
Citation: Guan, H.; Xu, H.; Cai, L.

Requirement Dependency Extraction

Based on Improved Stacking

Ensemble Machine Learning.

Mathematics 2024, 12, 1272. https://

doi.org/10.3390/math12091272

Academic Editor: Shaomin Wu

Received: 27 February 2024

Revised: 14 April 2024

Accepted: 15 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Requirement Dependency Extraction Based on Improved
Stacking Ensemble Machine Learning
Hui Guan 1,2,*, Hang Xu 1 and Lie Cai 1

1 Department of Computer Science and Technology, Shenyang University of Chemical Technology,
Shenyang 110142, China; xh15151514344@163.com (H.X.); cccle66@163.com (L.C.)

2 Key Laboratory of Industrial Intelligence Technology on Chemical Process, Shenyang University of Chemical
Technology, Shenyang 110142, China

* Correspondence: h.guan@syuct.edu.cn

Abstract: To address the cost and efficiency issues of manually analysing requirement dependency in
requirements engineering, a requirement dependency extraction method based on part-of-speech
features and an improved stacking ensemble learning model (P-Stacking) is proposed. Firstly, to
overcome the problem of singularity in the feature extraction process, this paper integrates part-
of-speech features, TF-IDF features, and Word2Vec features during the feature selection stage. The
particle swarm optimization algorithm is used to allocate weights to part-of-speech tags, which
enhances the significance of crucial information in requirement texts. Secondly, to overcome the
performance limitations of standalone machine learning models, an improved stacking model is
proposed. The Low Correlation Algorithm and Grid Search Algorithms are utilized in P-stacking to
automatically select the optimal combination of the base models, which reduces manual intervention
and improves prediction performance. The experimental results show that compared with the method
based on TF-IDF features, the highest F1 scores of a standalone machine learning model in the three
datasets were improved by 3.89%, 10.68%, and 21.4%, respectively, after integrating part-of-speech
features and Word2Vec features. Compared with the method based on a standalone machine learning
model, the improved stacking ensemble machine learning model improved F1 scores by 2.29%, 5.18%,
and 7.47% in the testing and evaluation of three datasets, respectively.

Keywords: requirement dependency; machine learning; part-of-speech features; particle swarm
optimization; ensemble learning; low correlation algorithm; grid search algorithm

MSC: 68T50

1. Introduction

Requirement dependency extraction is a branch of the requirements engineering field
in software project development, where the inconsistency or incompleteness of require-
ment dependencies and error detection often lead to project and engineering development
failure and the degradation of released software quality [1–3]. The automatic extraction
of requirement dependencies has become the focus of research in change propagation,
requirement optimization and other fields [4,5]. While requirement dependency extraction
is important to project success, researchers have also found it difficult to manually extract
requirement dependencies. According to a survey of software industry professionals on
requirement dependency extraction, 90% of participants confirmed that they use manual
methods to extract dependencies, and over 80% of participants agree that extracting re-
quirement dependencies is difficult [6]. The study involved 182 participants manually
analysing 657 different dependency relationships, which proved to be time-consuming
and posed a high risk for project failure due to the participants’ need for prior domain
knowledge [7]. The automatic extraction method of requirement dependencies can take
into account the scale and complexity of software systems, while also having the potential

Mathematics 2024, 12, 1272. https://doi.org/10.3390/math12091272 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091272
https://doi.org/10.3390/math12091272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12091272
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091272?type=check_update&version=1

Mathematics 2024, 12, 1272 2 of 37

to improve cost control [8]. Compared to timely corrective activities conducted during the
requirements phase, delays in correcting requirements may result in up to 200-times-higher
costs [9]. Therefore, it is particularly urgent to achieve the accurate and speedy automatic
extraction of requirement dependency relationships.

Currently, machine learning has been widely applied in various stages of software en-
gineering. By using machine learning, we can solve the problems of incomplete modelling
and algorithm defects encountered in software development [10,11]. Machine learning
can also perform data analysis tasks in software engineering, such as small dataset engi-
neering problems [12], software requirements and code review problems [13–15]. Another
important role of machine learning is to reduce manual workloads in software engineer-
ing tasks [16–20], such as defect prediction, code suggestions, automatic program repair,
feature localization and malware detection. Machine learning has also been widely ap-
plied in cost prediction, software testing and software quality assessment in the software
development process, such as in consistency research between developers and tasks [21],
integration testing [22], software development cost prediction [23] and software quality
assessment [24]. Meanwhile, requirements engineering has also applied a large number
of machine learning methods [25–39], such as requirement acquisition, requirement for-
malization, requirement classification, the identification of software vulnerabilities from
requirement specifications, requirement prioritization, requirement dependency extraction
and requirement management. Previous studies have demonstrated that the automatic
extraction of requirement dependency relationships is a feasible and effective task [32–38].
However, dependency relation extraction based on traditional machine learning suffers
from issues such as feature singularity and low adaptability, making it difficult to represent
the informational value of requirements from multiple perspectives. Additionally, when
selecting prediction models, standalone machine learning models are often utilized. The
performance of these models is constrained by their inherent algorithms and parameter
settings, limiting their ability to fully leverage the features of requirement pairs, and thus
leading to performance bottlenecks.

Therefore, a method for extracting requirement dependencies is proposed in this
paper, which is based on feature fusion and an improved stacking model (P-Stacking). The
novelty and contribution of the paper are as follows. Firstly, in this paper, we innovatively
introduce part-of-speech features for the task of extracting requirement dependencies.
Using the particle swarm optimization algorithm to assign different weights to different
parts of speech in requirement texts enhances the informational value of the feature vector.
We further integrate part-of-speech features, TF-IDF features, and Word2Vec features,
which makes the feature vector of the requirement text contain part-of-speech information,
word frequency information, and contextual semantic information. Secondly, we improve
the stacking ensemble learning model. The Low Correlation Algorithm and Grid Search
Algorithm are proposed to select the base model combination for the stacking model, which
improves the automation of determining the base model and the predictive ability of the
stacking model. The summary of the above two innovations is as follows.

(1) Aiming at the singleness problem in the feature extraction process, the part-of-speech
features, TF-IDF features, and Word2Vec features of the requirement texts will be
extracted and gradually integrated. During the extraction of part-of-speech features,
the main structure of the requirement texts will be extracted through dependency
parsing. The core components of the requirement texts will be assigned corresponding
part-of-speech tags. The particle swarm optimization algorithm is employed to assign
weights to each part-of-speech tag, to emphasize the informational content of impor-
tant parts of speech. During the fusion process for part-of-speech features and TF-IDF
features, the weights of each part of speech are integrated into the TF-IDF values of
the corresponding words. This enables the TF-IDF feature vector to not only contain
word frequency information but also incorporate part-of-speech characteristics. To
enrich the contextual information of the requirement texts, Word2Vec features [40,41]
are subsequently integrated.

