
Citation: Nguyen, T.; Thiamwong, L.;

Lou, Q.; Xie, R. Unveiling Fall

Triggers in Older Adults: A Machine

Learning Graphical Model Analysis.

Mathematics 2024, 12, 1271. https://

doi.org/10.3390/math12091271

Academic Editor: Haifeng Wang

Received: 22 March 2024

Revised: 16 April 2024

Accepted: 19 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Unveiling Fall Triggers in Older Adults: A Machine Learning
Graphical Model Analysis
Tho Nguyen 1 , Ladda Thiamwong 2 , Qian Lou 3 and Rui Xie 1,2,*

1 Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816, USA;
tho.nguyen@ucf.edu

2 College of Nursing, University of Central Florida, Orlando, FL 32816, USA; ladda.thiamwong@ucf.edu
3 Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; qian.lou@ucf.edu
* Correspondence: rui.xie@ucf.edu

Abstract: While existing research has identified diverse fall risk factors in adults aged 60 and older
across various areas, comprehensively examining the interrelationships between all factors can en-
hance our knowledge of complex mechanisms and ultimately prevent falls. This study employs
a novel approach—a mixed undirected graphical model (MUGM)—to unravel the interplay between
sociodemographics, mental well-being, body composition, self-assessed and performance-based fall
risk assessments, and physical activity patterns. Using a parameterized joint probability density,
MUGMs specify the higher-order dependence structure and reveals the underlying graphical struc-
ture of heterogeneous variables. The MUGM consisting of mixed types of variables (continuous and
categorical) has versatile applications that provide innovative and practical insights, as it is equipped
to transcend the limitations of traditional correlation analysis and uncover sophisticated interactions
within a high-dimensional data set. Our study included 120 elders from central Florida whose 37 fall
risk factors were analyzed using an MUGM. Among the identified features, 34 exhibited pairwise
relationships, while COVID-19-related factors and housing composition remained conditionally inde-
pendent from all others. The results from our study serve as a foundational exploration, and future
research investigating the longitudinal aspects of these features plays a pivotal role in enhancing our
knowledge of the dynamics contributing to fall prevention in this population.

Keywords: undirected graphical models; mixed graphical models; machine learning; correlation
analysis; fall risks; older adults; aging research

MSC: 62-08

1. Introduction

The likelihood of individuals encountering various health conditions increases signifi-
cantly when aging, with some potentially occurring at the same time resulting from the
cumulative impact of damage over time. Declining physical and mental abilities increase
susceptibility to diseases, and ultimately, mortality is inevitable. Common health issues in
the elderly such as frailty and falls are the consequences of multiple underlying factors;
in fact, falls among elderly individuals have been a serious public health concern, with
millions of occurrences each year [1]. Although not all falls are severe, most of them require
medical treatment and activity restrictions due to the age of this population. Many incidents
lead to fatal or nonfatal injuries, the restriction of mobility, and a reduction in the quality
of life, as well as medical costs totaling billions of dollars in the United States of America.
Numerous impairments, disabilities, and medical conditions have been known to be fre-
quently related to the risk of falls in older adults [1]. Life factors such as living environment,
social and/or psychological status, and technological developments have long been studied
to show the associations between falling and fall-related problems [2,3]. Body composition
has been linked to chronic diseases and mortality in the elderly; it is also a frailty biomarker
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and risk factor for falls [4]. Typical measurements such as fat mass and body mass index
were correlated with balance impairment [5]. Furthermore, the recent global pandemic
of SARS-CoV-2 (COVID-19) has tremendously impacted this population [6]. A report
from the Center for Disease Control and Prevention (CDC) in March 2020 also revealed
that individuals aged 65 and above accounted for 31% of COVID-19 infections, 45% of
hospitalizations, 53% of intensive care unit admissions, and 80% of deaths related to this
infection in the United States [7]. Advanced age and immune-compromised conditions, es-
pecially in those with chronic health conditions, are associated with the severity and fatality
of COVID-19, making older adults a vulnerable population and susceptible to the infec-
tion [8,9]. The social and physical distancing recommendations from the CDC have limited
their physical activity level which, as a result, is likely to affect their physical functioning
and lead to a higher risk of falling [10,11]. Either considering intrinsic or extrinsic factors, it
is important to recognize that the prevention of falls should target all etiologies of postural
instability. This is especially vital for aging research and body composition analysis, which
have established connections to various diseases, including cardiovascular diseases and
diabetes, two other common chronic diseases among elders [12,13]. Identifying a broad
spectrum of factors that can influence fall occurrences would improve the assessment of the
possibility of occurrence, which would be valuable in minimizing incidents and guiding
prevention plans.

