm 1: Two Stages of the Matching Algorithm for the Trackers

Input: M← number of workers; A← number of frames;
Two detections set:
D =

{
dj

i |1 ≤ i ≤ M; 1 ≤ j ≤ A
}

; Dremain =
{

dj
i,remain|1 ≤ i ≤ Mremain; 1 ≤ j ≤ A

}
;

Output: Two tracks set:
Tmatched =

{
tj
i |1 ≤ i ≤ Nmatched; 1 ≤ j ≤ A

}
; Tun_matched =

{
tj
i |1 ≤ i ≤ Nun_matched; 1 ≤ j ≤ A

}
;

1: for frame j in A do:
2: Dj =

{
dj

1, dj
2, dj

3, . . . dj
Mj

}
/*observations from the detector and ReID at j*/

xj =
{

xj
1, xj

2, xj
3, . . . xj

N j

}
/*posterior state from KF by j − 1 */
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Algorithm 1: Cont.

3. /*The First match: assignment to list of matches, unmatched_tracks, unmatched_detections:*/
Cj ← Ccosine

(
Dj, xj)+ CEuclidean

(
Dj, xj) /*cost matrix at j */

Use the linear Hungarian algorithm to solveCj.
if (ccos ine > 0.2 and cEuclidean > 2 × head_width):

Tmatched ← tj
i that matched with dj

i
Tun_matched ← tj

i that is not matched with dj
i

Dremain ← dj
i that is not matched with tj

i
4. /*The second match: for the remaining detecting-ID in Dremain*/

Cj ← Ccosine

(
Dremain

j, xun_matched
j
)
+ C1−IoU

(
Dremain

j, xun_matched
j
)

Use the linear Hungarian algorithm to solveCj.
if (c1−IoU > 0.7) or (match_times = 0 and 0.1 ≤ ccos ine ≤ 0.2):

Tmatched ← tj
i that matched with dj

i,remain

Tun_matched ← tj
i that is not matched with dj

i,remain

Dremain ← dj
i,remain that is not matched with tj

i

4.2. Intra-Frame Processing

Intra-frame processing is used to reduce false positives and keep true positive detec-
tions, which can be treated as the pre-processing stage of the tracker’s inputs, as shown in
Figure 2. Intra-frame processing contains the delete process and store process.

First, we need to filter out false positives of detected heads. Compared to height,
human heads have smaller differences in size, so heads closer to the camera usually have
clearer visual features and greater confidence scores than those that are farther away.
Therefore, following the perspective principle of “near-big, far-small” and the detection
confidence score, it is possible to filter out most of the false positive detected heads, as
shown in Figure 4.

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 28 
 

 

        j
matched iT t← that matched with j

id  

_
j

un matched iT t←  that is not matched with j
id  

j
remain iD d←  that is not matched with j

it  
4.  /*The second match: for the remaining detecting-ID in remainD */ 

( ) ( )1_ _, ,j j j j j
remain un matchedcosine IoU nremain u matchedC C CD x D x−← +  

      Use the linear Hungarian algorithm to solve jC . 
if ( 1 IoUc −  > 0.7) or (match_times = 0 and cos0.1 0.2inec≤ ≤ ):  

j
matched iT t← that matched with ,

j
i remaind  

_
j

un matched iT t←  that is not matched with ,
j

i remaind  

,
j

remain i remainD d←  that is not matched with j
it  

In this study, we utilized a Market-1501-based [34] 512-d vector for appearance in-
formation, which was better than the original 128-d vector of ReID (see Appendix A) in 
DeepSORT because an extensive feature dimension is appropriate for small objects such 
as heads.  

4.2. Intra-Frame Processing  
Intra-frame processing is used to reduce false positives and keep true positive detec-

tions, which can be treated as the pre-processing stage of the tracker’s inputs, as shown in 
Figure 2. Intra-frame processing contains the delete process and store process. 

First, we need to filter out false positives of detected heads. Compared to height, hu-
man heads have smaller differences in size, so heads closer to the camera usually have 
clearer visual features and greater confidence scores than those that are farther away. 
Therefore, following the perspective principle of “near-big, far-small” and the detection 
confidence score, it is possible to filter out most of the false positive detected heads, as 
shown in Figure 4.  

  
Figure 4. Examples of deleted false positives during intra-frame processing. 

The head closest to the camera has the highest priority, and any heads with a confi-
dence score of no less than 99% will be considered as true positives directly. After sorting 
by center vertical coordinates, we determine whether to delete the corresponding item 
based on the difference in height values and confidence scores between adjacent head 
boxes, as shown in Algorithm 2. 

Algorithm 2: Filter out False Positives of Detected Heads 

Input:  M ← number of detected heads; N ← number of remain heads; j = frame; 

{ }1 ;1 ;j
head iD d i M j A= ≤ ≤ ≤ ≤ [ ] 1 , , , , , _ 1 Mj

i c c i
d x y w h confidence class id

=
= =      

Output: { }1 ;1 ;del j
head iD d i N j A= ≤ ≤ ≤ ≤ { }1 ;1 ;remain j

head iD d i N j A= ≤ ≤ ≤ ≤  

1： { }, ;j
head i cD sort d y←           /*sorted by head center yc*/ 

Figure 4. Examples of deleted false positives during intra-frame processing.