Mathematics 2024, 12, 1272 3 of 37

(2) Aiming at the limitations of standalone machine learning models in terms of predic-
tion performance, this paper introduces an improved stacking ensemble machine
learning model. Compared to other ensemble machine learning models, the stacking
model exhibits a superior generalization ability and higher flexibility, resulting in its
outstanding prediction performance in classification tasks [42–44]. In this paper, based
on the standard stacking ensemble machine learning model, the Low Correlation Al-
gorithm and Grid Search Algorithm are proposed. The stacking model’s base models
are constructed based on multiple classifiers which have high complexity. Therefore,
this paper proposes an algorithm with low correlation, which utilizes the Pearson
correlation coefficient as a measurement criterion to eliminate some similar machine
learning models. The remaining models with greater dissimilarity are selected as
candidates for constructing the base model combination. Standard stacking models
often rely on manual judgments when selecting base models, which causes a degree
of subjectivity. Therefore, after excluding some machine learning models based on the
Low Correlation Algorithm, the Grid Search Algorithm is used to automatically select
the optimal combination of base models for the stacking model. The advantage of
the method proposed in this paper is its ability to automatically allocate the optimal
combination of base models, thereby eliminating the work for the manual analysis
and determination of machine learning models when switching datasets.

When using machine learning to extract requirement dependency relationships, schol-
ars choose different methods to extract the features of requirement texts. The litera-
ture [7,32,37,38,45] utilizes TF-IDF features to represent the feature information of re-
quirement dependency pairs. Some studies [7,45] represent the features of requirement
texts by using probabilistic features that can reflect the statistical correlation between words.
In addition, POS-tag features are also used by some experts in requirement dependency
extraction tasks [6,32,38]. When using machine learning to extract requirement dependency
relationships, some scholars also extract n-gram features from the requirement texts to
construct feature vectors [6,38]. In this article, part-of-speech features, TF-IDF features, and
Word2Vec features are chosen as representations of the informational content of require-
ment texts. This decision is based on the following reasons. Firstly, previous studies have
shown that adding part-of-speech features to word vectors as model inputs can effectively
enhance the model’s predictive capabilities [46–48]. In the task of extracting dependency
relations from requirement texts, verbs often reflect the action information of the require-
ments and determine the order in which two requirements occur. Subject nouns and object
nouns can reflect the subjects of actions. Therefore, assigning higher weights to these three
part-of-speech types can strengthen the informational expressiveness of important words in
requirement sentences. Secondly, TF-IDF features can determine the importance of words
based on their frequency in the current document and their frequency across the entire
document collection. If a word appears frequently in the current document, its importance
is higher. Conversely, if a word appears frequently across the entire document collection,
its importance is lower. The TF-IDF feature-based extraction of dependency relations from
requirement texts has been widely used. Thirdly, while part-of-speech features and TF-IDF
features can capture certain aspects of word importance, they cannot connect the current
word with its preceding and following words. Word2Vec features can capture the semantic
information between words. Based on these reasons, the three types of features are selected
in this article to represent the informational content of requirement texts.

The organizational structure of this paper is as follows. Section 1 provides a brief
introduction to the importance of the automatic extraction of requirement dependency
relationships and the research content of this paper. Section 2 introduces the relevant
research on requirement dependency relationship extraction. Section 3 introduces the
specific steps of extracting various features and feature fusion. Section 4 introduces the
specific steps of improving the stacking model. Section 5 demonstrates the feasibility of
the proposed method through a comparative analysis of experimental results. Section 6
provides a conclusion.

Mathematics 2024, 12, 1272 4 of 37

2. Related Work

In requirements engineering, machine learning methods are widely applied in various
aspects of requirement research. Meanwhile, for the work of the automated extraction of
requirement dependencies, there have been researchers analysing from the domains of
ontology, active learning, deep learning and machine learning, and more research results
have been obtained.

In the method of requirement acquisition, the following will introduce two aspects
of requirement acquisition techniques, namely machine learning and natural language
processing [25]. The technology of machine learning-based requirement elicitation methods
is divided into five parts, namely data cleaning and pre-processing, text feature extraction,
learning, evaluation and tools. In the formal methods of requirement, the requirement
formalization methods based on natural language processing and machine learning are
investigated and classified [26], and researchers found that heuristic NLP methods are
the most used technology for automated requirement formalization. In the requirement
classification method, Rahimi et al. [27] proposed a new ensemble machine learning method
to classify functional requirements. This ensemble learning method combines different
machine learning models and uses a weighted set voting method for optimization. There
are also articles [28] summarizing several machine learning methods and evaluating which
ones are more effective in requirement classification. In the method of identifying software
vulnerabilities from requirement specifications, in the requirement prioritization method,
Talele et al. [29] extracted the TF-IDF and BOW features of a requirement odour text and
used classification algorithms LR, NB, SVM, DT, and KNN to prioritize requirement odours.
Vanamala et al. [30] mapped categories from the CWE repository to PROMISE_ In Exp, and
machine learning methods were used to identify software vulnerabilities from requirement
specifications. A new architecture [31] is proposed which utilizes software requirement
specifications and user text comments to create a universal model. This model can be
used to train the features of the model using a ML algorithm and prioritize requirement
texts. In requirement management methods, Lucassen et al. [39] proposed a new and
automated approach to visualize requirements by displaying concepts, text references and
their relationships at different granularity levels. This method is based on two techniques,
namely the clustering technique that groups elements into coherent sets and the state-of-
the-art semantic correlation technique.

In the ontology domain, a requirements dependency detection tool, OpenReq-DD, is
introduced and summarized [6]. The core of OpenReq-DD is the application of natural lan-
guage processing (NLP) and machine learning (ML) techniques to automate the detection
of requirement dependencies through the application of natural language processing (NLP)
and machine learning (ML) techniques based on ontology that define the dependencies
between specific terms related to the requirement domain. Deshpande et al. [32] proposed
ensemble active learning (AL) variants with Ontology-Based Retrieval (OBR) to form two
hybrid approaches for the extraction of three dependency types, where the role of OBR
is to replace manual tagging and to extract the dependencies, respectively. Regarding
requirement dependency relationship extraction, there is a method that combines semantic
relations and syntax information by combining the semantic relations between the words
in a requirement sentence and the context under domain-specific knowledge [33].

In the field of active learning, Deshpande et al. [32] proposed a method for extracting
dependencies between requirements using an active learning (AL) variant and a further
ensemble of this AL with an ontology-based retrieval (OBR) approach to form two hybrid
methods. A method for the automatic extraction of requirement dependencies based on an
ensemble active learning strategy is proposed [34], and this method uses the probability of
uncertainty, text similarity, dissimilarity and active learning variant prediction divergence
as a measure of the amount of sample value.

In the field of deep learning, Gräßler et al. [35] train BERT models using two types of
training, pre-training and context-specific fine-tuning, to enable the automated requirement
dependency analysis of complex technical systems.