1.1. Related Studies

The use of machine learning (ML) has been significantly developed and widely ap-
plied in medicine [14,15] and public health research over the past few years, particularly in
aging research. Chen et al. (2023) delved into interpretable ML for fall prediction among
older adults in China, aiming to create a model capable of accurately predicting falls and
fall-related injuries using various ML algorithms while also providing understandable
insights into predictive factors [16]. Similarly, Savadkoohi et al. (2021) employed deep
neural networks to forecast human fall risk based on force-plate time series signals, show-
casing the promising potential for accurately predicting fall risk through advanced ML
techniques [17]. Likewise, the authors of Speiser et al. (2021) discussed ML’s application
in developing prediction models for serious fall injuries, emphasizing the importance of
leveraging sophisticated computational methods to identify and forecast fall risks among
aging populations [18]. Odden and Melzer (2019) underscored ML’s growing importance,
particularly in facilitating personalized interventions within aging-related studies [19].
While existing research primarily focuses on supervised ML, there is a gap in studies utiliz-
ing unsupervised ML to address a wide range of fall risk factors. Das and Dhillon (2023)
revealed that half of the reviewed studies used supervised ML, among which logistic
regression, random forest, and XG Boost are frequently used methods [20]. Moreover,
the existing literature tends to evaluate a restricted number of variables. There is a possibil-
ity that these variables may interact with each other, contributing to fall occurrences. This
presents a notable research gap in the field, as it limits the comprehensive exploration of
potential predictors and their interactions in relation to fall risk among older adults. Hence,
there is a necessity to construct a data analysis model that comprehensively grasps the
associations among pertinent variables associated with falls. Incorporating unsupervised
ML techniques and adopting a broader scope of risk factors could offer novel insights
into comprehensive fall risk assessments and further enhance fall prevention strategies for
older adults.

1.2. Study Objectives

As modern healthcare generates an enormous volume of data, employing appropriate
analytical methods is crucial to extract the maximum insights from the collected informa-
tion. ML accomplishes the following: 1 ML addresses the challenges in high-dimensional
statistics, in which the number of experimental units or observations in the data is signifi-
cantly smaller than the number of measurement variables/features; 2 ML is equipped to
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investigate data sets containing various types of variables/features including continuous,
categorical, and count variables; 3 ML easily gains a comprehensive understanding of com-
plicated interactions; 4 ML unravels nonlinear and higher-order relationships, of which
traditional correlation analysis is struggling to solve; and 5 ML is flexible from a priori
assumptions such as the type of distribution, the additivity of the parameters, the linearity
of predictors in regression, or homoscedasticity [21]. Consequently, ML has the ability
to handle numerous variables and complex interactions, opening doors to discovering
unexpected relationships between factors and avoiding the limitations of pre-selecting
predictors based on prior hypotheses.

In our study, we proposed the utility of a novel unsupervised ML method, namely
mixed undirected graphical models, to analyze structured data and find patterns in the features
of fall risk prevention studies [22]. This approach highlights the enhanced effectiveness
of ML compared to traditional correlation techniques, as it is adaptable and can work
with various types of data distributions. The graphical model not only capitalizes on
the strengths of ML but also offers improved and innovative methods for illustrating
meaningful relationships between various factors contributing to falls. Additionally, the
graphical model is well-suited for handling a vast number of domains, which allows
a thorough investigation of numerous risk factors simultaneously. To the best of our
knowledge, this study represents one of the first attempts to explore fall risk factors in this
context. The findings of this study provide meaningful insights into the application of ML
in understanding the complicated structure and patterns of variables. They also serve as
stepping stones for future research, such as exploring causal or temporal relationships,
by highlighting important risk factors and assisting in the design of interventions aimed at
effectively reducing the occurrence of falls among older adults.

2. Materials and Proposed Method
2.1. Study Design and Participants

A total of 121 community-dwelling individuals aged 60 and older were enrolled from
the central region of Florida, USA, starting in 2021 and ending in 2023. The recruitment
criteria include meeting the low-income criteria based on the 2019 United States Cen-
sus guidelines, being capable of walking independently without assistance from another
person, having no cognitive impairment, residing independently, and being fluent in En-
glish and/or Spanish. Participants were asked to complete self-report questionnaires of
sociodemographic characteristics, self-rated health, the Fatigue, Resistance, Ambulation,
Illnesses, and Loss of weight scale (FRAIL), the Short Falls Efficacy Scale International
(short FES-I), COVID-19-related questions, the Patient Health Questionnaire (PHQ-9),
the Geriatric Anxiety Inventory Short Form (GAI-SF), the Mindful Attention Awareness
Scale (MAAS), the CDC Stopping Elderly Accidents, Deaths, and Injuries (STEADI), and
the Rapid Assessment of Physical Activity (RAPA), followed by the assessment of grip
strength, the Balance Tracking Systems (BTrackS) test, and the 30 s Sit-To-Stand (STS) test.
Details on each questionnaire and physical assessment are described in the following sec-
tion. In addition, each individual was provided with a wrist-worn accelerometer and given
instructions on how to wear it for 7 days [23]. The body composition was recorded using a
portable bioelectrical impedance analysis device, and participants were instructed per the
manufacturer’s guidelines [5,24].