The head closest to the camera has the highest priority, and any heads with a confi-
dence score of no less than 99% will be considered as true positives directly. After sorting by
center vertical coordinates, we determine whether to delete the corresponding item based
on the difference in height values and confidence scores between adjacent head boxes, as
shown in Algorithm 2.

Second, we need to filter out false positives of detected bodies. Body detections are
prone to instability when encountering occlusions or blurring. IoU and keypoints will
be taken as conditions to delete unstable bodies in Algorithm 3; first, calculate the IoU
between each pair of bounding boxes and if the value is greater than the given threshold
(iou_threshold = 0.6), the lower confidence box is deleted; second, check the number of
keypoints to ensure at least two body joints are in the box.
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Algorithm 2: Filter out False Positives of Detected Heads

Input: M← number of detected heads; N← number of remain heads; j = frame;
Dhead =

{
dj

i |1 ≤ i ≤ M; 1 ≤ j ≤ A
}

; dj
i = [xc, yc, w, h, con f idence, class_id = 1]Mi=1

Output: Ddel
head =

{
dj

i |1 ≤ i ≤ N; 1 ≤ j ≤ A
}

; Dremain
head =

{
dj

i |1 ≤ i ≤ N; 1 ≤ j ≤ A
}

;

1: Dhead ← sort
{

dj
i , yc

}
; /*sorted by head center yc*/

2: while i + 1 < M − 1 do:
∆i ← dj

i − dj
i+1;

if ∆i < −5: /*two heads are very close, maybe FP in here*/
if dj

i [4] ≥ 99%: /* confidence ≥ 0.99*/
Ddel

head ← dj
i /*delete i*/

elif dj
i+1[4] ≥ dj

i [4]:
Ddel

head ← dj
i+1 /*delete i + 1*/

else:
Ddel

head ← dj
i and dj

i+1 /*delete i and i + 1*/
i += 1

3: Dremain
head ← Dhead − Ddel

head

Algorithm 3: Filter out False Positives of Detected Bodies

Input: M← number of detected bodies; N← number of remain bodies; j = frame;
Dbody =

{
dj

i |1 ≤ i ≤ M; 1 ≤ j ≤ A
}

; dj
i = [xc, yc, w, h, con f idence, class_id = 0]Mi=1

Output: Ddel
body =

{
dj

i |1 ≤ i ≤ N; 1 ≤ j ≤ A
}

; Dremain
body =

{
dj

i |1 ≤ i ≤ N; 1 ≤ j ≤ A
}

;
1: for i, k in M do:

IoUi ← Compute_IoU
(

dj
i , dj+1

i

)
;

if IoUi ≥ 60%: /*two bodies are very close, maybe FPs in here*/
Ddel

body ← min
(

dj
i [4], dj+1

i [4]
)

/*lower confidence deleted*/
i += 1
k += 1

2: for i in length(keypoints) do:
/*if the body has no more than two effective keypoints in total*/
if torch.sum (one_key[:, −1] ≥ 0.05) < 2:

Ddel
body ← dj

i /*lower confidence deleted*/
i += 1

3: Dremain
body ← Dbody − Ddel

body

After these filtering steps, the remaining heads and bodies are passed to the store pro-
cess. To handle potential crowd scenarios where multiple heads may occupy a single body
location, we employed Python dictionaries (head_sequence_set and body_sequence_set) to
store data. This approach allows for persistent tracking even when individuals enter or
exit the field of view. Additionally, this method mitigates indexing issues that may arise
due to variable head–body pairings, such as the example provided:

body_head_matched_ids = [(3, 0), (0, 1), (2, 2), (None, 3), (4, None), (1, 4)]

By deferring matching to the inter-frame tracking stage, our method can utilize appear-
ance features in addition to intra-frame location data, thus avoiding the potential identity
confusion caused by false positives, as shown in Figure 4.

In summary, the intra-frame processing stage employs a combination of confidence
scores, size principles and keypoint analysis to refine head and body detections, reducing
false positives and preparing the data for more accurate inter-frame tracking using the
RseNet-50-based [10] head-integrated keypoint R-CNN model.

4.3. Inter-Frame Matching

Since head detection can aid in body detection [10], head tracking can likewise assist
in body tracking, as described in this section. Because a less occluded head has an inclusion
relationship with the entire body, the corresponding tracking can be achieved through
bidirectional matching algorithms.
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Inter-frame matching refers to associating the heads and bodies in consecutive frames.
Unlike the traditional matching procedure of “head to head” or “body to body” in vanilla
DeepSORT, we have expanded the scope of association to “head to body”.

Because the head and body do not belong to the same recognition category (class_id = 0
for body; class_id = 1 f or head), it is meaningless to directly use the appearance features
of the head to match a body but this is very useful for filtering newly added tracking IDs,
as shown in Algorithm 4. This process can provide additional checking conditions for new
IDs. In the case of mixed tracking, the correspondence between the body and head does
not need to be calculated in every frame but only during the track ID initialization frame.

