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Abstract: A succinct and systematic form of multiplication for any arbitrary pairs of octonions is
devised. A typical expression of multiplication for any pair of octonions involves 64 terms, which,
from the computational and theoretical aspect, is too cumbersome. In addition, its internal relation
could not be directly visualized via the expression per se. In this article, we study the internal
structures of the indexes between imaginary unit octonions. It is then revealed by various copies of
isomorphic structures for the multiplication. We isolate one copy and define a multiplicative structure
on this. By doing so, we could keep track of all relations between indexes and the signs for cyclic
permutations. The final form of our device is expressed in the form of a series of determinants, which
shall offer some direct intuition about octonion multiplication and facilitate the further computational
aspect of applications.
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1. Introduction

The relation between algebraic systems or operations and geometry is always a fas-
cinating topic in physics [1,2]. Their relation could be easily applied or implemented in
real problems, particularly the movement of 3D objects or higher dimensional tangible
or intangible objects [3–5]. In this research, we shall focus on the computational aspect
of octonions with an aim to improve the efficiency of its computational and theoretical
derivations. As we already know, there are many ways to construct octonions, such as
the Fano Plane (cyclic permutations refer to the multiplication), the Cayley–Dickson con-
struction (an octonion is regarded as a pair of quaternions), Clifford algebras, spinors,
and trialities [6]. Octonions are non-commutative and non-associative but alternative (a
weaker form of associativity) and power-associative [7]. A standard form of an octonion
is w⃗ = w0⃗e0 + w1⃗e1 + w2⃗e2 + w3⃗e3 + w4⃗e4 + w5⃗e5 + w6⃗e6 + w7⃗e7 [8]. The product of each

pair of octonions is defined via w⃗v⃗ :=
7

∑
i=0

7

∑
j=0

(wi · vj) · e⃗i⃗ej. In order to form a closed set and

preserve some properties, one has to specify the product of each pair of unit octonions e⃗i⃗ej.
This is carried out normally via a multiplication table, such as Table 1, e⃗i ◦ e⃗i+1 := e⃗i+3 [9],
and the unit octonions e⃗j [10].

Though it is clearly specified, the real computation will concern an expansion of
64 terms in order to rearrange them into a standard form of an octonion: w⃗v⃗ :=.
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(w0v0 − w1v1 − w2v2 − w3v3 − w4v4 − w5v5 − w6v6 − w7v7 )⃗e0

+(w0v1 + w1v0 + w2v4 + w3v7 + w5v6 − w4v2 − w6v5 − w7v3 )⃗e1

+(w0v2 + w2v0 + w3v5 + w4v1 + w6v7 − w1v4 − w5v3 − w7v6 )⃗e2

+(w0v3 + w3v0 + w4v6 + w5v2 + w7v1 − w1v7 − w2v5 − w6v4 )⃗e3

+(w0v4 + w4v0 + w1v2 + w5v7 + w6v3 − w2v1 − w3v6 − w7v5 )⃗e4

+(w0v5 + w5v0 + w2v3 + w6v1 + w7v4 − w1v6 − w3v2 − w4v7 )⃗e5

+(w0v6 + w6v0 + w1v5 + w3v4 + w7v2 − w2v7 − w4v3 − w5v1 )⃗e6

+(w0v7 + w7v0 + w1v3 + w2v6 + w4v5 − w3v1 − w5v4 − w6v2 )⃗e7

Table 1. A multiplication table for e⃗i⃗ej via rules based on modulo 7.

e⃗i⃗ej e⃗0 ≡ 1 e⃗1 e⃗2 e⃗3 e⃗4 e⃗5 e⃗6 e⃗7

e⃗0 ≡ 1 1 e⃗1 e⃗2 e⃗3 e⃗4 e⃗5 e⃗6 e⃗7

e⃗1 e⃗1 −1 e⃗4 e⃗7 −e⃗2 e⃗6 −e⃗5 −e⃗3

e⃗2 e⃗2 −e⃗4 −1 e⃗5 e⃗1 −e⃗3 e⃗7 −e⃗6

e⃗3 e⃗3 −e⃗7 −e⃗5 −1 e⃗6 e⃗2 −e⃗4 e⃗1

e⃗4 e⃗4 e⃗2 −e⃗1 −e⃗6 −1 e⃗7 e⃗3 −e⃗5

e⃗5 e⃗5 −e⃗6 e⃗3 −e⃗2 −e⃗7 −1 e⃗1 e⃗4

e⃗6 e⃗6 e⃗5 −e⃗7 e⃗4 −e⃗3 −e⃗1 −1 e⃗2

e⃗7 e⃗7 e⃗3 e⃗6 −e⃗1 e⃗5 −e⃗4 −e⃗2 −1

Even if one could put up with this expression, it will become unbearable when an
extra octonion is involved in the product, in which there will be 512 terms to be rearranged,
and the resulting coefficient of each unit octonion will contain 64 terms. The main idea
of this article is to find the intrinsic relations between these indexes so as to simplify the
representations into a summarized and manageable form (see Theorems 1 and 3). The
development of quaternions and octonions has lasted for centuries [11,12]. Their interaction
has also been studied for a long time, particularly their multiplication operators [13]. To
overcome the lengthy expression of multiplication between two octonions and obtain some
succinct expressions, we study the internal relation between the terms and express them
in a much more manageable form, which shall facilitate the cumbersome computational
aspect of operations regarding octonions. Though some applications for octonions are
associated with quaternion counterparts [14,15], there are more advanced and modern
applications [16] that are worth investigating if our device is adopted. It also has some
intrinsic or general properties in common with other algebras from the perspectives of
algebraic mapping [17].