Mathematics 2024, 12, 1272 5 of 37

In the field of machine learning, Samer et al. [7] proposed two content-based recom-
mendation methods for identifying dependencies between requirements. The first one
utilizes document classification techniques and uses four separate learners to identify
the types of requirement dependencies defined at the text level. The second approach is
based on latent semantics and uses real-world datasets to evaluate the defined baseline. A
method is proposed to extract requirement dependencies using a two-phase formula [36].
In the first phase, binary dependencies are identified using natural language processing
(NLP) techniques and in the second phase, requirement dependency types are further
analysed using three learners based on weakly supervised techniques. There are three main
challenges in the area of requirement dependency acquisition [37]. Firstly, studying natural
language processing techniques to automatically extract dependencies from text documents
and, further, using verb classifiers to automatically acquire and analyse different types of
dependencies. Secondly, exploring the representation and maintenance of requirement
dependency changes from designing graph theory algorithms. And finally, investigating
the process of providing dependency recommendations. Atas et al. [38] proposed a method
for recognizing the types of requirement dependencies through supervised classification
techniques and trained and tested the proposed method using different learners.

The ontology construction and inference processes are mainly determined by the
semantic dependencies between keywords, without considering the context of the re-
quirement sentence. Rule-based ontology construction is a complex task which requires
manually defining template rules to extract the ontology. The insufficiency of the rules
and conflicts will affect the inference process. Although dependency extraction based on
deep learning can achieve good prediction performance, training the model requires a
large amount of sample data. For small sample datasets, deep learning models cannot
accurately find feature information, which can lead to the overfitting of small samples
and the underfitting of dependency extraction tasks. At present, when using machine
learning for dependency extraction, it is mainly considered from the aspect of feature
selection and classifier determination. However, the characterization of a single feature on
the requirement sentence informativeness is not complete, and the standalone classifier
will have a high prediction error rate due to having insufficient sample data. A method
of feature fusion based on part-of-speech weight is proposed to address the problem of a
single feature in the process of extracting information from requirement texts. A method for
extracting requirement dependencies using an improved stacking ensemble learning model
is proposed to address the problems of the low prediction accuracy of a standalone classifier.

3. Requirement Dependency Extraction Based on Feature Fusion and Standalone
Machine Learning

This section will introduce an automatic extraction of requirement dependency based
on part-of-speech features and a standalone machine learning model. The model diagram
is shown as Figure 1. Firstly, the requirement terms are pre-processed by a series of
operations like removing stop words, word segmentation, loading domain lexicons, part-
of-speech tagging, dependency syntax analysis, and feature engineering. Through a series
of pre-processing processes, the feature vectors (VRx, VRy) of requirement pairs (Rx, Ry)
are generated. To assist machine learning algorithms in accurately performing the task
of requirement dependency extraction, it is necessary to extract the most informative
features from the requirement texts during the feature engineering stage. In this article,
part-of-speech features, TF-IDF features, and Word2Vec features are utilized to represent
the informational value of the requirement texts. By integrating these three types of
features, they can be used as the inputs for standalone machine learning models. Secondly,
the generated feature vectors from the pre-processing stage are input into each machine
learning model for training and prediction, thereby achieving the automatic extraction of
requirement dependency relationships. The standalone machine learning models selected
in this article include K-Nearest Neighbors, decision trees, logistic regression, Random
Forest, Support Vector Machine, Gaussian Naive Bayes, Multinomial Naive Bayes, Support

Mathematics 2024, 12, 1272 6 of 37

Vector Regression, and Linear Regression. By comparing the prediction accuracy of each
standalone machine learning model based on different features, the effectiveness and
feasibility of the proposed part-of-speech features and feature fusion method in this article
can be validated.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 37

they can be used as the inputs for standalone machine learning models. Secondly, the
generated feature vectors from the pre-processing stage are input into each machine learn-
ing model for training and prediction, thereby achieving the automatic extraction of re-
quirement dependency relationships. The standalone machine learning models selected
in this article include K-Nearest Neighbors, decision trees, logistic regression, Random
Forest, Support Vector Machine, Gaussian Naive Bayes, Multinomial Naive Bayes, Sup-
port Vector Regression, and Linear Regression. By comparing the prediction accuracy of
each standalone machine learning model based on different features, the effectiveness and
feasibility of the proposed part-of-speech features and feature fusion method in this article
can be validated.

Remove stop words and special
symbols

Load the domain lexicon

Pre-processing

Word segmentation and part-
of-speech tagging

Dependency syntax analysis

Feature engineering

Requirement
Text Machine learning model 1

Machine learning model 2

Standalone Machine
learning models

……

Machine learning model n

Requirement
Dependency

Figure 1. A diagram of the multiple standalone machine learning requirement dependency extrac-
tion models used in this study.

3.1. Types of Requirement Dependencies
The meaning of the requirement dependency relationship is that one requirement,

Rx, acts on another requirement, Ry, and this relationship is not affected by other relation-
ships. For any set of requirement pairs (Rx, Ry), if no relationship exists between Rx and
Ry, they are considered to be independent. If there are dependencies, six types of depend-
encies between requirements are defined based on the UML modelling language, which
are the notification, arouse, call, conflict, aggregation, and similar tendencies. The specific
definitions of this six dependency relationships are as follows:
(1) Notification. If Ry is implemented after Rx has been implemented, then there is a

notification relationship between Rx and Ry.
(2) Arouse. If Ry needs to be implemented after Rx, then there is an arouse relationship

between Rx and Ry.
(3) Call. If Rx needs to realize Ry first in the process of its realization, i.e., Rx is realized

before Ry, but Ry completes the realization before Rx, then Rx and Ry have a calling
relationship.

(4) Conflict. If Rx and Ry cannot be implemented at the same time, then Rx and Ry have
a conflict relationship.

(5) Aggregation. If Ry is a part of Rx, then Rx and Ry have an aggregation relationship.
(6) Similar. If Rx and Ry have the same requirements, they have a similarity relationship.

3.2. Requirement Pre-Processing
Natural language processing (NLP) plays diverse roles in software development, in-

cluding those of improving development efficiency, enhancing the user experience and
software functionality. The specific roles of natural language processing in software de-
velopment include: requirement analysis and specification, document automation and
generation, serving as an intelligent code editor, a natural language interface, performing
defect analysis and repair, collaborative development and team communication, auto-
mated testing, intelligent search and information retrieval, sentiment analysis and user
feedback. Overall, the role of natural language processing in software development is to
improve communication, understanding, and efficiency during the development process

Figure 1. A diagram of the multiple standalone machine learning requirement dependency extraction
models used in this study.

3.1. Types of Requirement Dependencies

The meaning of the requirement dependency relationship is that one requirement, Rx,
acts on another requirement, Ry, and this relationship is not affected by other relationships.
For any set of requirement pairs (Rx, Ry), if no relationship exists between Rx and Ry, they
are considered to be independent. If there are dependencies, six types of dependencies
between requirements are defined based on the UML modelling language, which are
the notification, arouse, call, conflict, aggregation, and similar tendencies. The specific
definitions of this six dependency relationships are as follows:

(1) Notification. If Ry is implemented after Rx has been implemented, then there is a
notification relationship between Rx and Ry.