The head feature is the critical factor in identifying a worker in practical construction
scenarios, which may lead to dilemmas in the annotation of tracking IDs in manual labeling.
Due to the size of the head being relatively small and fixed, we used the Euclidean distance
of the bounding box center (3 × width) and a higher confidence threshold (95%) to restrict
the newly added head’s tracking ID in Algorithm 3. Based on the assumption that the head
tracking is more accurate than the body tracking, the newly added body should not be
around those already-existing heads by the IoU threshold of 0.8.

Whenever there is a newly added ID, we calculate the elements z of the cost matrix as
(24) and use Algorithm 4 to find the corresponding head or body ID.

z =
1−modified_IoU

confidence
(24)

modified_IoU =
body∩ head

min(body, head)
(25)

where the modified_IoU in (25) is no longer focused on the union area of the body and
head, but on the smaller area. This type of calculation tends to retain a high-overlap “head
to body” pair, and the low-confidence pair will lose priority to an extent.

Algorithm 4: Matching of “Head to Body” across Frames

Input:
MT ← number of tracked heads; NT ← number of tracked bodies; j = frame;
Tbody =

{
tj
i,body|1 ≤ i ≤ NT ; 1 ≤ j ≤ A

}
; tj

i,body = [xc, yc, w, h, con f idence, class_id = 0]NT
i=1

Thead =
{

tj
i,head|1 ≤ i ≤ MT ; 1 ≤ j ≤ A

}
; tj

i,head = [xc, yc, w, h, con f idence, class_id = 1]MT
i=1

Lbody,head =
{(

tj
i,body, tj

a,head

)
|1 ≤ i ≤ NT ; 1 ≤ j ≤ A; 1 ≤ a ≤ NT

}
;

Output: Lbody,head
1: if ∃IDhead /∈ Thead:

for k in Lbody,head do:
/*find the closest head, and calculate the Euclidean distance of the center*/
if Euclidean

∣∣∣IDhead − tj
a,head

∣∣∣ > 3×w and IDhead[4] > 0.95:
Thead ← IDhead

2: if ∃IDbody /∈ Tbody:
for k in Lbody,head do:

/*find the closest body, and calculate the IoU*/
if IoU

(
IDbody, tj

a,head

)
> 0.8 and IDj

a,head ̸= None:
Tbody ← IDbody

3: if Thead ← IDhead or Tbody ← IDbody : /*matching of new added head–body pairs*/
∀Cj ∈ cos t_matrix, Cj ← 1−modified_IoU

confidence when Cj ≤ 1.0;
Cj ← 100000 when Cj > 1.0;

Use the linear Hungarian algorithm to solveCj

# row_indices, col_indices = linear_assignment(cost_matrix)
Lbody,head ←

(
IDbody, IDhead

)
By adding head tracking, the weakness of relying solely on body tracking can be

overcome. Figure 5 (the frame #37 in video-3) shows the effective processing of inter-frame
matching from left to right images: the left image is the detector’s outputs, while the middle
image is the tracker’s outputs and the right image is the final results. Head and body IDs
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can obtain the pair-wise relationship and stable trajectories successfully. The newly added
head ID = 17 in the middle image (confidence = 92.2% in the left image) was deleted as a
false positive association and did not affect the final tracking outputs.
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Figure 5. Process images of the inter-frame matching.

In vanilla DeepSORT, the matching algorithm was only restricted to two frames
(t − 1 and t) as the Markov property in the KF in (2), whereas former frames (1, 2 . . . t − 2)
were forgotten. Then, unmatched head or body detections could be directly and easily
treated as a new track ID for the next frame; consequently, if the ReID feature vector of
the current frame is not good enough due to occlusions or blurring, better feature vectors
from previous frames will be replaced and cannot be recovered. Using the head as a
benchmark can maintain correspondence with past frames during the bad modification
of body features in the current frame; the “head to body” matching reduces possible ID
errors effectively.

Note: to clearly understand how head tracking aids in body tracking, please refer to
Appendix B for the calculation details.

4.4. Evaluation Metrics

CLEAR MOT [35] proposed the IDF1, MOTA and MOTP metrics in (26)–(28).

IDF1 =
2× IDTP

2× IDTP + IDFP + IDFN
(26)

MOTA = 1− ∑i(IDFPi + IDFNi + IDSWi)

∑i GTi
∈ (−∞, 1] (27)

MOTP =
∑i,t di,t

∑i ci
∈ (0, 1) (28)

where True Positive ID (IDTP) is the number of correctly assigned IDs throughout the entire
video; False Positive ID (IDFP) is the number of incorrect IDs; False Negative ID (IDFN)
is the number of missed IDs; IDSW is the identity switches of one object; GT means the
number of manually labeled ground truth boxes; i is one frame in video set; t is a worker
identity; d refers to the distance between the prediction box and ground truth box, d may
be assigned as the IoU distance.

IDTP does not have the same value as TP. The former emphasizes maintaining ID
consistency, whereas TP primarily focuses on bounding box IoU. IDTP can only be obtained
after the tracking association calculation is complete, whereas TP can be obtained during
the earlier detection stage. The same is true for IDFP and FP, and IDFN and FN.