Based on the octonionic product rule e⃗i ◦ e⃗i+1 := e⃗i+3, the indexes for the unit octonions
{⃗e1, e⃗2, · · · , e⃗7} are classified into seven cyclic permutation groups [1] ≡ {1, 2, 4}, [2] ≡
{2, 3, 5}, [3] ≡ {3, 4, 6}, [4] ≡ {4, 5, 7}, [5] ≡ {5, 6, 8}, [6] ≡ {6, 7, 9}, and [7] ≡ {7, 8, 10}.
Each group has its distinct sum: 7, 10, 13, 16, 19, 22, and 25, respectively. We identify them
with a pair of values: sum and absolute difference. We then associate them with a function
Lab to recover the label of its group, i.e., 1 to 7. Then, we study the relation between them,
particularly their algebraic identities. In addition, the multiplicative octonion after the
product of two octonions is identified via two parts:the unsigned unit octonion and the
signed one. The former part is captured by the function PM, while the second part is
captured by a counting-swap function #s and an odd-even function ϵ, which represents
the cyclic action. Their results are mainly summarized in Tables 2 and 3. With these
settings and their related properties, we could then define the multiplication for each pair
of octonions u⃗×8 v⃗. The main idea is to find the intrinsic relations between the cyclic groups
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[1], [2], . . . , [7] in order to keep track of the action between all indexes. Such representations
could facilitate our intuitive comprehension of an octonionic product.

Table 2. Transitional computation table: In the table, [n] = {n, n + 1, n + 3}.

n [n] [[n]] = {b̄ = (p, q) : p, q ∈ [n], p ̸= q} {(p + q, b̄∗ − b̄∗) : p, q ∈ [n], p ̸= q} σ(n)

1 {1, 2, 4} {(1, 2), (2, 4), (1, 4), (2, 1), (4, 2), (4, 1)} {(3, 1), (6, 2), (5, 3)} 7

2 {2, 3, 5} {(2, 3), (3, 5), (2, 5), (3, 2), (5, 3), (5, 2)} {(5, 1), (8, 2), (7, 3)} 10

3 {3, 4, 6} {(3, 4), (4, 6), (3, 6), (4, 3), (6, 4), (6, 3)} {(7, 1), (10, 2), (9, 3)} 13

4 {4, 5, 7} {(4, 5), (5, 7), (4, 7), (5, 4), (7, 5), (7, 4)} {(9, 1), (12, 2), (11, 3)} 16

5 {5, 6, 8} {(5, 6), (6, 8), (5, 8), (6, 5), (8, 6), (8, 5)} {(11, 1), (14, 2), (13, 3)} 19

6 {6, 7, 9} {(6, 7), (7, 9), (6, 9), (7, 6), (9, 7), (9, 6)} {(13, 1), (16, 2), (15, 3)} 22

7 {7, 8, 10} {(7, 8), (8, 10), (7, 10), (8, 7), (10, 8), (10, 7)} {(15, 1), (18, 2), (17, 3)} 25

Table 3. Compatible combinations of solutions.

x = 1 λ1(p, q) R1
η−1

≡ M1 R2
η−1

≡ M2 R3
η−1

≡ M3 PM//U7 ◦ PM

(p, q)∗ = 1 −9 (2, 1)
η−1

≡ (2, 1) (7, 5)
η−1

≡ (7, 5) (6, 3)
η−1

≡ (6, 3) 4//4

(p, q)∗ = 2 −8 (3, 2)
η−1

≡ (3, 2) (8, 6)
η−1

≡ (1, 6) (7, 4)
η−1

≡ (7, 4) 5//5

(p, q)∗ = 3 −7 (4, 3)
η−1

≡ (4, 3) (9, 7)
η−1

≡ (2, 7) (8, 5)
η−1

≡ (1, 5) 6//6

(p, q)∗ = 4 −6 (5, 4)
η−1

≡ (5, 4) (10, 8)
η−1

≡ (3, 1) (9, 6)
η−1

≡ (2, 6) 7//7

(p, q)∗ = 5 −5 (6, 5)
η−1

≡ (6, 5) (11, 9)
η−1

≡ (4, 2) (10, 7)
η−1

≡ (3, 7) 8//1

(p, q)∗ = 6 −4 (7, 6)
η−1

≡ (7, 6) (12, 10)
η−1

≡ (5, 3) (11, 8)
η−1

≡ (4, 1) 9//2

(p, q)∗ = 7 −3 (8, 7)
η−1

≡ (1, 7) (13, 11)
η−1

≡ (6, 4) (12, 9)
η−1

≡ (5, 2) 10//3

(p, q)∗ = 8 −2 (9, 8) (14, 12) (13, 10) 11//4
(p, q)∗ = 9 −1 (10, 9) (15, 13) (14, 11) 12//5

x = 2 λ2(p, q) ((r, s)∗, (r, s)∗)21 ((r, s)∗, (r, s)∗)22 ((r, s)∗, (r, s)∗)23 PM//U7 ◦ PM

(p, q)∗ = 1 −13 (−2,−3) (3, 1) (2,−1) 0//7
(p, q)∗ = 2 −12 (−1,−2) (4, 2) (3, 0) 1//1
(p, q)∗ = 3 −11 (0,−1) (5, 3) (4, 1) 2//2
(p, q)∗ = 4 −10 (1, 0) (6, 4) (5, 2) 3//3
(p, q)∗ = 5 −9 (2, 1) (7, 5) (6, 3) 4//4
(p, q)∗ = 6 −8 (3, 2) (8, 6) (7, 4) 5//5
(p, q)∗ = 7 −7 (4, 3) (7, 9) (8, 5) 6//6
(p, q)∗ = 8 −6 (5, 4) (8, 10) (9, 6) 7//7

x = 3 λ3(p, q) ((r, s)∗, (r, s)∗)31 ((r, s)∗, (r, s)∗)32 ((r, s)∗, (r, s)∗)33 PM//U7 ◦ PM

(p, q)∗ = 1 −11 (0,−1) (5, 3) (4, 1) 2//2
(p, q)∗ = 2 −10 (1, 0) (6, 4) (5, 2) 3//3
(p, q)∗ = 3 −9 (2, 1) (7, 5) (6, 3) 4//4
(p, q)∗ = 4 −8 (3, 2) (8, 6) (7, 4) 5//5
(p, q)∗ = 5 −7 (4, 3) (9, 7) (8, 5) 6//6
(p, q)∗ = 6 −6 (5, 4) (10, 8) (9, 6) 7//7
(p, q)∗ = 7 −5 (6, 5) (11, 9) (10, 7) 8//1
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2. Theoretical Statements and Derivations

For any given non-negative paired integers b̄ = (p, q) ∈ N2, we use b̄∗ (or (p, q)∗) and
b̄∗ (or (p, q)∗) to denote max{p, q} and min{p, q}, respectively.