2.2. Study Variables/Features

The data set consists of 135 features. These measurements were drawn from diverse
disciplines, i.e., self-report questionnaires regarding sociodemographic and general health,
psychological status, COVID-19-related questions, fall risk self-assessments, body compo-
sition measurements, body balance performance tests via the BTrackSTM Assess Balance
System, and accelerometer-based physical activity levels [25]. These disciplines encom-
passed various domains and different distribution types including continuous, categorical,
and count data.
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• Sociodemographic and Self-rated Health. Sociodemographic variables were obtained
using a self-report questionnaire [22]. Participant age was collected numerically and
gender categorically. Participant’s race consisted of White and Non-White, where the
Non-White category included Hispanic, African-American, and Asian older adults.
The level of education was divided into two categories, high school or below and col-
lege or higher. Financial difficulty was categorized as adequate or less and more than
adequate. Household composition was defined as living alone or living with others.
Self-rated health status was acquired using a five-point Likert scale, and participants
were classified as excellent, very good, or good or below.

• Psychological Status. Depressive symptoms were assessed using the self-report PHQ-
9, which consists of nine items assessed using a four-point scale [26,27]. Anxiety
was assessed by the GAI-SF, which comprises only five of the original items, has a
closed-choice response format (yes/no), and is scored in a single direction [28]. Ad-
ditionally, participants’ attention and awareness of present occurrence (mindfulness)
were evaluated using the MAAS, a fifteen-item questionnaire on a six-point scale [29].
These features are continuously distributed.

• Body Composition Measurements. Height was measured in centimeters and weight
was measured in kilograms with no shoes. The body mass index was calculated as the
weight divided by the square of height (kg/m2). The body composition measurements
comprised whole-body, trunk, and both sides’ limbs at six different frequencies (1, 5,
50, 250, 500, and 1000 kHz). Fat and water measurements were recorded including
intracellular water, extracellular water, total body water, body fat mass, lean body
mass, dry lean mass, skeletal muscle mass, skeletal muscle index, visceral fat level,
visceral fat area, and basal metabolic rate results.

• Fall Risks’ Self-assessments and Performance Tests.

– Frailty was evaluated through the FRAIL scale, a self-report questionnaire com-
prising five items assessing fatigue, resistance, ambulation, illnesses, and weight
loss [30].

– The short FES-I questionnaire was employed to assess the fear of falling, consist-
ing of seven items measuring the level of concern related to falling during the
performance of daily activities on a four-point Likert scale [31].

– The STEADI algorithm is a self-risk checklist consisting of twelve questions that
focus on fall risk factors [32].

– The brief version of the Senior Technology Acceptance (STA) was employed to
measure older adults’ acceptance of technology. The questionnaire contains four
domains with fourteen items on a ten-point scale [33].

– For performance tests, grip strength, an indicator of hand and forearm muscle
strength, was collected numerically on both sides using a hydraulic hand dy-
namometer [34]. The 30 s STS test (also called the chair-stand test) was used to
assess dynamic balance. Participants were directed to cross their arms over their
chest, stand away from a chair, and return to a sitting position as many times
as possible within 30 s. Any use of hands during the test resulted in a score of
zero [35]. The BTrackS balance assessment consists of four 20 s trials, measuring
postural sway by tracking the center of pressure on a force platform. The first
trial is for familiarity, and each trial requires the participants to stand as still
as possible on the balance plate with hands on their hips, eyes closed, and feet
shoulder width apart [36].

• COVID-19 related questions. Participants were asked whether they had ever tested
positive for COVID-19 and to rate their perception of COVID-19 severity in their
community over the past month on a four-point Likert scale. Fear of COVID-19 was
evaluated using the Fear of COVID-19 Scale (FCV-19S), a seven-item, four-point Likert
scale adapted from [37].

• Accelerometer Data and Physical Activity Level. The processing of accelerometer
data was carried out using the R package GGIR (version 2.4-0) [38], in which the
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minutes (per week) spent in sedentary behavior (SB), light physical activity (LPA),
and moderate-to-vigorous physical activity (MVPA) were recorded. RAPA, a nine-
item, self-administered questionnaire, was utilized to evaluate a wide range of physical
activity levels, from sedentary to vigorous activity (the first seven questions; the total
score is out of seven), as well as strength and flexibility training (scored separately;
strength training = 1, flexibility = 2, both = 3) [39].

2.3. Graphical Models

The mixed undirected graphical model (MUGM) was utilized to analyze the associations
between fall risk factors. The graphical model is an unsupervised machine learning method
capable of revealing the joint probability distribution and the strength, as well as the signs
of the relationships among the entire set of random variables [40]. In undirected graphical
models (also known as Markov random fields or Markov networks), each node represents
a random variable, and the undirected edges represent association between variables.
Two nodes are adjacent if there is an edge joining them, denoted X∼Y . Consequently,
the absence of an edge implies conditional independence, given the other variables, ex-
pressed as X ⊥ Y|rest. A simple example of an undirected graphical model is illustrated in
Figure 1.

Figure 1. An example of an undirected graphical model. There are multiple ways to express the
conditional dependencies/independencies among nodes. A and B are adjacent, denoted A∼B. Nodes
C and E are conditionally independent given D, denoted C ⊥ E|D. Node F is independent of each of
the other nodes.