IDF1 gauges the proportion of correctly identified detections to the mean count of
ground truth and computed detections. It offers a fair assessment of all trackers based on
their identification precision and recall through their harmonic mean [36].

MOTA measures the combined errors of IDFNs, IDFPs and IDSW. However, IDFPs
have a greater influence than IDFNs and IDSW. For instance, if the GT tracking target has



Mathematics 2024, 12, 1245 16 of 26

an ID error, it results in an increment of IDFP + 1. On the other hand, if the GT does not
have a corresponding detection, it is considered missing, resulting in IDFN + 1. Changes
in IDFPs will lead to an increase in IDFNs but not vice versa. It is important to note that
MOTA does not include a measure of localization error.

To compensate for this, MOTP measures a tracker’s ability to accurately estimate object
positions, regardless of its proficiency in recognizing object configurations and maintaining
consistent trajectories. It primarily evaluates positional accuracy, which is more relevant
to the detector’s performance than the overall performance of the tracker. As a result,
MOTChallenge removes MOTP as an evaluation metric.

HOTA [6] balances the effect of three accuracies: detection, association and localization.
Equations (29) and (30) decompose HOTA into separate DetA and AssA scores.

HOTAα =

√√√√ ∑
c∈{TP}

A(c)

|TP|+|FN|+|FP| =
√

DetAα ·AssAα (29)

HOTA =
∫ 1

0
HOTAα dα ≈ 1

19 ∑
α∈{0.05,0.1,···0.95}

HOTAα (30)

where α is the localization threshold of IoU, with 19 different distinct values (0.05 to 0.95
in 0.05 intervals) for integral calculation; c is one worker ID. More details of the HOTA
formula can be found in [6].

HOTA identified two errors in ID distinction for tracking: ID switches (IDSWs) and
ID transfers (IDTRs). IDSW is designed for continuous trajectories, while IDTR is designed
for intermittent trajectories.

IDSW calculates the frequency at which a tracked trajectory switches its matched GT
identity. It is worth mentioning that this definition is applicable only while the target is
within the field of view. IDSW occurs when, in consecutive frames, the same worker has
varying IDs, but it is restricted to TP and not FN. If a trajectory abruptly vanishes, it will
not be counted as IDSW.

IDTR happens when one worker exits the frame and another worker enters the subse-
quent frame, but with the former’s ID. IDTR is common in scenarios involving frequent
entry and exit. When worker A leaves frame-i, worker B enters frame-i + 1. If worker B
is mistakenly recognized as worker A in frame-i + 1, worker A’s ID will be transferred to
worker B, but IDSW will not be added since worker A was interrupted. Therefore, IDTR is
also considered an undesirable behavior during tracking, which MOTA could not consider.

Fortunately, HOTA can effectively resolve IDTR errors [6]. The IDSW in the CLEAR
MOT evaluation only measures short-term tracking and cannot accurately assess long-term
tracking. HOTA can evaluate the global long-term tracking by comparing FN and FP in the
matched trajectories.

5. Results and Discussion

The proposed tracking method achieved an IDF1 of 97.609%, MOTA of 95.191% and
HOTA of 78.884% on the testing dataset of nine videos [2] with a total of 41 workers.
Additionally, the method achieved an IDSW of 0, even in scenarios with heavy occlusions.
This is the first report of the IDSW value since previous research on tracking workers.

The model is implemented using Python 3.8.8 and PyTorch 1.8.0. The method is based
on the GitHub code [37], containing KF and Hungarian algorithms. The computer has one
NVIDIA RTX 3080 GPU, an Intel(R) Core(TM) i9-10900K CPU @ 3.70 GHz and one 32 GB
RAM with Win10. The testing dataset of nine videos is the same as [2,38], with a resolution
of 1920 × 1080 and 30 FPS; more details can be found in [2].

The ground truth data with frame-ID, track-ID and bounding box in a four-tuple
(x, y, width, height) were manually annotated as follows: <frame>, <id>, <bb_x>, <bb_y>,
<bb_width>, <bb_height>, <conf = 1>, <x = −1>, <y = −1>, <z = −1>. This was performed
with TrackEval [39].
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5.1. Quantitative Results

Table 2 presents a comprehensive analysis of the performance evaluation outcomes
for the nine videos across seven metrics: MOTA, IDF1, HOTA, AssA, AssRe, AssPr and
LocA. It is important to note that the aggregated value in the final row does not result from
a simple average of individual video scores due to variations in total frames; instead, the
cumulative frames of all videos are considered.

Table 2. Performance of our tracking method on the testing dataset.