In the table, σ(n) denotes the sum of all values in [n].

Definition 1. Define Lab :
7⋃

n=1

[[n]] → {1, 2, 3, 4, 5, 6, 7} by

Lab(p, q) :=

{
(p, q)∗ − 1 , if (p, q)∗ − (p, q)∗ = 1;
(p, q)∗ − 3 , if (p, q)∗ − (p, q)∗ = 2 or (p, q)∗ − (p, q)∗ = 3,

where [[n]] is defined in Table 2.

Lab(p, q) (also denoted by l(a, b)) will recover the group to which the pair (p, q) belong.
This piecewise function could be further characterized via the following equivalent functions.

Claim 1. Lab(p, q) = [(p, q)∗ − (p, q)∗ − 5
2 ]

2 + (p, q)∗ − 13
4 .

Proof. The piecewise function defined in Definition 1 could be capsuled into the following
equivalent function:

Lab(p, q) = {1 − [(p, q)∗ − (p, q)∗ − 1]} · [1 − (p, q)∗ − (p, q)∗ − 1
2

] · [(p, q)∗ − 1]

+{1 − [(p, q)∗ − (p, q)∗ − 2] · [(p, q)∗ − (p, q)∗ − 3]
2

} · [(p, q)∗ − 3]

=
1
2
· {[(p, q)∗ − (p, q)∗]2 + 5 · [(p, q)∗ − (p, q)∗] + 6} · ((p, q)∗ − 1)− 1

2
·{[(p, q)∗ − (p, q)∗]2 + 5 · [(p, q)∗ − (p, q)∗] + 4} · ((p, q)∗ − 3)

=[(p, q)∗ − (p, q)∗]2 − 5 · [(p, q)∗ − (p, q)∗] + (p, q)∗ + 3 = [(p, q)∗ − (p, q)∗ −
5
2
]2 + (p, q)∗ − 13

4
.

Example 1. Lab(5, 8) = Lab(8, 5) = (8− 5− 5
2 )

2 + 8− 13
4 = 5 and Lab(10, 8) = Lab(8, 10) =

(10 − 8 − 5
2 )

2 + 10 − 13
4 = 7.

Corollary 1. Lab(p, q) =
[
(p, q)∗, (p, q)∗, 1

] 1 −1 −2
−1 1 5

2
−2 5

2 3

(p, q)∗

(p, q)∗
1

.

Definition 2. #s(h̄) is defined by the lowest number of swapping instances with respect to the
neighboring elements in the vector h̄ in order to coincide with its ascending vector k̄.

Example 2. #s((8, 5, 2)) will be computed by the number of swapping from (8, 5, 2) to (8, 2, 5),
from (8, 2, 5) to (2, 8, 5), and from (2, 8, 5) to (2,5,8). Hence, #s((8, 5, 2)) = 3.

Let ϵ denote the characteristic function for even and odd non-negative integers (1 for
even integers, including 0, and −1 for odd integers). Let sg denote the sign function (1 for
non-negative numbers and −1 for negative numbers).

Claim 2. ϵ(#s(n1, n2, n3)) = sg((n2 − n1) · (n3 − n2) · (n3 − n1)), where n1, n2, n3 ∈ N and
ni ̸= nj for all 1 ≤ i < j ≤ 3.

Proof. There are six possible cases to be considered:
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1. n1 < n2 < n3: Then, ϵ(#s(n1, n2, n3)) = ϵ(0) = 1 and sg((n2 − n1) · (n3 − n2) · (n3 −
n1)) = 1;

2. n1 < n3 < n2: Then, ϵ(#s(n1, n2, n3)) = ϵ(1) = −1 and sg((n2 − n1) · (n3 − n2) ·
(n3 − n1)) = −1;

3. n2 < n1 < n3: Then, ϵ(#s(n1, n2, n3)) = ϵ(1) = −1 and sg((n2 − n1) · (n3 − n2) ·
(n3 − n1)) = −1;

4. n2 < n3 < n1: Then, ϵ(#s(n1, n2, n3)) = ϵ(2) = 1 and sg((n2 − n1) · (n3 − n2) · (n3 −
n1)) = 1;

5. n3 < n1 < n2: Then, ϵ(#s(n1, n2, n3)) = ϵ(2) = 1 and sg((n2 − n1) · (n3 − n2) · (n3 −
n1)) = 1;

6. n3 < n2 < n1: Then, ϵ(#s(n1, n2, n3)) = ϵ(3) = −1 and sg((n2 − n1) · (n3 − n2) ·
(n3 − n1)) = −1.

Definition 3. Preliminary setting of Multiplication 1: Define PM : N2 → N by PM(p, q) :=
3 ∗ Lab(p, q) + 4 − (p + q).

Claim 3. PM(p, q) = 3 · [(p, q)∗ − (p, q)∗ − 5
2 ]

2 + 2 · [(p, q)∗ − (p, q)∗ − 5
2 ] + (p, q)∗ − 3

4 .

Corollary 2. PM(p, q) = PM(q, p) = 3 · [(p, q)∗− (p, q)∗]2 − 13[(p, q)∗− (p, q)∗]+ (p, q)∗+
13.

Corollary 3. PM(p, q) = PM(q, p) = 3 · [(p, q)∗ − (p, q)∗ − 13
6 ]2 + (p, q)∗ − 13

12 .

Corollary 4. PM(p, q) = PM(q, p) =
[
(p, q)∗, (p, q)∗, 1

] 3 −3 − 13
2

−3 3 7
− 13

2 7 13

(p, q)∗

(p, q)∗
1

. As

one can see, the function PM is completely represented by the matrix

 3 −3 − 13
2

−3 3 7
− 13

2 7 13

.

Example 3. PM(4, 7) = PM(7, 4) = 3 · [7 − 4 − 5
2 ]

2 + 2 · [7 − 4 − 5
2 ] + 4 − 3

4 = 5 and

PM(8, 7) = PM(7, 8) =
[
8, 7, 1

] 3 −3 − 13
2

−3 3 7
− 13

2 7 13

8
7
1

 = 10.