(2) Arouse. If Ry needs to be implemented after Rx, then there is an arouse relationship
between Rx and Ry.

(3) Call. If Rx needs to realize Ry first in the process of its realization, i.e., Rx is real-
ized before Ry, but Ry completes the realization before Rx, then Rx and Ry have a
calling relationship.

(4) Conflict. If Rx and Ry cannot be implemented at the same time, then Rx and Ry have a
conflict relationship.

(5) Aggregation. If Ry is a part of Rx, then Rx and Ry have an aggregation relationship.
(6) Similar. If Rx and Ry have the same requirements, they have a similarity relationship.

3.2. Requirement Pre-Processing

Natural language processing (NLP) plays diverse roles in software development, in-
cluding those of improving development efficiency, enhancing the user experience and
software functionality. The specific roles of natural language processing in software de-
velopment include: requirement analysis and specification, document automation and
generation, serving as an intelligent code editor, a natural language interface, performing
defect analysis and repair, collaborative development and team communication, automated
testing, intelligent search and information retrieval, sentiment analysis and user feedback.
Overall, the role of natural language processing in software development is to improve
communication, understanding, and efficiency during the development process by un-
derstanding and processing natural language texts, thereby enhancing the quality of the
software and the user experience.

In the pre-processing steps of natural language processing, there are many procedures
where machine learning can be used, such as text cleaning, word segmentation, word
embedding, part-of-speech tagging, named entity recognition, sentiment analysis, part-
of-speech restoration, stem extraction, and stop word removal. Although some of these

Mathematics 2024, 12, 1272 7 of 37

processes can use traditional rule methods, accuracy and generalization performance can be
improved well by using machine learning models. For example, in word segmentation and
part-of-speech tagging, machine learning models can learn patterns from a large amount of
text data to better adapt to different fields and contexts.

In this article, a large number of machine-learning-based tools are used for requirement
text pre-processing, such as the Language Technology Platform (LTP), the NLTK (Natural
Language Toolkit), StanfordNLP (Stanford’s CoreNLP), and Word2Vec. The syntax analysis
module in the LTP typically leverages machine learning methods such as Conditional
Random Fields (CRFs) and neural networks. The NLTK is a Python library used for
processing human language data, which utilizes machine learning techniques in some
modules. For example, the ‘PunktSentenceTokenizer’ class in the ‘nltk.tokenize’ module
utilizes the Punkt model. The Punkt model is an unsupervised sentence segmentation
model that learns statistical rules of text to complete segmentation tasks. In the part-of-
speech tagging module, the default annotator used for the ‘nltk.pos_tag’ function is based
on the maximum entropy classifier. StanfordNLP is a toolkit developed by the Natural
Language Processing Group at Stanford University. The syntax analysis module uses
deep learning methods to generate tree structures of sentences to represent the syntactic
relationships between words.

The pre-processing flow of the requirement text is shown in Figure 2. If it is a Chinese
requirement text, the JIEBA participle tool is used to participle the requirement sentence
Rx. Domain lexicons are introduced to correct the errors in participle and part-of-speech
tagging. The Language Technology Platform (LTP) is used to perform the dependency
syntax analysis of the requirement sentence. In the case of an English requirement text,
the NLTK tool is used for word segmentation, part-of-speech tagging, and word form
reduction. StanfordNLP is used for dependency syntax analysis. The subject-predicate-
object triplets are extracted in the dependency syntax analysis, which correspond to three
parts of speech, which are the subject noun, predicate verb, and object noun, respectively.
Corresponding weights are assigned to each part of speech, and they use its feature for
weighing TF-IDF. The improved TF-IDF with Word2Vec are integrated to generate feature
vectors for requirement pairs. Since the requirement text is often an elaboration of specific
requirements in a domain, there will be wrong division when dividing the words and
part-of-speech tagging of domain-specific vocabulary. For example, in the requirement
sentence {The teaching assistants can assist students in complete projects in the system} in
the Course Management System [49], the word “complete projects” is labelled as a gerund
structure, whereas it should be a verb structure in this requirement domain. Therefore,
in this paper, a lexicon module for the specific requirement domain will be added to the
process of requirement analysing in the dependency syntax to correct the misclassified
participle and part-of-speech-tagging results, and, thus, greatly improve the accuracy of
requirement dependency extraction. The domain lexicon based on the requirement text of
the course management system mainly includes the login password (n), completing projects
(v), answering questions (v), the teaching assistant (n), and group members exchanging
groups (n).

Mathematics 2024, 12, 1272 8 of 37

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 37

Requirement Text

Remove stop words and
special symbols

Load the domain lexicon

Word segmentation and part-
of-speech tagging

Restore the word form

English requirement
text？

Dependency syntax analysis

Extract TF-IDF features Extract Word2Vec featuresDetermine the weight of each
part of speech

Weigh TF-IDF

Weigh Word2Vec

Requirement pairs
for feature vectors

Feature
engineering

Yes
No

Figure 2. Pre-processing diagram.

3.2.1. Dependency Syntax Analysis
When the requirement text is represented in Chinese, we select the LTP natural lan-

guage technology open-source platform (https://cloud.itp.ac.cn, accessed on 27 October
2023) of the Harbin Institute of Technology as the tool for dependency syntax analysis.
The tool integrates the Chinese natural language analysis module to include vocabulary,
grammar, semantics and the other five natural language processing core technologies.
Through the API web service provided by the platform, the tool can effectively improve
the performance of text analysis. A dependency grammar tree is a visual representation
of dependency grammar analysis, which analyses the dependency between words for
each requirement sentence and selects the central verb of the sentence as the root node of
the syntax tree. Due to the existence of dependency type division between nodes, it is
more suitable for keyword extraction to formalize the requirement.

As shown in Figure 3, the above process is illustrated by parsing a simple require-
ment sentence. For the requirement sentence R3 {The teaching assistants can assist stu-
dents in complete projects in the system}, the result of participle analysis is {The, teaching
assistants, can, assist, students, in, complete projects, in, the, system}, and the result of
part-of-speech tagging is {\def, \n, \c, \v, \n, \p, \v, \p, \def, \n}. The result of depend-
ency syntax analysis is {6:SBV 6:ADV 6:ADV 5:ATT 3:POB 0:HED 8:ATT 6:POB}. Except
for the root node, for which the index number is 0, the index numbers of each word start
from 1 in sequence. Each word (i.e., node) has a dependency type with its parent node.
For example, the dependency syntax analysis result corresponding to the “teaching assis-
tants” node is “6: SBV”, which means that the parent node of the “teaching assistants”
node is the sixth node “assist” and the relationship between the two is SBV. Finally,
through the dependency syntax analysis, the three backbone nodes (subject-predicate-ob-
ject) of the requirement sentence are extracted to formalize the original requirement.