Metrics Video-1 Video-2 Video-3 Video-4 Video-5 Video-6 Video-7 Video-8 Video-9 Combined

1 MOTA↑ (%) 100 94.08 93.943 93.582 94.833 98.859 95.44 96.843 93.972 95.191
2 IDF1↑ (%) 100 97.04 96.966 96.824 97.468 99.431 97.73 98.422 97.007 97.609
3 HOTA↑ (%) 93.023 77.601 81.446 75.7 74.801 76.911 78.273 81.799 77.446 78.884
4 AssA↑ (%) 93.023 79.784 86.066 78.962 81.28 85.451 80.484 83.341 78.149 83.296
5 AssRe↑ (%) 94.298 84.026 89.916 84.525 87.219 89.145 85.352 86.762 84.28 87.83
6 AssPr↑ (%) 94.298 84.026 90.052 83.247 84.142 88.895 84.634 86.689 83.016 86.976
7 LocA↑ (%) 92.568 83.922 86.915 82.642 82.643 81.798 84.326 85.815 85.614 84.725
8 IDSW↓ 0 0 0 0 0 0 0 0 0 0
9 Frag↓ 0 4 7 21 22 4 6 10 12 86

10 Hz↑ 9.05 6.01 5.69 5.96 7.11 6.69 6.62 5.33 6.82 6.58
11 MT 1 3 9 5 5 4 4 6 4 41

(‘↑’ means higher is better, ‘↓’ means lower is better).

The method consistently demonstrates stability and reliability across diverse scenarios
and conditions, as shown in Figure 6. The challenge for tracking algorithms, particularly in
video 3, with the highest number of workers, is exemplified by HOTA reaching 81.446%,
which is marginally higher than the combined score of 78.884%, thereby highlighting the
effectiveness of the crowd-tracking method.
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5.2. Comparision of Other SOTA Methods

Pedestrian tracking on roads presents a relatively straightforward task from a pro-
gramming standpoint, despite some inherent complexities and uncertainties in traffic
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environments. In contrast, construction sites pose a greater challenge due to their dynamic
nature. The simplicity of pedestrians’ movement patterns further contributes to the relative
ease of tracking on roads. Table 3 highlights eight state-of-the-art pedestrian tracking
methods employed in recent years, particularly in the context of worker tracking. However,
these methods exhibit considerable disparities in application domains, tracked objects
and technical challenges. Consequently, selecting the most suitable tracking techniques
for practical applications is crucial, as it ensures alignment with the diverse needs and
requirements of different scenarios.

Table 3. Performance of classical pedestrian tracking method on the testing dataset.

Metrics DeepSORT ByteTrack Deep OC_SORT BoTSORT OC_SORT Strong_SORT TransTrack UniTrack

1 MOTA↑ (%) 69.914 62.515 56.429 60.699 66.002 56.698 39.345 27.441
2 IDF1↑ (%) 79.771 81.829 74.471 77.365 80.633 77.065 70.459 61.887
3 HOTA↑ (%) 68.418 66.915 62.425 63.208 66.596 63.893 57.607 49.201
4 AssA↑ (%) 74.585 77.995 71.394 73.429 76.166 74.7 72.685 63.686
5 AssRe↑ (%) 78.896 82.717 75.462 76.777 80.316 78.679 76.712 68.208
6 AssPr↑ (%) 84.488 83.637 83.043 85.385 86.221 84.348 82.495 74.389
7 LocA↑ (%) 85.353 80.694 82.01 82.833 82.657 82.058 80.222 69.791
8 IDSW↓ 21 5 51 8 10 12 7 15
9 Frag↓ 101 107 178 180 168 140 161 268

10 Hz↑ 1.77 9.09 8.33 7.14 8.47 7.69 5.13 4.30

(‘↑’ means higher is better, ‘↓’ means lower is better).

The codes of ByteTrack [7], Deep OC_SORT [26], BoTSORT [29], OC_SORT [9] and
Strong_SORT [30] are from [40]. These five methods were retrained on 26.6 K images
of CrowdHuman, MOT17, Cityperson and ETHZ datasets [7]. TransTrack [24] and Uni-
Track [31] are in the authors’ original codes, and DeepSORT uses an implementation
from [41]. These three methodologies rely on vanilla YOLOX-x (yolox_x.pth, 756 MB).

As displayed in Table 3, YOLOX-based DeepSORT achieved the highest HOTA and
MOTA scores, at 68.418% and 69.914%, respectively, but exhibited the lowest FPS (1.77)
and the worst IDSW score (21). In contrast, ByteTrack demonstrated the best performance,
with an IDF1 score of 81.829%, the fastest FPS (9.09) and the lowest IDSW score (5). Despite
these achievements, none of these pedestrian tracking methods surpasses our proposed
bidirectional tracking method.

5.3. Discussion

Compared with the unidirectional method, the bidirectional method has the following
advantages:

(1) Low dependency of detection DNN

The bidirectional approach allows the tracker to modify the results of the detector
in reverse with imputers and refiners. Therefore, poor detections (ResNet-50 [10]) in
the current frame will be modified into acceptable outputs and saved into head or body
sequence sets for the next frame’s prediction. Thus, these poor detections will not greatly
change the value of the covariance matrix.