Claim 4. If PM(p, q) = PM(r, s), then

1. (r, s)∗ − (r, s)∗ = 1 ⇒ (r, s)∗ = λ(p, q) + 10;
2. (r, s)∗ − (r, s)∗ = 2 ⇒ (r, s)∗ = λ(p, q) + 14;
3. (r, s)∗ − (r, s)∗ = 3 ⇒ (r, s)∗ = λ(p, q) + 12,

where
λ(p, q) = 3 · [(p, q)∗ − (p, q)∗]2 − 13[(p, q)∗ − (p, q)∗] + (p, q)∗.

Proof. By Corollary 2, PM(p, q) = PM(r, s) implies 3[(r, s)∗ − (r, s)∗]2 − 13[(r, s)∗ − (r, s)∗]
+[(r, s)∗−λ(p, q)]. Let x = (r, s)∗− (r, s)∗. Then, one has 3x2 − 13x+[(r, s)∗−λ(p, q)] = 0, i.e.,

x =
13 ±

√
169 − 12[(r, s)∗ − λ(p, q)]

6
.

If x = 1, then
√

169 − 12[(r, s)∗ − λ(p, q)] = 7, i.e., (r, s)∗ = λ(p, q)+ 10. If x = 2, then√
169 − 12[(r, s)∗ − λ(p, q)] = 1, i.e., (r, s)∗ = λ(p, q) + 14. If x = 3, then√
169 − 12[(r, s)∗ − λ(p, q)] = 5, i.e., (r, s)∗ = λ(p, q) + 12.
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Observe that if (p, q)∗ − (p, q)∗ = 1, then λ(p, q) = (p, q)∗ − 10; if (p, q)∗ − (p, q)∗ = 2,
then λ(p, q) = (p, q)∗ − 14; if (p, q)∗ − (p, q)∗ = 3, then λ(p, q) = (p, q)∗ − 12. The feasible
solutions, with (r, s) not being limited to the sets 1 to 7, are demonstrated in Table 3.

There are some specifications for the table:

1. x = (p, q)∗ − (p, q)∗;
2. λ1(p, q) = (p, q)∗ − 10; λ2(p, q) = (p, q)∗ − 14; λ3(p, q) = (p, q)∗ − 12;
3. ((r, s)∗, (r, s)∗)11 = ((r, s)∗ + 1, λ1(p, q) + 10) = ((r, s)∗ + 1, (p, q)∗) = ((p, q)∗ +

1, (p, q)∗); ((r, s)∗, (r, s)∗)12 = ((r, s)∗ + 2, λ1(p, q) + 14) = ((r, s)∗ + 2, (p, q)∗ + 4) =
((p, q)∗ + 6, (p, q)∗ + 4); ((r, s)∗, (r, s)∗)13 = ((r, s)∗ + 3, λ1(p, q) + 12) = ((r, s)∗ +
3, (p, q)∗ + 2) = ((p, q)∗ + 5, (p, q)∗ + 2);

4. ((r, s)∗, (r, s)∗)21 = ((r, s)∗ + 1, λ2(p, q) + 10) = ((r, s)∗ + 1, (p, q)∗ − 4); ((r, s)∗,
(r, s)∗)22 = ((r, s)∗ + 2, λ2(p, q) + 14) = ((r, s)∗ + 2, (p, q)∗); ((r, s)∗, (r, s)∗)23 =
((r, s)∗ + 3, λ2(p, q) + 12) = ((r, s)∗ + 3, (p, q)∗ − 2);

5. ((r, s)∗, (r, s)∗)31 = ((r, s)∗ + 1, λ3(p, q) + 10) = ((r, s)∗ + 1, (p, q)∗ − 2); ((r, s)∗,
(r, s)∗)32 = ((r, s)∗ + 2, λ3(p, q) + 14) = ((r, s)∗ + 2, (p, q)∗ + 2); ((r, s)∗, (r, s)∗)33 =
((r, s)∗ + 3, λ3(p, q) + 12) = ((r, s)∗ + 3, (p, q)∗).

Let us apply some main abbreviations:

• R1 ≡ ((r, s)∗, (r, s)∗)11 := {((p, q)∗ + 1, (p, q)∗) : 1 ≤ (p, q)∗ ≤ 7};
• R2 ≡ ((r, s)∗, (r, s)∗)12 := {((p, q)∗ + 6, (p, q)∗ + 4) : 1 ≤ (p, q)∗ ≤ 7};
• R3 ≡ ((r, s)∗, (r, s)∗)13 := {((p, q)∗ + 5, (p, q)∗ + 2) : 1 ≤ (p, q)∗ ≤ 7}.

Claim 5.

1. For all ((p, q)∗ + 1, (p, q)∗) ∈ R1[PM((p, q)∗ + 1, (p, q)∗) = (p, q)∗ + 3];
2. For all ((p, q)∗ + 6, (p, q)∗ + 4) ∈ R2[PM((p, q)∗ + 6, (p, q)∗ + 4) = (p, q)∗ + 3];
3. For all ((p, q)∗ + 5, (p, q)∗ + 2) ∈ R3[PM((p, q)∗ + 5, (p, q)∗ + 2) = (p, q)∗ + 3].

Proof. By Corollary 3, one obtains PM(a, b) = 3 · ((a, b)∗ − (a, b)∗ − 13
6 )2 + (a, b)∗ − 13

12 . By
setting a = (p, q)∗ + 1 and b = (p, q)∗, one obtains PM((p, q)∗ + 1, (p, q)∗) = (p, q)∗ + 3.
By the same token, we could obtain the results for the second and third statements.

Claim 6. PM([(p, q)∗+ 4] · (1, 1)+ (1, 0)) = PM([(p, q)∗+ 4] · (1, 1)+ (6, 4)) = PM([(p, q)∗
+4] · (1, 1) + (5, 2))

7≡ (p, q)∗ for all 1 ≤ (p, q)∗ ≤ 7, where
7≡ denotes mod 7.

Proof. It follows immediately from Claim 5.

Claim 7. U7 ◦ PM((p, q)∗ · (1, 1) + (5, 4)) = U7 ◦ PM((p, q)∗ · (1, 1) + (10, 8)) = U7 ◦
PM((p, q)∗ · (1, 1) + (9, 6))

7≡ (p, q)∗ for all 1 ≤ (p, q)∗ ≤ 7.