Figure 2. Pre-processing diagram.

3.2.1. Dependency Syntax Analysis

When the requirement text is represented in Chinese, we select the LTP natural lan-
guage technology open-source platform (https://cloud.itp.ac.cn, accessed on 27 October
2023) of the Harbin Institute of Technology as the tool for dependency syntax analysis.
The tool integrates the Chinese natural language analysis module to include vocabulary,
grammar, semantics and the other five natural language processing core technologies.
Through the API web service provided by the platform, the tool can effectively improve
the performance of text analysis. A dependency grammar tree is a visual representation of
dependency grammar analysis, which analyses the dependency between words for each
requirement sentence and selects the central verb of the sentence as the root node of the
syntax tree. Due to the existence of dependency type division between nodes, it is more
suitable for keyword extraction to formalize the requirement.

As shown in Figure 3, the above process is illustrated by parsing a simple requirement
sentence. For the requirement sentence R3 {The teaching assistants can assist students in
complete projects in the system}, the result of participle analysis is {The, teaching assistants,
can, assist, students, in, complete projects, in, the, system}, and the result of part-of-speech
tagging is {\def, \n, \c, \v, \n, \p, \v, \p, \def, \n}. The result of dependency syntax
analysis is {6:SBV 6:ADV 6:ADV 5:ATT 3:POB 0:HED 8:ATT 6:POB}. Except for the root
node, for which the index number is 0, the index numbers of each word start from 1 in
sequence. Each word (i.e., node) has a dependency type with its parent node. For example,
the dependency syntax analysis result corresponding to the “teaching assistants” node is
“6: SBV”, which means that the parent node of the “teaching assistants” node is the sixth
node “assist” and the relationship between the two is SBV. Finally, through the dependency
syntax analysis, the three backbone nodes (subject-predicate-object) of the requirement
sentence are extracted to formalize the original requirement.

https://cloud.itp.ac.cn

Mathematics 2024, 12, 1272 9 of 37
Mathematics 2024, 12, x FOR PEER REVIEW 9 of 37

The teaching assistants can assist students in complete
projects in the system

 The\det teaching assistants\n can\c assist\v students\n
in\p complete projects\v in\p the\det system\n

6:SBV 6:ADV 6:ADV 5:ATT 3:POB 0:HED 8:ATT 6:POB

ROOT

assist

teaching
assistants

can in

the

system

Complete
projects

students

HED

SBV ADV ADV

ATT

POB

POB

ATT

Word segmentation and part-of-
speech tagging

Dependency syntax analysis

Dependency Syntax Tree

Teaching assistants assist complete projects

Sentence trunk

Figure 3. Dependency syntax analysis diagram for requirement R3.

When the requirement text is an English requirement text, StandfordNLP is used as
a dependency syntax analysis tool. StandfordNLP is a deep-learning-based natural lan-
guage processing tool developed by Stanford University. When performing text pro-
cessing, StandfordNLP divides the text into basic units such as words, roots and mor-
phemes, and analyses the semantic and syntax relationships between them using neural
network algorithms, so as to construct a dependency tree and extract the relationships in
it. As shown in Figure 4, in English requirement sentence R4 {The system shall provide
static course information}, its participle result is {The, system, shall, provide, static, course,
information}, and its part-of-speech tagging result is {\det, \noun, \verb, \verb, \adjec-
tive, \noun, \noun}, the analysis result of dependency syntax is {2:det 4:nsubj 4:aux 0:root
7:amod 7:compound 4:dobj}, and by using dependency syntax, the main backbone of the
requirement sentence can be extracted, which is the subject-predicate-object triplet {sys-
tem, provide, information}. The dependency syntax analysis for the requirement sentence
R5 {The system shall allow students to customize the notification behaviour} is shown in
Figure 5, and the participle results are {The, system, shall, allow, students, to, customize,
the, notification, behaviour}, the part-of-speech tagging result is {\det, \noun, \verb,
\verb, \noun, \part, \verb, \det, \noun, \noun}, and the dependency syntax analysis
result is {2:det 4:nsubj 4:aux 0:root 4:dobj 7:mark 4:xcomp 10:det 10:compound 7:obj}. The
original extracted requirement sentence backbone is the subject-predicate-object triad
{system, allow, students}, but this requirement sentence’s backbone cannot reflect the in-
formation contained in the requirement sentence. Therefore, in this paper, the extraction
method of the requirement sentence’s backbone is improved. If the direct object of the
requirement sentence is a noun such as “students”, “collectors”, “administration”, “indi-
viduals” and so on, and affiliates an object complement, then the logical subject acts as the
subject noun, the verb in the object complement acts as the predicate verb, and the object
acts as the object noun. The improved method extracts the requirement sentence’s back-
bone as {students, customize, notification behaviour}.

Figure 3. Dependency syntax analysis diagram for requirement R3.

When the requirement text is an English requirement text, StandfordNLP is used as a
dependency syntax analysis tool. StandfordNLP is a deep-learning-based natural language
processing tool developed by Stanford University. When performing text processing,
StandfordNLP divides the text into basic units such as words, roots and morphemes,
and analyses the semantic and syntax relationships between them using neural network
algorithms, so as to construct a dependency tree and extract the relationships in it. As
shown in Figure 4, in English requirement sentence R4 {The system shall provide static
course information}, its participle result is {The, system, shall, provide, static, course,
information}, and its part-of-speech tagging result is {\det, \noun, \verb, \verb, \adjective,
\noun, \noun}, the analysis result of dependency syntax is {2:det 4:nsubj 4:aux 0:root
7:amod 7:compound 4:dobj}, and by using dependency syntax, the main backbone of the
requirement sentence can be extracted, which is the subject-predicate-object triplet {system,
provide, information}. The dependency syntax analysis for the requirement sentence R5
{The system shall allow students to customize the notification behaviour} is shown in
Figure 5, and the participle results are {The, system, shall, allow, students, to, customize,
the, notification, behaviour}, the part-of-speech tagging result is {\det, \noun, \verb, \verb,
\noun, \part, \verb, \det, \noun, \noun}, and the dependency syntax analysis result is
{2:det 4:nsubj 4:aux 0:root 4:dobj 7:mark 4:xcomp 10:det 10:compound 7:obj}. The original
extracted requirement sentence backbone is the subject-predicate-object triad {system,
allow, students}, but this requirement sentence’s backbone cannot reflect the information
contained in the requirement sentence. Therefore, in this paper, the extraction method of
the requirement sentence’s backbone is improved. If the direct object of the requirement
sentence is a noun such as “students”, “collectors”, “administration”, “individuals” and so
on, and affiliates an object complement, then the logical subject acts as the subject noun, the
verb in the object complement acts as the predicate verb, and the object acts as the object
noun. The improved method extracts the requirement sentence’s backbone as {students,
customize, notification behaviour}.