The probability density function f over an undirected graph can be presented as
follows:

f (x) =
1
Z ∏

C∈C
ψC(xC) (1)

where C is a collection of cliques of the graph, ψC(xC) is a non-negative potential function
(or clique potential), and Z is a normalization constant (or partition function) obtained by
integrating or summing the product with respect to xC [40]. A graphical model can specify
the higher-order dependence structure of a joint probability distribution [40]; however,
only pairwise mixed undirected graphical models or, at most, second-order interactions
are presented in this study. As a result, the complete subgraph in Figure 1 can be derived
as follows:

f (a, b, c, d) =
1
Z

ψ(a, b)ψ(a, c)ψ(a, d)ψ(b, c)ψ(b, d)ψ(c, d) (2)

where ψ(·, ·) is a non-negative potential function of two input nodes [40].
Furthermore, mixed graphical models are able to learn over a combination of continu-

ous and discrete variables [40]. Lee and Hastie (2015) [41] parameterize a pairwise mixed
graphical model on p continuous variables (x) and q categorical variables (y). The model
is derived with density:



Mathematics 2024, 12, 1271 6 of 18

p(x, y; Θ) ∝ exp

(
p

∑
s=1

p

∑
t=1

−1
2

βstxsxt +
p

∑
s=1

αsxs +
p

∑
s=1

q

∑
j=1

ρsj(yj)xs +
q

∑
j=1

q

∑
r=1

ϕrj(yr, yj)

)
(3)

where xs denotes the sth of p continuous variables, and yj denotes the jth of q discrete
variables. The joint model is parameterized by Θ = [{βst}, {αs}, {ρsj}, {ϕrj}], in which
ρsj(yj) is a function taking Lj values ρsj(1), . . . , ρsj(Lj), and ϕrj(yr, yj) is a bivariate function
taking on Lr × Lj values, or, equivalently, ρsj(yj) is a vector of length Lj, and ϕrj(yr, yj) is a
matrix of size Lr × Lj [41]. The discrete yr takes on Lr states. The model parameters are βst
continuous–continuous edge potential, αs continuous node potential, ρsj(yj) continuous–
discrete edge potential, and ϕrj(yr, yj) discrete–discrete edge potential.

The conditional distributions are given by linear regression and multiclass logistic
regressions. The model acts as an extension of two well-known single-modal models to
the multi-modal domain. It simplifies to a multivariate Gaussian distribution in the case
of only continuous variables and to the Ising model when all the variables are discrete
or categorical, which are a special case of log-linear models for multiway contingency
tables [41,42].

2.4. Data Analysis Methods
2.4.1. Exploratory Data Analysis

Descriptive statistics of participants’ sociodemographic, self-report questionnaires,
and performance tests are presented as the median and interquartile range for continuous
variables and as frequency and percentage for categorical variables. Missing data were
imputed by the variable’s mean, as there was less than 5% of missingness in only one
variable, which captured the number of falls that caused an injury during the previous
year. Spearman’s rank correlation was performed to explore the relationships between
continuous variables. The strength of the correlation coefficient was interpreted as weak
(ρ ≤ 0.49), moderate (ρ = 0.50 − 0.70), or strong (ρ ≥ 0.70). All analyses were performed
using R Statistical Software (version 4.2.0) [43], and a p-value < 0.05 was considered
statistically significant.

2.4.2. Exploratory Factor Analysis on Body Composition Variables

Exploratory factor analysis (EFA) was performed on the body composition vari-
ables using the functions fa() and fa.diagram() for visualization in the R package psych
(version 1.7.8) [44]. EFA is an appropriate tool for assessing the significance of each dimen-
sion and examining the interconnections among dimensions. This method assumes several
latent factors affecting the observed values and the study features. Extracted factors in
EFA represent the dimensions they measure, effectively condensing data from multiple
dimensions into a smaller set that accurately represents the broader variable group [45,46].
The factor model is presented by the following equation:

yi = λi1a1 + λi2a2 + · · ·+ λinan + ei (4)

where y is an observed variable (indicator), λij is the loading of ith variable on the jth factor,
a is a common factor, and e is the unique variance of y [45]. Variance can be partitioned into
the following:

• Common variance is the amount of variance shared among a set of variables. Com-
munality (or h2) is a common variance that ranges between 0 and 1, with closer to 1
suggesting that the extracted factors explain more of the variance of an individual item.

• Unique variance (or 1 − h2) consists of specific variance and error variance, and it is
any portion of variance that is not common [46].

To determine the number of factors to retain, a scree plot was generated depicting
eigenvalues that represent the amount of variation accounted for by each underlying factor.
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Subsequently, the Kaiser criterion (Kaiser–Guttman rule) was applied to enhance the deter-
mination, which ascertains the number of factors with eigenvalues greater than 1 [47,48].