Lemma 1. U7 ◦ PM((p, q)∗ · (1, 1) + (5, 4)) = U7 ◦ PM((p, q)∗ · (1, 1) + (3, 1)) = U7 ◦
PM((p, q)∗ · (1, 1) + (2, 6))

7≡ (p, q)∗ for all 1 ≤ (p, q)∗ ≤ 7.

Proof. It follows immediately from the definition of U7 and Corollary 3. The actual com-
putation is based on Corollary 4, and the results are shown in the rightmost column of the
first part of Table 3.

Remark 1. The above-mentioned results could be captured via the following respective structures:

(p, q)∗

1 1
1 1
1 1

 +

1 0
6 4
5 2

; (p, q)∗

1 1
1 1
1 1

 +

−3 −4
2 0
1 −2

; (p, q)∗

1 1
1 1
1 1

 +

−1 −2
4 2
3 0

. Their
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relations are (p, q)∗

1 1
1 1
1 1

+

−3 −4
2 0
1 −2

 = [(p, q)∗− 4]

1 1
1 1
1 1

+

1 0
6 4
5 2

 and (p, q)∗

1 1
1 1
1 1


+

−1 −2
4 2
3 0

 = [(p, q)∗ − 2]

1 1
1 1
1 1

+

1 0
6 4
5 2

.

Remark 2. Hence, by the previous remark, we could have three copies of isomorphic multiplicative
structures. In this article, we choose the first copy of the isomorphic structure to define our original
multiplication. Since the other two representations are also isomorphic to this one, one could also
choose the others instead. If one does choose the other two, they shall obtain the multiplication results
that differ in the indexes.

We use (a, b) << (c, d) to denote a < c and b < d. Let the following be the case:

• M1 ≡ {(2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (1, 7)};
• M2 ≡ {(7, 5), (1, 6), (2, 7), (3, 1), (4, 2), (5, 3), (6, 4)};
• M3 ≡ {(6, 3), (7, 4), (1, 5), (2, 6), (3, 7), (4, 1), (5, 2)}.

Let δ(k, h) = (k, h)∗ − (k, h)∗.

Definition 4. Define η : M1 ∪ M2 ∪ M3 → R1 ∪ R2 ∪ R3 by

η(k, h) :=


(k, h) if δ(k, h) = 1; or [δ(k, h) = 2, δ(k, h) ≥ (7, 5)]; or [δ(k, h) = 3, δ(k, h) ≥ (6, 3)];
(k + 7, h + 7) if [δ(k, h) = 2, (k, h) << (7, 5)]; or [δ(k, h) = 3, (k, h) << (6, 3)];
(k + 7, h) if δ(k, h) ≥ 4, (k, h)∗ = k;
(k, h + 7) if δ(k, h) ≥ 4, (k, h)∗ = h.

Lemma 2. η is a bijective function.

Proof. Due to the definition of η in Definition 4, M1 is isomorphic to R1, M2 is isomorphic to
R2, and M3 is isomorphic to R3. Since they are all disjoint, the derivation is completed.

Let us use η−1 to denote its inverse function. Let us use M1 ∪ M2 ∪ M3
η
≡ R1 ∪ R2 ∪ R3

to denote that M1 ∪ M2 ∪ M3 is isomorphic to R1 ∪ R2 ∪ R3 via η; R1 ∪ R2 ∪ R3
η−1

≡ M1 ∪
M2 ∪ M3 is used to denote that R1 ∪ R2 ∪ R3 is isomorphic to M1 ∪ M2 ∪ M3 via η−1. Some
similar statements hold for their elements as well. The corresponding relation between
them is shown in the first part in Table 3.

Definition 5. Preliminary setting of Multiplication 2: Define

U7(k) :=


7 , if k = 0;
k , if 1 ≤ k ≤ 7;
k − 7 , if k > 7.

Lemma 3.

1. U7 ◦ PM ◦ η(6, 5) = U7 ◦ PM ◦ η(4, 2) = U7 ◦ PM ◦ η(7, 3) = 1;
2. U7 ◦ PM ◦ η(7, 6) = U7 ◦ PM ◦ η(5, 3) = U7 ◦ PM ◦ η(4, 1) = 2;
3. U7 ◦ PM ◦ η(7, 1) = U7 ◦ PM ◦ η(6, 4) = U7 ◦ PM ◦ η(5, 2) = 3;
4. U7 ◦ PM ◦ η(2, 1) = U7 ◦ PM ◦ η(7, 5) = U7 ◦ PM ◦ η(6, 3) = 4;
5. U7 ◦ PM ◦ η(3, 2) = U7 ◦ PM ◦ η(6, 1) = U7 ◦ PM ◦ η(7, 4) = 5;
6. U7 ◦ PM ◦ η(4, 3) = U7 ◦ PM ◦ η(7, 2) = U7 ◦ PM ◦ η(5, 1) = 6;
7. U7 ◦ PM ◦ η(5, 4) = U7 ◦ PM ◦ η(3, 1) = U7 ◦ PM ◦ η(6, 2) = 7.
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Proof. By Lemma 2, the results are presented in the first part of Table 3; by Lemma 1, one
could verify the validity of these statements.

Let u⃗ ∗ v⃗ denote the concatenation of two vectors. Let ρ(i, j) = U7 ◦ PM ◦ η((i, j)∗, (i, j)∗).

Lemma 4. 1. ∀x ∈ M1 ∪ M2[ϵ ◦ #s(x ∗ ρ(x)) = −1];
2. ∀x ∈ M3[ϵ ◦ #s(x ∗ ρ(x)) = 1].

Proof. For the first statement, consider the set {x ∗ ρ(x) : x ∈ M1} = {(2, 1, 4), (3, 2, 5),
(4, 3, 6), (5, 4, 7), (6, 5, 1), (7, 6, 2), (1, 7, 3)} and {x ∗ ρ(x) : x ∈ M2} = {(7, 5, 4), (1, 6, 5),
(2, 7, 6), (3, 1, 7), (4, 2, 1), (5, 3, 2), (6, 4, 3)}. Then, by Claim 2, ϵ(#s(n1, n2, n3)) = −1, where
(n1, n2, n3) represents an element in the set. For the second statement, consider the set
{x ∗ ρ(x) : x ∈ M3} = {(6, 3, 4), (7, 4, 5), (1, 5, 6), (2, 6, 7), (3, 7, 1), (4, 1, 2), (5, 2, 3)}. Again,
by Claim 2, ϵ(#s(n1, n2, n3)) = 1.