Mathematics 2024, 12, 1272 10 of 37
Mathematics 2024, 12, x FOR PEER REVIEW 10 of 37

The system shall provide static course information

det noun verb verb adjective noun noun

det

nsubj

aux

dobj

amod

root

compound

Figure 4. Dependency syntax analysis diagram for requirement R4.

The system shall allow students to customize

det noun verb verb noun part verb

det

nsubj

aux

xcomp

mark

root

det

the notification behaviour

det noun noun

dobj
compound

obj

Figure 5. Dependency syntax analysis diagram for requirement R5.

3.2.2. The TF-IDF Model
TF-IDF (Term Frequency–Inverse Document Frequency) evaluates the importance of

a keyword in a text in terms of the frequency of its occurrence and the number of times it
appears in the examined corpus to assess its importance in its document. If a word has a
high number of occurrences in the text, its importance level rises, but if it has a high num-
ber of occurrences in the whole corpus, its importance level will decrease. TF denotes Term
Frequency and IDF denotes Inverse Document Frequency. If a word occurs more times in
the requirement document and less times in the examined corpus, it means that this word
has a better distinguishing ability. The formula is shown as Formula (1), where tfij is the
number of times word i appears in document j. N is the total number of documents. ni is
the number of documents where word i appears.

log

(log)

i

i

N
n

ij
ij ij ij Nn

n
ij

j

tf
TFIDF tf idf

tf
=

×
= × =

×

2

2
2

1

 (1)

3.2.3. Improvement of TF-IDF
TF-IDF considers that if a word more frequently appears in a document, and, at the

same time, it rarely appears in other documents, then it is probably a keyword. Although
TF-IDF can reflect the importance of a word in the document to a certain extent, it does
not consider the effect of different parts of speech on the classification of requirement de-
pendencies. The degree of response from different parts of speech is diverse in a require-
ment text. Therefore, it is necessary to consider which part of speech has a greater impact
on the type of requirement dependency to determine the weight of each part of speech in
the requirement pair.

For example, in the Course Management System dataset [49]. For the requirement
pairs of “students’ homework is corrected by the teaching assistant in the system” and
“students need to receive good scores”, it is necessary to simultaneously consider the re-
lationship between the subject nouns “teaching assistant” and “students”, the predicate
verbs “correct” and “receive”, and the object nouns “homework” and “score”, because the
semantics represented by each part of speech all have a decisive impact on the type of
dependency. In the CMS dataset [50], there are more requirement sentences with the sub-
ject noun “system”, so the relationship between the subject noun “system” can be ignored.
In this paper, the particle swarm optimization (PSO) [51] algorithm is used to seek the
optimal weight ratio for each part of speech.

Figure 4. Dependency syntax analysis diagram for requirement R4.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 37

The system shall provide static course information

det noun verb verb adjective noun noun

det

nsubj

aux

dobj

amod

root

compound

Figure 4. Dependency syntax analysis diagram for requirement R4.

The system shall allow students to customize

det noun verb verb noun part verb

det

nsubj

aux

xcomp

mark

root

det

the notification behaviour

det noun noun

dobj
compound

obj

Figure 5. Dependency syntax analysis diagram for requirement R5.

3.2.2. The TF-IDF Model
TF-IDF (Term Frequency–Inverse Document Frequency) evaluates the importance of

a keyword in a text in terms of the frequency of its occurrence and the number of times it
appears in the examined corpus to assess its importance in its document. If a word has a
high number of occurrences in the text, its importance level rises, but if it has a high num-
ber of occurrences in the whole corpus, its importance level will decrease. TF denotes Term
Frequency and IDF denotes Inverse Document Frequency. If a word occurs more times in
the requirement document and less times in the examined corpus, it means that this word
has a better distinguishing ability. The formula is shown as Formula (1), where tfij is the
number of times word i appears in document j. N is the total number of documents. ni is
the number of documents where word i appears.

log

(log)

i

i

N
n

ij
ij ij ij Nn

n
ij

j

tf
TFIDF tf idf

tf
=

×
= × =

×

2

2
2

1

 (1)

3.2.3. Improvement of TF-IDF
TF-IDF considers that if a word more frequently appears in a document, and, at the

same time, it rarely appears in other documents, then it is probably a keyword. Although
TF-IDF can reflect the importance of a word in the document to a certain extent, it does
not consider the effect of different parts of speech on the classification of requirement de-
pendencies. The degree of response from different parts of speech is diverse in a require-
ment text. Therefore, it is necessary to consider which part of speech has a greater impact
on the type of requirement dependency to determine the weight of each part of speech in
the requirement pair.

For example, in the Course Management System dataset [49]. For the requirement
pairs of “students’ homework is corrected by the teaching assistant in the system” and
“students need to receive good scores”, it is necessary to simultaneously consider the re-
lationship between the subject nouns “teaching assistant” and “students”, the predicate
verbs “correct” and “receive”, and the object nouns “homework” and “score”, because the
semantics represented by each part of speech all have a decisive impact on the type of
dependency. In the CMS dataset [50], there are more requirement sentences with the sub-
ject noun “system”, so the relationship between the subject noun “system” can be ignored.
In this paper, the particle swarm optimization (PSO) [51] algorithm is used to seek the
optimal weight ratio for each part of speech.

Figure 5. Dependency syntax analysis diagram for requirement R5.

3.2.2. The TF-IDF Model

TF-IDF (Term Frequency–Inverse Document Frequency) evaluates the importance of a
keyword in a text in terms of the frequency of its occurrence and the number of times it
appears in the examined corpus to assess its importance in its document. If a word has a
high number of occurrences in the text, its importance level rises, but if it has a high number
of occurrences in the whole corpus, its importance level will decrease. TF denotes Term
Frequency and IDF denotes Inverse Document Frequency. If a word occurs more times in
the requirement document and less times in the examined corpus, it means that this word
has a better distinguishing ability. The formula is shown as Formula (1), where tfij is the
number of times word i appears in document j. N is the total number of documents. ni is
the number of documents where word i appears.

TFIDFij = t fij × id fij =
t fij × log

N
ni
2√√√√ n

∑
j=1

(t fij × log
N
ni
2)

2
(1)

3.2.3. Improvement of TF-IDF

TF-IDF considers that if a word more frequently appears in a document, and, at the
same time, it rarely appears in other documents, then it is probably a keyword. Although
TF-IDF can reflect the importance of a word in the document to a certain extent, it does not
consider the effect of different parts of speech on the classification of requirement depen-
dencies. The degree of response from different parts of speech is diverse in a requirement
text. Therefore, it is necessary to consider which part of speech has a greater impact on
the type of requirement dependency to determine the weight of each part of speech in the
requirement pair.