2.4.3. Model Development and Validation

Utilizing the data set consisting of extracted body composition factors from EFA,
the remaining continuous and all categorical features were combined as inputs for run-
ning the undirected graphical model using the R package mgm (version 1.2-14) [49,50].
The MUGM is computed using ℓ1-regularization, which drives all parameter estimates
toward zero and sets very small parameter estimates to exactly zero. The tuning parameter
is λ, which controls the strength of the penalty. To ensure a sparse model, the negative
log-pseudolikelihood is minimized with respect to λ [41]:

min
Θ

L(Θ) + λ

(
∑
t<s

|βst|+ ∑
s,j

∥∥ρsj
∥∥

2 + ∑
r<j

∥∥ϕrj
∥∥

F

)
(5)

where Θ is the parameter space for all of the model parameters. In [42], the authors
modified the above algorithm so that it uses different sparsity penalties λ for the three edge
types: edges connecting two continuous nodes (λcc), edges connecting a continuous and
discrete node (λcd), and edges connecting two discrete nodes (λdd).

We used ten-fold cross-validation [51] to select the optimal regularization parameters.
This method involves dividing the data randomly into ten sets then estimating a graph
based on the nine training sets and testing the negative log-likelihood on the remaining
validation set. This process is repeated with each set serving as the testing fold, result-
ing in ten performance measurements. The optimal model parameter configuration was
identified based on the best performance and subsequently utilized to retrain the model
using the entire data set for final reporting. Other methods for choosing the regularization
parameter include AIC (Akaike Information Criterion) [52], BIC (Bayesian Information
Criterion) [53], StARS (Stability Approach to Regularization Selection) [54], and StEPS
(Stable Edge-specific Penalty Selection) [42], which is a modification of the StARS approach.
The latter two methods focus on selecting parameters to provide stable graphical estima-
tions. The Extended Bayesian Information Criterion (EBIC) [55] was utilized for model
selection, which performs better than the ordinary BIC in high-dimensional feature spaces.

The resulting graph was visualized using the R package qgraph (version 1.9.5) [56].
Variables in the same categories are positioned spatially close to each other. The thickness of
the edges demonstrates the strength of partial association, i.e., the relationship between two
variables while conditioning on all other variables. These edges are weighted; in other words,
their strength is indicated by regression weights. Moreover, the colors of the lines indicate
the magnitude of correlation, where green lines represent positive associations and red lines
represent negative ones. The MUGM method is summarized in the Algorithm 1 below.

Algorithm 1 The Mixed Undirected Graphical Model (MUGM) Method

INPUT: The data set consists of 135 measurements from six categories with both continu-
ous and categorical variables.
Step 1: Extract factors from the body composition measurements following Equation (4).
Step 2: Use the measurements from the remaining five categories and body composi-
tion factors to train the mixed undirected graphical model based on Equation (3) and
Equation (5).
Step 3: Select the optimal regularization parameter λ in Equation (5) using ten-fold
cross-validation.
OUTPUT: Corresponding undirected graph with nodes of the same category posi-
tioned closely.
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3. Results
3.1. Participant Characteristics

One participant was excluded from the analysis due to missing not at random; hence,
the final data set consisted of 120 (93 females and 27 males) older adults, whose mean age
was 74.8 ± 7.38 and whose median age was 74 (IQR 69 − 79) years. Of the participants,
72.5% (87/120) were White, 71.7% (86/120) attended college or higher, 55% (66/120) had
a more than adequate financial situation, 41.7% (50/120) lived alone, and 58.3% (70/120)
were living with others. Notably, almost half of the participants (56/120, or 46.7%) rated
their health as good or below. Among 120 participants, there were 16 (13.4%) who had
two or more falls and 2 (1.6%) individuals who had two or more injurious falls during the
past year. Furthermore, 45% (54/120) of participants were pre-frail or frail. Information
on other self-assessment scores (i.e., psychological well-being status, fear of COVID, short
FES-I, STEADI, STA, and RAPA), physical evaluation (i.e., grip strength, balance test, 30 s
STS), and daily average physical activity levels processed from accelerometry devices are
also presented in Table 1.

Table 1. Descriptive statistics of participant characteristics in the 6 categories (n = 120).

Features Participants, n = 120

Sociodemographic
Age (Years)

Mean (SD) 74.8 (7.38)
Median (IQR) 74 (69–79)

Gender
Female 93 (77.5%)
Male 27 (22.5%)

Race/Ethnicity
Non-Hispanic White 87 (72.5%)
Hispanic 21 (17.5%)
Others 12 (10%)

Education
High school or below 34 (28.3%)
College or higher 86 (71.7%)

Financial difficulty
Adequate or less 54 (45%)
More than adequate 66 (55%)

Living status
Alone 50 (41.7%)
With others 70 (58.3%)

General health
Excellent or very good 64 (53.3%)
Good or below 56 (46.7%)

Psychological status
Depression PHQ-9 1, median (IQR) 10 (9–12)
Anxiety GAI-SF 2, median (IQR) 10 (8.8–10)
Mindfulness MAAS 3, median (IQR) 81 (69.8–86)

COVID-19-related
Fear of COVID-19, median (IQR) 14 (10–17)

Self-assessment Fall risks
History of falls

None 85 (70.8%)
One 19 (15.8%)
Two or more 16 (13.4%)

Number of injurious falls
None 109 (90.8%)
One 9 (7.5%)
Two or more 2 (1.6%)
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Table 1. Cont.