Definition 6. The index operation for the unit multiplication rule is as follows:

w⃗ ×8 v⃗ = (w0v0 −
7

∑
i=1

wivi) +
7

∑
i=1

(w0vi + wiv) )⃗ei +
i ̸=j

∑
1≤i,j≤7

wivj(−1)ϵ◦#s(t̄) · e⃗ρ(i,j),

where ρ(i, j) = U7 ◦ PM ◦ η((i, j)∗, (i, j)∗), and t̄ = (i, j, ρ(i, j)).

Theorem 1. w⃗ ×8 v⃗ =
7

∑
n=0

(−1)2n+1 ·
∣∣∣∣wn 0

0 vn

∣∣∣∣+
7

∑
n=1

[∣∣∣∣w0 −wn
v0 vn

∣∣∣∣+ ∣∣∣∣wU7(n+4) wU7(n+5)
vU7(n+4) vU7(n+5)

∣∣∣∣+ ∣∣∣∣wU7(n+1) wU7(n+3)
vU7(n+1) vU7(n+3)

∣∣∣∣+ ∣∣∣∣wU7(n+2) wU7(n+6)
vU7(n+2) vU7(n+6)

∣∣∣∣]⃗en.

Proof. The first and second determinants correspond to the terms in the same parts in
Definition 1. Now, we argue the other parts. By replacing (p, q)∗ with a variable n in
Lemma 1, one obtains

U7 ◦ PM(n + 5, n + 4) = U7 ◦ PM(n + 3, n + 1) = U7 ◦ PM(n + 2, n + 6)
7≡ n

for all 1 ≤ n ≤ 7. Hence, by Lemmas 2 and 3, one obtains the set of paired (unsigned)
coefficients

{(n + 5, n + 4), (n + 3, n + 1), (n + 2, n + 6)}

for each e⃗n. The signs for each multiplicative combination is then decided via Lemma 4.
The eventual terms are presented in the forms of the last three determinants.

The form in Theorem 1 could be further represented by a form of the inner product

(denoted by •): w⃗ ×8 v⃗ =
7

∑
n=0

(−1)2n+1 · (wn · vn) +
7

∑
n=1

[
+−→
wn

• +−→
vn

− −−→
wn

• −−→
vn

]⃗en ≡

7

∑
n=0

(−1)2n+1 ·
∣∣∣∣wn 0

0 vn

∣∣∣∣+ 7

∑
n=1

∣∣∣∣∣∣
+−→
wn

−−→
wn

−−→
vn

+−→
vn

∣∣∣∣∣∣e⃗n, where the following is the case:

1. +−→
wn

= (w0, wU7(n+4), wU7(n+1), wU7(n+2));

2. −−→
wn

= (−wn, wU7(n+5), wU7(n+3), wU7(n+6));

3. +−→
vn

= (vn, vU7(n+5), vU7(n+3), vU7(n+6));

4. −−→
vn

= (v0, vU7(n+4), vU7(n+1), vU7(n+2)).

Theorem 2. w⃗ ×8 v⃗ = w⃗v⃗.
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Proof. By expanding the terms of w⃗ ×8 v⃗ with U7 and the operation of determinants, one
could show that they match the terms of w⃗v⃗.

Corollary 5. ||w⃗ ×8 v⃗|| = ||w⃗|| · ||⃗v||.

Proof. By Theorem 2, ||w⃗ ×8 v⃗|| = ||w⃗v⃗|| = ||w⃗|| · ||⃗v||.

Some simple results following this theorem are as follows:

1. v⃗ ×8 w⃗ = −w⃗ ×8 v⃗;

2. w⃗ ×8 w⃗∗ =
7

∑
j=0

(wj)
2, where w⃗∗ := w0 −

7

∑
j=1

wj · e⃗j;

3. ||w⃗|| :=
√

w⃗ ×8 w⃗∗ =

√√√√ 7

∑
j=0

(wj)2.

Theorem 3. (w⃗ ×8 v⃗) ×8 z⃗ =
7

∑
m=0

(−1)2m+1 ·
∣∣∣∣cm 0

0 zm

∣∣∣∣ +
7

∑
n=1

[

∣∣∣∣c0 −cn
z0 zn

∣∣∣∣
+

2

∑
j=0

∣∣∣∣∣cU7(n+2j) c
U7(n+2j+22j

)

zU7(n+2j) z
U7(n+2j+22j

)

∣∣∣∣∣]⃗en, where c0 =
7

∑
m=0

(−1)2m+1 · (wm · vm) and ck =

∣∣∣∣∣∣∣
+−→
wk

−−→
wk

−−→
vk

+−→
vk

∣∣∣∣∣∣∣
for 1 ≤ k ≤ 7.

Proof. Suppose w⃗ ×8 v⃗ = c0 +
7

∑
i=1

c j⃗ej. By Theorem 1, (w⃗ ×8 v⃗) ×8 z⃗ =
7

∑
m=0

(−1)2m+1 ·

∣∣∣∣cm 0
0 zm

∣∣∣∣+ 7

∑
n=1

∣∣∣∣∣∣
+−→
cn

−−→
cn

−−→
zn

+−→
zn

∣∣∣∣∣∣e⃗n =
7

∑
m=0

(−1)2m+1 ·
∣∣∣∣cm 0

0 zm

∣∣∣∣+
7

∑
n=1

[∣∣∣∣c0 −cn
z0 zn

∣∣∣∣+ ∣∣∣∣cU7(n+1) cU7(n+3)
zU7(n+1) zU7(n+3)

∣∣∣∣+ ∣∣∣∣cU7(n+2) cU7(n+6)
zU7(n+2) zU7(n+6)

∣∣∣∣+ ∣∣∣∣cU7(n+4) cU7(n+5)
zU7(n+4) zU7(n+5)

∣∣∣∣]⃗en =

7

∑
m=0

(−1)2m+1 ·
∣∣∣∣cm 0

0 zm

∣∣∣∣+ 7

∑
n=1

[∣∣∣∣c0 −cn
z0 zn

∣∣∣∣+ 2

∑
j=0

∣∣∣∣∣cU7(n+2j) c
U7(n+2j+22j

)

zU7(n+2j) z
U7(n+2j+22j

)

∣∣∣∣∣
]⃗

en.