For example, in the Course Management System dataset [49]. For the requirement
pairs of “students’ homework is corrected by the teaching assistant in the system” and
“students need to receive good scores”, it is necessary to simultaneously consider the
relationship between the subject nouns “teaching assistant” and “students”, the predicate
verbs “correct” and “receive”, and the object nouns “homework” and “score”, because
the semantics represented by each part of speech all have a decisive impact on the type of
dependency. In the CMS dataset [50], there are more requirement sentences with the subject
noun “system”, so the relationship between the subject noun “system” can be ignored. In
this paper, the particle swarm optimization (PSO) [51] algorithm is used to seek the optimal
weight ratio for each part of speech.

The basic idea of the particle swarm optimization algorithm is to mimic the behaviour
of bird flock foraging. Each particle represents a bird in space, and the position information

Mathematics 2024, 12, 1272 11 of 37

of the particle is the solution to optimize the problem. The process of the algorithm is that
the particles keep changing their speed and position, approaching the optimal solution, and
finally finding the optimal solution. In particle swarm optimization (PSO), the search space
refers to the set of all feasible solutions to the optimization problem. In this search space,
each solution is regarded as the position of a particle. For example, in this paper, the search
space for particles is a six-dimensional space, where each particle in this six-dimensional
space will have position information. The set of all the possible position information that
particles can have constitutes the search space. The position of a particle can be represented
as x (xd1, xd2, xd3, xd4, xd5, xd6), where xd1 indicates the position of the particle in the first
dimension. The position x (xd1, xd2, xd3, xd4, xd5, xd6) corresponds with six parts of speech
(subject nounRx, predicate verbRx, object nounRx, subject nounRy, predicate verbRy, object nounRy).
The fitness function is a function used to evaluate the performance of each particle in the
solution space. Each particle’s position represents a solution, and the fitness function can
be used to calculate the fitness value of the current solution. For example, in this paper, the
fitness function is the F1 score, which is the evaluation metric used in the Random Forest
model. The particle’s position information is used to weight the TF-IDF feature vector.
The Random Forest model employs this weighted vector for training and testing to obtain
the F1 score. The F1 score obtained through this process serves as the fitness value for
the current particle. The updating formula of particle’s speed and position in the particle
swarm optimization algorithm is shown as follows.

vt+1
id = w× vt

id + c1 × r1(pbestt
id − xt

id)+

c2 × r2(gbestt
id − xt

id)
(2)

xt+1
id = xt

id + vt+1
id (3)

In Formulas (2) and (3), i is the number of particles, d is the dimension, t is the current
iteration number, xid is the position of the ith particle, vid is the velocity of the ith particle,
pbestid is the individual optimal solution of the ith particle, pgestid is the global optimal
solution of the ith particle, c1 is the individual learning factor, c2 is the population learning
factor, w is the inertia weight, and r1 and r2 are the random numbers in the interval [0, 1].
In this paper, the particle swarm optimization algorithm is used to seek the optimal weight
ratio for each part of speech, in which the optimal weight ratio is used to improve the
TF-IDF value. The improved formula is as follows.

TFIDF’ij = xk × t fij × id fij =
xk × t fij × log

N
ni
2√√√√ n

∑
j=1

(t fij × log
N
ni
2)

2
(4)

where xk is the weight of each part of speech in the requirement sentence. tfij is the number
of times word i appears in document j. N is the total number of documents. ni is the
number of documents where word i appears.

The diagram of the improved TF-IDF model is shown in Figure 6. Step (1): A de-
pendency syntax analysis of the requirement sentence Rx is performed to extract the
subject-predicate-object triad and merge the requirement pairs (Rx, Ry) to form six parts
of speech. In the particle swarm optimization algorithm, the position information of the
particles is located in a space of dimension 6, which represents the six parts of speech
of the requirement pairs. Step (2): An initial value of interval (0, 1) is assigned to each
particle using a random function, the TF-IDF is weighted with this value, to train and test
by the Random Forest classifier. F1 is used as the fitness value of the particle to search
for individual and global optimal solutions. Step (3): The position and velocity of each
particle are updated according to Formulas (2) and (3). The fitness value of each particle
is calculated based on the F1 value of the Random Forest classifier. Step (4): If the fitness

Mathematics 2024, 12, 1272 12 of 37

value of the current particle is greater than pbest, pbest is updated as the position of the
current particle, and if the current particle’s fitness value is greater than gbest, then gbest is
updated as the position of the current particle. Step (5): When the maximum number of
iterations is reached, the search program is terminated, the current global optimal solution
gbest is the final solution. According to the position information of the current particles,
the optimal weight of each part of speech in the requirement pair is obtained, and the
TF-IDF value will also be improved with this weight. Step (6): If the maximum number of
iterations is not reached, step (3) is returned to.

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 37

global optimal solutions. Step (3): The position and velocity of each particle are updated
according to Formulas (2) and (3). The fitness value of each particle is calculated based on
the F1 value of the Random Forest classifier. Step (4): If the fitness value of the current
particle is greater than pbest, pbest is updated as the position of the current particle, and if
the current particle’s fitness value is greater than gbest, then gbest is updated as the posi-
tion of the current particle. Step (5): When the maximum number of iterations is reached,
the search program is terminated, the current global optimal solution gbest is the final
solution. According to the position information of the current particles, the optimal weight
of each part of speech in the requirement pair is obtained, and the TF-IDF value will also
be improved with this weight. Step (6): If the maximum number of iterations is not
reached, step (3) is returned to.

Requirement Text

Reached maximum number of
iterations？

Matching part-of-speech features for each
dimension of particles

Initialize particle velocity and position

Weight TF-IDF feature

Calculate the fitness value of each particle

Update the position and velocity of each
particle

Calculate the fitness value of each particle

Update pbest

Update gbest

Yes

No

Improved TF-IDF

(1)

(2)

(3)

(5)

(4)

(6)

Figure 6. Improved TF-IDF model diagram.

3.2.4. Multi-Weighted TF-IDF

When improving the TF-IDF, the weights of each part of speech in the requirement
sentence are used to weigh the TF-IDF value. The particle swarm optimization algorithm
is used to update the weights of each part of speech. The unique weight of the part of
speech will be determined by training and testing the original dataset.

Since the prediction results of each requirement dependency pair will affect the F1
value, some requirement dependency pairs that are far from the centre of the optimal so-
lution will cause the part-of-speech weight to shift towards these requirement depend-
ency pairs. Therefore, the above method cannot find the optimal part-of-speech weight for
each requirement pair. So, to reduce the error problem caused by a single part-of-speech
weight, the datasets are divided according to the type of requirement dependency, and
the weight of each part of speech is determined separately in each dataset division. The
specific steps are as follows.

In the first step, the dataset is divided according to the requirement dependency
types, and the requirement pairs with the same dependency types are placed in the same

Figure 6. Improved TF-IDF model diagram.

3.2.4. Multi-Weighted TF-IDF

When improving the TF-IDF, the weights of each part of speech in the requirement
sentence are used to weigh the TF-IDF value. The particle swarm optimization algorithm is
used to update the weights of each part of speech. The unique weight of the part of speech
will be determined by training and testing the original dataset.