(2) Application of head tracking aid in body tracking

Head cues’ distinctive attributes, including low variation, visibility and reduced
occlusion, contribute to their effectiveness in tracking tasks. In tracking algorithms, the
utilization of head appearance features for body tracking marks a novel approach. Worker
tracking, far from being a mere metric comparison, demonstrates its practicality in complex
situations like the occlusions depicted in Figures 7 and 8. Despite individual differences in
head shape, the relatively consistent size of heads compared to other body parts ensures
more reliable appearance features compared to limbs.
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In Figure 7, from frames #4 to #14, workers with ID = 2 and ID = 4 of the same
categories are moving in the opposite direction. In frame #16, ID = 2 loses the detection
of the head and body until frames #19 and #22, respectively. After calculating, ID = 2
maintained continuous tracklets during the overlap by ID = 4, proving its effectiveness in
handling intra-class occlusions.

In Figure 8, due to the obstruction of the fence category, only a few appearance features
are visible in the worker category ID = 0. Frame #79 demonstrates that the scaled-down
bounding box of ID = 0 was repaired to a normal height and width, indicating that inter-
class occlusions can be fixed even during bad detections.

(3) Avoidance of the impact of KF divergence issues

The prediction of the whole body’s speed can now be replaced by the speed of the
head, instead of solely relying on KF prediction. The head’s speed can serve as a reference to
refine body velocity predictions in the KF. If body bounding box coordinates are inaccurate,
the correct head coordinates can be employed to correct them, preventing the tracker and
imputer from being misled by faulty detections.

For instance, in the top row of Figure 9, the body detector’s output for the left worker’s
full-body box in frames 112 to 114 shows an unexpected increase in the x-coordinate (ID 4).
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The expected trend is a decrease as the worker moves leftward, but the detection error
pushes the x-coordinates to the right (upper row: 667.91→ 668.17→ 666.25). Conversely,
the head’s x-coordinate accurately reflects the leftward movement (lower row: 668.50→
653.50 → 648.00). By utilizing head-based linear interpolation, the x-coordinate of the
full-body bounding box can be corrected to the correct value (lower row: 666.65→ 665.5→
660.5), ensuring accurate tracking.
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(4) Focus on metrics performance with ID errors

Addressing identity errors can be efficiently achieved with meticulous handling of
new head or body IDs, as outlined in the intra-frame processing and inter-frame matching
sections. By not immediately assigning unmatched detections to new identities, these meth-
ods can significantly reduce false positives (FPs) and false negatives (FNs), as demonstrated
by Algorithms 2–4. These heuristic algorithms streamline the process by avoiding the
need for retraining and effectively leveraging head information for identity association. By
attentively managing new IDs, they contribute to enhanced tracking system performance,
presenting a simple, effective and cost-efficient solution. This approach is particularly
suitable for practical applications due to its wide applicability.

The main limitation of the proposed method is the fact that many innovations are
heuristic and difficult to fully prove using mathematical formulas. Another limitation is
that it is not possible to completely abandon the use of KF to estimate velocity values.

A potential future research direction is to track worker movement data, obtain move-
ment characteristics and make trajectory predictions.

6. Conclusions

This article introduced a training-free tracking method for tracking workers. The
novel method has a bidirectional interaction mechanism between the detector and tracker,
which allows head information to supply more stable and precise navigation for body
tracking. We have also analyzed in detail the mathematical reasons for the non-convergence
phenomenon, and the proposed method can successfully prevent the problem of non-
convergence KF in traditional one-way tracking and significantly reduce identity errors
regarding workers through the designed newly added ID-checking algorithms. During
testing, our method achieved an HOTA of 78.884%, an MOTA of 95.191% and an IDSW of
0 across nine video datasets, demonstrating that the method remains highly effective even
in scenarios with serious occlusions or non-convergence issues.
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Appendix A

Some studies [42,43] suggest that the similar high-visibility apparel (Hi-Vis [38]) worn
by workers must lead to indistinguishable appearance features, which need additional
retraining on a new dataset of construction scenarios. Hi-Vis is a special type of clothing
commonly used to make workers more visible in busy or low-light environments, thereby
increasing their safety. Hi-Vis clothing typically uses eye-catching colors and pattern
designs. Due to the introduction of distinguishable appearance features in Hi-Vis clothing,
the previously trained model may not be able to accurately recognize or process these
new features. Therefore, in order for the model to adapt to these new changes and work
properly in new construction scenarios, it is necessary to retrain the model. Retraining
typically involves using datasets containing new features (in this case, Hi-Vis clothing) to
allow the model to learn and adapt to these new appearance features.

However, our calculations demonstrate that this attitude is wrong. The appearance
features of workers are distinguishable. For instance, in Figure A1, which captures frames
#18–#19 of video 3, featuring nine workers, our experiments revealed that even in scenarios
where workers wear helmets and similar Hi-Vis clothing, a standard human detection ReID
model (ckpt.t7/43.9 MB [44]) can still differentiate individuals accurately.
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Figure A1. Frames #18 (left) and #19 (right) of a construction video.