This theorem could be further explicitly expressed as follows:

Corollary 6. (w⃗ ×8 v⃗)×8 z⃗ = z0 · (w0 · v0 −
7

∑
i=1

wi · vi)−
7

∑
j=1

zj ·

∣∣∣∣∣∣∣
+−→
wj

−−→
wj

−−→
vj

+−→
vj

∣∣∣∣∣∣∣+ [
7

∑
n=1

zn · (w0 ·

v0 −
7

∑
i=1

wi · vi) + z0 ·

∣∣∣∣∣∣
+−→
wn

−−→
wn

−−→
vn

+−→
vn

∣∣∣∣∣∣ +
2

∑
j=1

z
U7(n+2j+22j

)
·

∣∣∣∣∣∣∣∣
+−−−−−→

w
U7(n+2j)

−−−−−−→
w

U7(n+2j)
−−−−−−→

v
U7(n+2j)

+−−−−−→
v

U7(n+2j)

∣∣∣∣∣∣∣∣ − zU7(n+2j)

·

∣∣∣∣∣∣∣∣
+−−−−−−−→

w
U7(n+2j+22j

)

−−−−−−−−→
w

U7(n+2j+22j
)

−−−−−−−−→
v

U7(n+2j+22j
)

+−−−−−−−→
v

U7(n+2j+22j
)

∣∣∣∣∣∣∣∣].
Proof. It follows immediately from Theorem 3 by expanding the terms in the theorem.

3. Applications

Before we embark on the application of the octonion (product), we identify our derived
product structures in Theorem 1 with graphical and tree-like structures (Figure 1). This
visualization should enable us in modeling the natural and social phenomenon. The
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benefit for this representation, either in the derived form or graphical structures, lies in
its intuitive and succinct capture of high-dimensional data or analysis. Since the octonion
product is non-communicative, it resembles a causal (directional) relation [18]. From
Figure 1, we could summarize some properties for the kind of modeling that fits better in
this representation:

1. Theorem 1 reveals a structure with a sequence of bijective directional ordered trees—
an explanation is offered in the caption of Figure 1;

2. In principle, it fits better for ranked data, since the solid lines correspond to (or
interpretable as) the relation from lower ranked values to higher ranked values;

3. All relations emitted from w0 and v0 are positive (solid lines)—this indicates the
property that the relation is definitely positive;

4. The eight graphs in the figure could be used to represent eight probabilistic/deter-
ministic states or seven states with one reference state or other similar mechanisms.

Figure 1. A sequence of dynamic graphical (tree-like) structures identifying w⃗ ×8 v⃗: Each tree
structure represents the coefficient of each e⃗j. The upper four tree structures correspond to the
coefficients of e⃗0, e⃗1, e⃗2 and e⃗3, while the lower four correspond to the coefficients of e⃗4, e⃗5, e⃗6 and
e⃗7, respectively. In each structure, the nodes are assigned different shapes to indicate that there are
ordered vectors. Identical shapes with solid shades or circles are applied to separate the octonions
w⃗ and v⃗. The edges represent the linkage between nodes, in which the solid lines indicate positive
relations and the dashed lines indicate negative relations. The colored lines are used to keep track of
the dynamical/probabilistic changes in their relations.
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Now, we exploit our derived theorem and graphical structures to study the causality
from investment (cost) to the revenue of an industry (this would diminish or even remove
the temporal effect and justify the ranking approach) on a weekly basis. The provided data
are sorted from the lowest value to the highest one on a weekly basis, as shown in Table 4.

Table 4. Octonionic causal analysis.

Rank Cost, Week 1 Revenue, Week 1 Cost, Week 2 Revenue, Week 2

(sunken) w0 = USD 180 v0 = USD 200 USD 168 USD 189

1 w1 = USD 23 v1 = USD 12 USD 9 USD 21

2 w2 = USD 28 v2 = USD 45 USD 20 USD 32

3 w3 = USD 36 v3 = USD 47 USD 36 USD 40

4 w4 = USD 53 v4 = USD 62 USD 52 USD 55

5 w5 = USD 67 v5 = USD 88 USD 79 USD 65

6 w6 = USD 88 v6 = USD 121 USD 100 USD 81

7 w7 = USD 92 v7 = USD 157 USD 117 USD 132

There are several assumptions regarding the causal analysis:

1. The sunken cost (invested) and incurred revenue (for example, annual rental income,
inventory, etc.) are assigned (proportionally for one week, if the cost/revenue is
calculated yearly or monthly) to the initial fixed cost (noted by w0) and revenue (noted
by v0) assigned for the week;

2. Regarding the initial values, or w0, v0, and the seven ranks (from 1 to 7), one reference
state and seven probabilistic states are presented—each of which is captured by the
coefficients of the seven imaginary parts of an octonion. The seven probabilistic states
are distinguished by one rank, as shown in Figure 1;

3. The initial cost leads to all positive increases in revenue; weekday and weekend costs
lead to an (anticipated) increase in initial incurred revenue. This assumption could be
amended by changing the sign of v0 directly in the source data;

4. For the reference state, two forces are offsetting each other: the same-rank correlation,

or
7

∑
n=1

(wn · vn), and the initial fixed-term relation (w0 · v0). This value is quantified

via |w0 · v0 −
7

∑
n=1

(wn · vn)|, which serves as the benchmark for zero causality;

5. The weighted state is evaluated via the seven probabilistic states with weights from
the reference state;

6. The value of the multiplication of any two values is regarded as the strength of either
positive or negative causality;

7. The causality between cost and revenue is revealed/sampled by three rank differences
1, 2, and 4 (for the choice of another difference, one shall consider the other 480
isomorphic octonion products), which correspond to the different colors in Figure 1;

8. The strength of the causality is measured via multiplication between the cost and
revenue, and its sign is determined by ascending (positive, solid lines) or descending
rankings (negative, dashed lines).