Features Participants, n = 120

FRAIL 4

Healthy 66 (55%)
Pre-frail or Frail 54 (45%)

Short FES-I 5, median (IQR) 9 (7–12)
STEADI 6, median (IQR) 22.5 (21–24)
STA 7, median (IQR) 101 (90.8–112.3)
Performance-based Fall risks
RAPA 8 Aerobics, median (IQR) 3 (2–3.3)
RAPA Strength and flexibility, median (IQR) 2.5 (0–3)
30 s sit-to-stand, median (IQR) 14.5 (12–17)
BTrackS 9 balance test, median (IQR) 27 (20–36)
Grip strength, left (kgs) 19.1 (15.8–24.9)
Grip strength, right (kgs) 20.6 (16.7–26.3)
Accelerometer data
SB 10 (mins/day) 12.3 (11–13.6)
LPA 11 (mins/day) 3.4 (2.8–4.1)
MVPA 12 (mins/day) 0.7 (0.4–1)

1 PHQ-9, Patient Health Questionnaire. 2 GAI-SF, Geriatric Anxiety Inventory Short Form. 3 MAAS, Mindful
Attention Awareness Scale. 4 FRAIL, Fatigue, Resistance, Ambulation, Illnesses, and Loss of weight scale. 5 FES-I,
Falls Efficacy Scale International. 6 STEADI, Stopping Elderly Accidents, Deaths and Injuries. 7 STA, Senior
Technology Acceptance. 8 RAPA, Rapid Assessment of Physical Activity. 9 BTrackS, Balance Tracking Systems.
10 SB, sedentary behavior. 11 LPA, light-intensity physical activity. 12 MVPA, moderate-to-vigorous-intensity
physical activity.

3.2. Mixed Undirected Graphical Models: Relationships between All Features

There was a total of 37 variables (9 categorical, 2 count, and 26 continuous) ana-
lyzed in the MUGM. Among the continuous variables, 7 were body composition factors
resulting from the EFA (as described in the following sections). All study features were
grouped, colored, and labeled into 1 sociodemographic and self-rated health (light or-
ange), 2 psychological status (blue), 3 body composition measurement factors (green),
4 COVID-19-related questions (yellow), 5 fall risks’ self-assessments and performance

tests (pink), and 6 accelerometer and physical activity level (orange).
Overall, 34 variables were identified as having pairwise relationships with one another

(Figure 2). The proportion of non-zero edges was 9.934%, and the optimal regularization
parameters λ with corresponding EBIC values were estimated nodewise. For example,
the feature ”Side of wearing Actgra” has λ = 0.016, with an EBIC value of −495.247.
Prominent relationships include SB hour with significantly strong negative links to both
LPA hour and MVPA hour, while the accelerometer’s wearing period showed strong
positive links to all three physical activity level hours. Remarkably, the PHQ-9 score had
pairwise negative correlations with all psychological scores but a positive correlation with
the short FES-I score. Participant’s age was positively correlated to balance score but
negatively correlated to body composition factor 1, body composition factor 5, and STA
score. Notably, the FRAIL score was negatively associated with body composition factor
3 but positively associated with body composition factor 5 and the short FES-I score.
The STEADI score had moderate positive relationships with the RAPA (strength and
flexibility) and MAAS, while it had moderate negative relationships with the short FES-I
score and history of falls. Past COVID infection, community COVID severity, and housing
composition were the three nodes conditionally independent from all other variables.

The edges connecting categorical variables to continuous variables or other categorical
variables are undefined, as they were computed from more than one parameter. Hence,
a sign could not be assigned to these edges, as indicated with grey lines. Notably, among
the intercorrelations, gender had a strong association with body composition factor 2,
while having moderate associations with body composition factor 3 and BTrackS score.
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General health was connected to financial difficulty, 30 s STS, and short FES-I. Race and
RAPA (aerobics), race and FCV-19S, FRAIL score and financial difficulty, and the side of
wearing an accelerometer device and body composition factor 3 were other compelling
moderate interrelationships.

Figure 2. Mixed undirected graphical models estimated from 37 variables capturing various as-
pects including sociodemographic and self-rated health, psychological status, body composition
measurement factors, COVID-19-related questions, fall risk self-assessments and performance tests,
and accelerometer and physical activity level of 120 community-dwelling older adults.