The following can be observed from the two cost matrices equations below:
(1) For smaller headers, the order of magnitude of successfully matched elements is

1~10 times less than other values, e.g., in the first row of the following Cosine_cost matrix
of heads equation:

(0.272943 + 0.280426 + 0.268017 + 0.318667 + 0.237262 + 0.289022 + 0.245184 + 0.309502) ÷ 8 ÷ 0.026227 = 10.58.
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(2) For larger bodies, it is 10~100 times less. Larger objects are easier to distinguish
than smaller ones, similar to how body elements are approximately 10 times smaller than
the head, e.g., in the first row of the following Cosine_cost matrix of bodies equation,

(0.17495 + 0.220428 + 0.207515 + 0.245856 + 0.277771) ÷ 5 ÷ 0.005517 = 40.8.

When using the default cosine threshold of 0.2, the ReID for pedestrian detection
can accurately identify even the smallest heads of distinct workers. Such simple calcu-
lations provide evidence that the ReID model for pedestrians can be applied to workers
without retraining.

Cosine_cost matrix of bodies =



0.005517 0.17495 0.220428 0.207515 0.245856 0.277771
0.228444 0.269655 0.002582 0.235785 0.305651 0.189078
0.218299 0.175027 0.221523 0.162441 0.193348 0.256855
0.272631 0.173115 0.321291 0.181186 0.00269 0.33439
0.207658 0.174372 0.196977 0.011115 0.182533 0.2122
0.164177 0.009771 0.234517 0.231651 0.197819 0.286635
0.246577 0.224236 0.212872 0.196327 0.241916 0.029123
0.129127 0.131971 0.134357 0.116552 0.138499 0.185706
0.129708 0.127821 0.15255 0.127272 0.138029 0.196159



Cosine_cost matrix of heads =



0.026227 0.272943 0.280426 0.268017 0.318667 0.237262 0.289022 0.245184 0.309502
0.266658 0.202771 0.255982 0.014943 0.358701 0.245981 0.343662 0.292406 0.375493
0.303788 0.271091 0.223952 0.29911 0.271148 0.016107 0.321069 0.189749 0.279182
0.334715 0.023847 0.310186 0.227934 0.251481 0.233631 0.280038 0.286123 0.336056
0.314554 0.29344 0.046261 0.27025 0.300371 0.197424 0.355366 0.271777 0.173631
0.328805 0.260196 0.280138 0.371353 0.250941 0.253999 0.037608 0.292974 0.356252
0.343413 0.300676 0.344513 0.434718 0.320221 0.268226 0.312919 0.031341 0.190585
0.32014 0.216402 0.172925 0.28769 0.112796 0.174532 0.293966 0.220967 0.250534
0.383001 0.340808 0.301298 0.429668 0.447917 0.341719 0.396959 0.19489 0.021867


Appendix B

To clearly show the details of how head tracking aids in body tracking, we choose one
output example (shown in Table A1) of our source code, executed in video 7 from frames
#1 to #8. Each frame contains five procedures:

detector calculation→ Intra-frame processing→ head_tracker→ body_tracker→ Inter-
frame matching.

Table A1. The process details of the head tracking aid in body tracking.

No. Calculation Descriptions

Input frame #1

1

• The output of Detector (head_integrated Keypoint R-CNN) as:

Bounding boxes in (x1, y1, x2, y2, confidence, class_id) = tensor([
1102.4229 275.0947 1219.5381 563.0864 0.9966 0 #body ID = 0
733.7047 1.0617 789.8318 97.3516 0.9864 0 #body ID = 1
1312.4270 197.8513 1434.9780 470.1823 0.9817 0 #body ID = 2
601.3785 0.0000 654.7200 104.9832 0.9561 0 #body ID = 3
1148.3512 274.9141 1189.9109 322.3585 0.9955 1 #head ID = 0
1382.5782 198.2840 1422.7518 249.7969 0.9886 1 #head ID = 1 ])
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Table A1. Cont.

No. Calculation Descriptions

Input frame #1

Number of Body IDs = 4, Number of Head IDs = 2.

2

• Intra-frame processing: delete the false positives:

Algorithm 2: delta_del_head = [],
Algorithm 3: delta_del_body = [3].
Then the detection = [601.3785, 0.0000, 654.7200, 104.9832, 0.9561, 0] is deleted, and the left bounding box is:
boxes_xyxy = [
1102.422852 275.094666 1219.538086 563.086426 0.996561 0
733.704712 1.061707 789.831787 97.351639 0.986442 0
1312.427002 197.851257 1434.978027 470.182251 0.98167 0
1148.351318 274.914093 1189.910889 322.35849 0.995536 1
1382.578247 198.283997 1422.751831 249.796875 0.988596 1]

3

• Head_tracker in Algorithm 1:

the first match: matches_a, unmatched_tracks_a, unmatched_detections = [] [] [0, 1]
the second match: matches_b, unmatched_tracks_b, unmatched_detections = [] [] [0, 1]
matches, unmatched_tracks, unmatched_detections = [] [] [0, 1]
The tracking ID in the head sequence set is: 0, 1.

4

• Body_tracker in Algorithm 1:

the first match: matches_a, unmatched_tracks_a, unmatched_detections = [] [] [0, 1, 2]
the second match: matches_b, unmatched_tracks_b, unmatched_detections = [] [] [0, 1, 2]
The tracking ID in the body sequence set is: 0, 1, 2.