We write an R program (version 4.2.2) to implement the given data in Table 4.
The source codes could be fetched via https://github.com/raymingchen/Mathematics-
octonion-product.git (accessed on 2 February 2024). The causal ratio for Week One is 60.61
and Week Two is 14.61. Obviously, Week One demonstrates a stronger causal relation wiht
respect to the cost and revenue than Week Two.

https://github.com/raymingchen/Mathematics-octonion-product.git
https://github.com/raymingchen/Mathematics-octonion-product.git
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4. Conclusions

A succinct and intuitive expression of the multiplication between pairs of octonions is
obtained via a set of algebraic approaches. In this approach, we study the internal structures
between the indexes of the octonions and find three copies of isomorphic multiplicative
structures. We then singled out one and defined multiplication based on this structure. This
algebraic approach keeps track of the relation between the indexes, and the final expression
could be demonstrated by a series of determinants and related indexes. Such expression,
with a better intuitive and manageable presentation, is equivalent to the chosen copy. It
facilitates other researchers in studying the computational aspect of octonions and largely
expands our capacity in the theoretical derivations of other mathematical statements. The
efficacy of our new derived definition regarding the octonionic product is also witnessed by
a given application and an analysis of applicability. In this research, we solely dealt with the
computational aspect of octonions. Indeed, the octonionic product chosen was based on the
multiplication rule e⃗i ◦ e⃗i+1 = e⃗i+3, which is isomorphic to another 489 multiplication rules.
If one wants to construct the same formats produced here, then the new representations
need to be built from scratch. We only dealt with octonionic products. If one is interested
in seeking the relations between an octonionic product and a quaternionic product, then
the multiplication rule for quaternions meeds to be singled out, and their relations should
be studied from there. In the future, we will focus on applying these new equivalent
definitions in other theoretical derivations or applicable aspects related to graphical and
computational geometry [19,20]. In addition, we might also need to further derive other
similar statements for other octonionic products.

Funding: This research study is funded by the Internal (Faculty/Staff) Start-Up Research Grant of
Wenzhou-Kean University (Project No. ISRG2023029) and the Student Partnering with Faculty/Staff
Research Program (Project No. WKUSPF2023035).

Data Availability Statement: The author confirms that the data supporting the findings of this study
are available within the article.

Acknowledgments: The author would like to thank all five reviewers. Their comments and sugges-
tions enriched the content of this article.

Conflicts of Interest: The author declares that there are financial or non-financial interests that are
directly or indirectly related to the work submitted for publication.

References
1. Snygg, J. Clifford Algebra: A Computational Tool for Physicists; Oxford University Press: Oxford, UK, 1997.
2. Doran, C.; Lasenby, A. Geometric Algebra for Physicists; Cambridge University Press: Cambridge, UK, 2013.
3. Vince, J. Quaternions for Computer Graphics; Springer: London, UK, 2011.
4. Guterman, A.E.; Zhilina, S.A. Relation Graphs of the Sedenion Algebra. J. Math. Sci. 2021, 255, 254–270. [CrossRef]
5. Conway, J.H.; Derek, A.S. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry; A K Peters: Natick, MA, USA, 2003.
6. Baez, J. The octonions. Bull. Amer. Math. Soc. 2002, 39, 145–205. [CrossRef]
7. Springer, T.A.; Veldkamp, F. Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics; Springer:

Berlin/Heidelberg, Germany, 2000.
8. Killgore, P.L. The Geometry of the Octonionic Multiplication Table. Bachelor’s Thesis, Oregon State University, Corvallis, OR, USA, 2015.
9. Lounesto, P. Clifford Algebras and Spinors; Cambridge University Press: Cambridge, UK, 2001
10. Yayli, Y. Unit octonions and some geometrical interpretations. Int. J. Math. Educ. Sci. Technol. 1997, 28, 749–783. [CrossRef]
11. Burnside, W. Octonions: A Development of Clifford’s Bi-quaternions. Nature 1899, 59, 411–412. [CrossRef]
12. Fenn, R. Quaternions and Octonions. In Geometry; Springer Undergraduate Mathematics Series; Springer: London, UK, 2001.
13. Crasmareanu, M. Quaternionic Product of Circles and Cycles and Octonionic Product for Pairs of Circles. J. Math. Sci. Inform. 2022,

17, 227–237. [CrossRef]
14. Dixon, G. On quaternions and octonions: Their geometry, arithmetic, and symmetry. Math. Intell. 2004, 26, 229–243. [CrossRef]
15. Kharinov, M. On the Quaternion Representation for Octonion Generalization of Lorentz Boosts. J. Appl. Math. Comput. 2022, 6,

198–205.
16. Li, B.; Cao, Y.; Li, Y. The Dynamics of Octonion-valued Neutral Type High-order Hopfield Neural Networks with D Operator. J.

Intell. Fuzzy Syst. 2023, 44, 9599–9613. [CrossRef]

http://doi.org/10.1007/s10958-021-05367-6
http://dx.doi.org/10.1090/S0273-0979-01-00934-X
http://dx.doi.org/10.1080/0020739970280511
http://dx.doi.org/10.1038/059411a0
http://dx.doi.org/10.52547/ijmsi.17.1.227
http://dx.doi.org/10.1007/BF02985662
http://dx.doi.org/10.3233/JIFS-223766


Mathematics 2024, 12, 1262 13 of 13

17. Ferreira, B.L.; Julius, H.; Smigly, D. Commuting maps and identities with inverses on alternative division rings. J. Algebra 2024, 638,
488–505. [CrossRef]

18. Chen, R.M. A direct approach of causal detection for agriculture related variables via spatial and temporal non-parametric analysis.
Environ. Ecol. Stat. 2024, 31, 79–96. [CrossRef]

19. Hanson, A.J. Visualizing Quaternions; Elsevier Morgan Kaufmann Publishers: Amsterdam, The Netherlands, 2006.
20. Vince, J. Geometric Algebra for Computer Graphics; Springer: London, UK, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jalgebra.2023.09.022
http://dx.doi.org/10.1007/s10651-023-00595-2

	Introduction
	Theoretical Statements and Derivations
	Applications
	Conclusions
	References