3.3. Spearman’s Correlation and Correlation Matrix

Apparent patterns among body composition measurements were observed, indicating
the potential presence of multicollinearity. A primary trend is observed where intracellular
water, extracellular water, total body water, and lean body mass values of all segments
present significant negative correlations with upper limbs’ impedance measurements across
all frequencies (ρ < −0.7, p < 0.05). The ratio of extracellular water with total body water,
body fat mass value, and visceral fat value, on the other hand, presented significant negative
correlations with reactance measurements across all frequencies except in the 250 kHz
frequency. Moreover, lean body mass, intracellular water, and extracellular water had
significant positive correlations with skeletal muscle mass (ρ = 1.0, 1.0, 0.95, respectively,
p < 0.05). Similarly, lean body mass, intracellular water, and extracellular water values
had significant positive correlations with dry lean mass (ρ = 0.99, 0.99, 0.94, respectively,
p < 0.05). Figure 3 demonstrates the results derived from Spearman’s correlation coefficients
with only statistically significant correlations illustrated. The intensity of color reflects
the magnitude of the correlation, with red indicating negative relationships and blue
indicating positive relationships. The high multicollinearities observed among these body
composition measurements suggested a necessity for variable reduction.
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Figure 3. Spearman’s correlation coefficients matrix of 119 continuous variables. Only statistically
significant correlations (p < 0.05) are illustrated. The intensity of color reflects the magnitude of the
correlation, with red indicating negative relationships and blue indicating positive relationships.

3.4. Exploratory Factor Analysis on Body Composition Measurements

In light of the correlation coefficients, the body composition variables were selected
and their correlation matrix was used as the input to perform the exploratory factor analysis.
The outcome from the Kaiser–Meyer–Olkin test (overall = 0.913) indicated a marvelous
suitability of the subset, and Barlett’s test also indicated unequal variances across the
sample (p < 0.001). To extract the common factors, the normal distribution of the observed
variables was assumed to perform maximum likelihood, and a varimax was applied to
orthogonally rotate the factors, ensuring equal correlation between them. Seven factors
(whose eigenvalues > 1) were retained that are sufficient to explain the total amount of
variance in the body composition subset. They cumulatively accounted for 89% of the
variance in the subset; thus, the remaining factors account for a very small proportion of
the variability (approximately 11%) and are potentially unimportant. The relationships
between the factors and 101 observed body composition variables (also known as factor
loadings) are illustrated in Figure 4, along with the strength which ranges from −1 to 1
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and the magnitude in which red dotted lines indicate negative relationships and black solid
lines indicate positive relationships. The seven factor scores were extracted and integrated
into the original data set, replacing the body composition variables, and were named body
composition factor 1 to body composition factor 7.

Figure 4. Diagram of factor loadings on observed variables. The strength of relationships ranges
from −1 to 1, with black solid lines indicating positive relationships and red dotted lines indicating
negative relationships.
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4. Discussion
4.1. Main Findings

Through a parameterized joint probability density, graphical models characterize
the higher-order dependence structure and visually uncover the patterns of diverse data
distributions. The ML-based approach is particularly useful when dealing with high-
dimensional data sets and offers a wide range of applications that yield innovative and
practical insights. With the vast amount of data generated in modern healthcare, it is
essential to utilize suitable analytical methods to extract the most valuable data from the
collected information. In this study, the mixed undirected graphical model was utilized
to unravel the associations among various factors linked to the risk of falls in the elderly
population. The study findings indicated interesting intercorrelations among these factors;
for instance, psychological well-being, self-assessment fall risk, and body composition
factors were, as expected, found to be connected to participants’ sociodemographic status,
including age and gender, as well as how they rated their health and answered the self-
assessment questionnaires. Particularly, the connection between participants’ frailty status,
their body composition measurements, and financial status are other intriguing findings.
The effect of psychological status on how individuals self-assessed their risk of falling
indicated the intricate interplay between mental well-being and the perception of one’s
susceptibility to falls. These findings shed light on the complex interactions between
physical health, socioeconomic factors, and fall risks. On the contrary, COVID-19-related
factors including past infection, perception of disease severity in the community in the past
month, and housing composition are found to be independent of other variables. Since the
questions are subjective and no environmental factors were investigated, it is important to
examine the specific situations in which this independence holds. These features may not
directly contribute to fall risk according to current data; however, their impact on health
and well-being over time should not be overlooked. Future research could explore the
potential pathways and mechanisms through which these factors may impact fall risk in the
long term, which can offer valuable insights into comprehensive fall prevention strategies
tailored to various contexts and demographic groups.

Understanding the strength and significance of these associations is crucial for de-
veloping effective intervention strategies to target specific risk factors, mitigate fall risks,
and improve overall well-being and safety in this population. For example, one inter-
vention could focus on balance-training exercises for older adults while also addressing
nutrition and physical activity tailored to maintaining healthy body composition and
stamina. Similarly, interventions targeting muscle strength, flexibility, and physical activity
may benefit frail individuals. Given the associations between race and aerobic fitness
(RAPA), COVID-19 stress (FCV-19S), financial difficulty, and body composition factors,
interventions should adopt culturally sensitive approaches including community-based
health programs, culturally tailored exercise and stress management interventions, and ini-
tiatives addressing socioeconomic disparities in health outcomes. Due to the complexity of
the observed interrelationships, interventions would likely benefit from a multidisciplinary
team approach involving healthcare providers, nutritionists, physical therapists, mental
health professionals, and social workers. This collaborative approach ensures compre-
hensive assessment and personalized interventions that address individual needs across
various health domains.