5

• Inter-frame matching in Algorithm 4:

body_id_list = [0, 2]; head_id_list = [0, 1]
cost_matrix = [
0.003819 100,000.
100,000. 100,000.
100,000. 0.]
row_indices = bodys, col_indices = heads: [0 2] [0 1]
The matched body-ID and head-ID are self.match_body_head = [(0, 0), (2, 1), (1, None)]

Input frame #2

1

Bounding boxes in (x1, y1, x2, y2, confidence, class_id) = tensor ([
1100.2812 274.1615 1218.8927 563.6195 0.9977 0
1317.1239 199.0990 1435.9489 468.3447 0.9848, 0
733.1741 0.5491 783.7123 96.3040 0.9834 0
598.9022 0.0000 644.2981 103.0769 0.9701 0
1148.8118 275.4363 1190.7026 322.5742 0.9915 1
1383.2902 199.0062 1423.4681 248.5701 0.9893 1])
Number of Body IDs = 4, Number of Head IDs = 2.

2

• Intra-frame processing: delete the false positives:

Algorithm 2: delta_del_head = [],
Algorithm 3: delta_del_body = [3].
[598.9022, 0.0000, 644.2981, 103.0769, 0.9701, 0] is deleted.

3
• Head_tracker in Algorithm 1:

the first match: matches_a, unmatched_tracks_a, unmatched_detections = [(0, 0), (1, 1)] [] []
the second match: matches_b, unmatched_tracks_b, unmatched_detections = [] [] []
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Table A1. Cont.

No. Calculation Descriptions

Input frame #2

4
• Body_tracker in Algorithm 1:

the first match: matches_a, unmatched_tracks_a, unmatched_detections = [(0, 0), (1, 2), (2, 1)] [] []
the second match: matches_b, unmatched_tracks_b, unmatched_detections= [] [] []

5

• Inter-frame matching in Algorithm 4:

The matched body-ID and head-ID is: self.match_body_head = [(0, 0), (2, 1), (1, None)]
body-np_xyxy_final = [
1100.495617 274.254816 1218.957032 563.566199 0.997711 0
731.006493 0.616912 786.759376 96.442545 0.983394 1
1315.511496 198.934008 1436.811807 468.587705 0.984758 2]

...

...

Input the frame #7

1

Bounding boxes in (x1, y1, x2, y2, confidence, class_id) = tensor ([
1103.0753 278.1667 1218.2045 573.1316 0.9963
1327.7861 199.1935 1435.1885 466.8471 0.9849
576.0401 0.9442 636.5553 104.2498 0.9785
721.5332 2.7390 797.3731 105.7765 0.9664
646.1354 0.9752 769.4316 103.6911 0.8158
1153.6139 279.1069 1196.0039 327.2707 0.9968
1388.5093 198.7742 1425.3273 243.2225 0.9838])
Number of Body IDs = 5, Number of Head IDs = 2.

2

• Intra-frame processing: delete the false positives:

Algorithm 2: delta_del_head = [],
Algorithm 3: delta_del_body = [4].
[646.1354, 0.9752, 769.4316, 103.6911, 0.8158] is deleted.

3
• Head_tracker in Algorithm 1:

the first match: matches_a, unmatched_tracks_a, unmatched_detections = [(0, 0), (1, 1)] [] []
the second match: matches_b, unmatched_tracks_b, unmatched_detections = [] [] []

4
• Body_tracker in Algorithm 1:

the first match: matches_a, unmatched_tracks_a, unmatched_detections = [(0, 0), (1, 2), (2, 1)] [3] []
the second match: matches_b, unmatched_tracks_b, unmatched_detections = [] [3] []

5

• Inter-frame matching in Algorithm 4:

Find a new added body-ID: initiate_np_xyxy = [[721.533203, 2.738953, 797.373108, 105.776482, 0.966378, 3]]
head-candidates_tlwh = [
1153.614397 278.977509 42.391931 48.180364
1388.411052 198.606596 37.066294 44.685888]
body_id_list= [0, 2, 1]; head_id_list = [0, 1, None]
#match between one newly added body-ID and two existing head-ID
cost_matrix = [[100,000. 100,000.]]
#100,000 is bigger than the threshold, then body ID = 3 with head-ID = None
self.match_body_head = [(0, 0), (2, 1), (1, None), (3, None)]
#the newly added track ID’s bounding box is not in the current frame, but will be shown in the next frame.
body-np_xyxy_final = [
1102.914528 278.100212 1218.567574 572.995262 0.996286 0
570.531019 0.777104 631.442964 104.358195 0.978527 1
1322.21706 198.937752 1440.727778 466.620414 0.984871 2]
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Table A1. Cont.

No. Calculation Descriptions

Input the frame #8

5

body-np_xyxy_final = [
1104.565028 282.556513 1212.796813 574.978288 0.99675 0
563.08197 1.296683 623.345229 103.507251 0.983013 1
1323.317717 198.276943 1441.398572 466.717254 0.983189 2
722.836121 2.213905 787.554428 106.905021 0.941132 3] #new added body-ID = 3
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