The application of graphical models reflects a growing trend in social sciences [57,58],
and various health disciplines [14,15,59–61]. Particularly, Bhushan et al. utilized the Gaus-
sian graphical model to explore and visualize the relationships between items and factors
in environmental psychology research [57], and Kalisch et al. applied graphical models
on the International Classification of Functioning, Disability, and Health data to visual-
ize the dependence structure of the data set, dimension reduction, and comparison of
subpopulations in studying human functioning [60]. In the field of aging research, specif-
ically in assessing and preventing falls, numerous studies have employed conventional
statistical methods [62,63], whereas the utilization of graphical models remains relatively
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uncommon. However, this approach has gained prominent attention and proves par-
ticularly beneficial when dealing with high-dimensional data sets, where conventional
statistical methods often struggle to handle the complexity and multitude of variables
in such data sets. Correlation coefficient tests and matrices can effectively uncover the
linear relationships among continuous variables and offer an appealing representation
of relationships. Nonetheless, their effectiveness diminishes when dealing with a large
number of variables. Considering high-dimensional data, correlation matrices consisting of
more than 100 pairs of factors become dense and impractical to illustrate the relationships.
The massive volume of information can overwhelm the viewers and hinder the interpre-
tation of nuanced patterns within the data. In the context of this data set, in which the
number of features is much larger than the sample size, the interpretability of the correla-
tion heatmaps was reduced and even posed additional challenges to interpret. In addition,
the limitations of the statistical test resulted in the exclusion of discrete variables from
the analysis, and none of the nonlinear relationships were analyzed. These limitations
underscore the need for robust analytical techniques capable of handling the complexities
inherent in high-dimensional data sets while ensuring a comprehensive exploration of
all pertinent relationships. Addressing these gaps, the implementation of the undirected
graphical models not only facilitated the efficient analysis of numerous and diverse features
but also offered an intuitively understandable visual representation, which has captivated
the interest of researchers. Furthermore, dimensionality reduction techniques such as EFA
tackle the complexities in manifold data sets. EFA helps extract essential information and
presents a condensed view of the relationships within the data. Accordingly, our proposed
method tackles challenges that have remained unaddressed by previous studies and offers
a comprehensive framework for understanding fall risk among older adults.

4.2. Limitations

Despite the novelty and advantages of applying the graphical model approach, it
is crucial to acknowledge certain limitations. First, the Markov network performed in
this study, while informative, does not establish a specific cause-and-effect relationship
between variables, as it lacks directionality. Second, the observed number of connections
between nodes in the MUGM graph is lower than anticipated, which raises important
considerations about the structure and complexity of the relationships among variables.
It could imply that the data exhibit more inherent sparsity or simplicity in relationships,
which could have implications for model interpretation, generalization, and the underlying
mechanisms driving the system being modeled. Therefore, it is a valuable insight that
warrants further investigation and consideration in the analysis. Third, identifying and
labeling the latent body composition factors requires a deeper understanding and additional
knowledge to appropriately attribute meaning to the observed connections. Fourth, factors
such as comorbidity and environmental exposures were not assessed, even though the
literature recognized them as risk factors for falls [64,65]. Future endeavors could benefit
from incorporating these factors to provide a more comprehensive understanding of fall
risk among older adults. Lastly, the cross-sectional research design does not provide
longitudinal information, and the pilot data set limited the diversity of the participant
demographics, as the majority of the sample consisted of non-Hispanic White females. This
demographic composition may limit the generalizability of the results to other gender and
racial/ethnic groups of older adults.

5. Conclusions and Future Work

The utilization of machine learning, particularly graphical modeling, offers a promis-
ing avenue for studying complex relationships in high-dimensional data sets in the context
of aging research. Employing an ML-based approach, we uncovered intricate associations
among factors related to fall risks in the elderly. These included psychological well-being,
the self-assessment of fall risk, and body composition, interconnected with age, gender,
health perception, and financial status. However, COVID-19 factors and housing composi-
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tion were found to be independent, highlighting the need for further exploration into their
potential long-term impact on fall risks and the development of comprehensive prevention
strategies. This study serves as a foundational exploration, with ongoing research playing
a pivotal role in advancing the understanding of the dynamics contributing to the quality
of life in older adults within a low-income community. Future study endeavors hold the
potential to refine the exploration of factors related to fall risks by incorporating additional
relevant nodes into the model, thereby enhancing its robustness, validity, and compre-
hensiveness. Moreover, understanding how these factors interact dynamically over time
is crucial for developing targeted interventions and improving overall fall prevention
strategies. Continuous efforts are dedicated to exploring the longitudinal aspects of these
features through an ongoing clustered randomized controlled study design which aims
to examine the effects of the technology-based intervention on fall risk among a more
diverse and larger sample pool [66]. The approach delves into the temporal dynamics of
dependencies among risk factors influencing fall prevention in this specific population.
An optimal strategy involves integrating traditional statistical methods with machine learn-
ing techniques, ensuring that they offer added insights and contribute significantly to
improving medical care outcomes. This integration is pivotal for leveraging the strengths
of both methodologies and addressing the multifaceted challenges associated with fall
prevention in older adults from low-income communities.
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