Since the prediction results of each requirement dependency pair will affect the F1
value, some requirement dependency pairs that are far from the centre of the optimal solu-
tion will cause the part-of-speech weight to shift towards these requirement dependency
pairs. Therefore, the above method cannot find the optimal part-of-speech weight for each
requirement pair. So, to reduce the error problem caused by a single part-of-speech weight,
the datasets are divided according to the type of requirement dependency, and the weight
of each part of speech is determined separately in each dataset division. The specific steps
are as follows.

In the first step, the dataset is divided according to the requirement dependency types,
and the requirement pairs with the same dependency types are placed in the same dataset.
In the second step, the corresponding part-of-speech weights are separately determined
in each dataset by the method in Section 3.2.3. In the third step, when testing the original
dataset, for each requirement pair, each set of part-of-speech weights determined in the
second step will be, respectively, weighted with the TF-IDF value. Finally, each set of feature

Mathematics 2024, 12, 1272 13 of 37

vectors is inputted into the model for prediction, each set of predicted values is compared,
and the dependency type with the highest predicted value is selected as the result.

3.2.5. Weighted Word2Vec

TF-IDF values can only characterize the semantic information of each requirement pair,
but cannot extract the contextual semantic information. Word2Vec is a word embedding
method based on machine learning. The core idea of Word2Vec is to learn the distributed
representation of words by predicting the context or target vocabulary, thereby mapping
each word to a continuous vector space. During the training process, Word2Vec employs
optimization algorithms such as gradient descent to adjust word vectors to minimize
the objective function. Through this approach, the model can acquire the distributed
representation of each word, making it so that the words that are similar in semantics are
also closer in the vector space. Therefore, in this paper, we use the Skip-Gram model from
Word2Vec as a pre-training model. The Skip-Gram model is used to map words to vectors,
which are represented in high-dimensional space. The model is designed to capture the
semantic relationships between words. The Skip-Gram model uses a neural network to
learn the vector representations of words, and then uses these vectors to compute the
similarity between words. As shown in Figure 7, the Skip-Gram model can predict the
context words by being given a target word, inputting the word w(t) into the model, and
the model predicts the above words w(t − 2), w(t − 1), w(t + 1), and w(t + 2) related to w(t).
In this paper, we generate a set of word vectors for each requirement Rx and requirement
Ry based on this model, and the average of the set of word vectors is used as the sentence
vector of requirements Rx and Ry. The semantic relation of context is obtained by the word
vector, and the feature information of the requirement pair (Rx, Ry) is obtained by merging
the average word vector, which enriches the feature information of the dependency pair.

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 37

dataset. In the second step, the corresponding part-of-speech weights are separately de-
termined in each dataset by the method in Section 3.2.3. In the third step, when testing the
original dataset, for each requirement pair, each set of part-of-speech weights determined
in the second step will be, respectively, weighted with the TF-IDF value. Finally, each set
of feature vectors is inputted into the model for prediction, each set of predicted values is
compared, and the dependency type with the highest predicted value is selected as the
result.

3.2.5. Weighted Word2Vec

TF-IDF values can only characterize the semantic information of each requirement
pair, but cannot extract the contextual semantic information. Word2Vec is a word embed-
ding method based on machine learning. The core idea of Word2Vec is to learn the dis-
tributed representation of words by predicting the context or target vocabulary, thereby
mapping each word to a continuous vector space. During the training process, Word2Vec
employs optimization algorithms such as gradient descent to adjust word vectors to min-
imize the objective function. Through this approach, the model can acquire the distributed
representation of each word, making it so that the words that are similar in semantics are
also closer in the vector space. Therefore, in this paper, we use the Skip-Gram model from
Word2Vec as a pre-training model. The Skip-Gram model is used to map words to vectors,
which are represented in high-dimensional space. The model is designed to capture the
semantic relationships between words. The Skip-Gram model uses a neural network to
learn the vector representations of words, and then uses these vectors to compute the sim-
ilarity between words. As shown in Figure 7, the Skip-Gram model can predict the context
words by being given a target word, inputting the word w(t) into the model, and the model
predicts the above words w(t − 2), w(t − 1), w(t + 1), and w(t + 2) related to w(t). In this
paper, we generate a set of word vectors for each requirement Rx and requirement Ry
based on this model, and the average of the set of word vectors is used as the sentence
vector of requirements Rx and Ry. The semantic relation of context is obtained by the word
vector, and the feature information of the requirement pair (Rx, Ry) is obtained by merg-
ing the average word vector, which enriches the feature information of the dependency
pair.

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT PROJECTION OUTPUT

Figure 7. Skip-Gram model diagram.

This section illustrates the integration process of improved TF-IDF features and
Word2Vec features through an example. The example of the requirement pairs is {the
teaching assistants can assist students in complete projects in the system, the teaching as-
sistants can help students answer questions in the system}. The specific steps are as fol-
lows. In Step 1, in Section 3.2.2, we have calculated the TF-IDF value for each word in the
requirement text. The TF-IDF feature vector for the above requirement pairs is {0.96, 0.52,
1.08, 0.66, 0.84, 0.42, 0.64, 0.28, 1.04, 0.68, 0.94, 0.46}. In Step 2, in Section 3.2.3, we calculated
the weights of six parts of speech words. The TF-IDF values of six words were weighted
by their corresponding part-of-speech weights. The improved TF-IDF feature vector for
the above requirement pairs is {1.32, 0.52, 1.48, 0.66, 1.24, 0.42, 0.85, 0.28, 1.36, 0.68, 1.23,

Figure 7. Skip-Gram model diagram.

This section illustrates the integration process of improved TF-IDF features and
Word2Vec features through an example. The example of the requirement pairs is {the
teaching assistants can assist students in complete projects in the system, the teaching
assistants can help students answer questions in the system}. The specific steps are as
follows. In Step 1, in Section 3.2.2, we have calculated the TF-IDF value for each word in the
requirement text. The TF-IDF feature vector for the above requirement pairs is {0.96, 0.52,
1.08, 0.66, 0.84, 0.42, 0.64, 0.28, 1.04, 0.68, 0.94, 0.46}. In Step 2, in Section 3.2.3, we calculated
the weights of six parts of speech words. The TF-IDF values of six words were weighted
by their corresponding part-of-speech weights. The improved TF-IDF feature vector for
the above requirement pairs is {1.32, 0.52, 1.48, 0.66, 1.24, 0.42, 0.85, 0.28, 1.36, 0.68, 1.23,
0.46}. In Step 3, based on the method described in the first paragraph of Section 3.2.5, each
word is mapped to a vector in the vector space. The Word2Vec feature vector for the above
requirement pairs is {0.18, 0.31, 0.27, −0.23, 0.51, −0.05, 0.14, −0.93, 0.34, −0.24, 0.53, 0.00}.
In Step 4, we multiply the corresponding position values of the TF-IDF feature vector with

Mathematics 2024, 12, 1272 14 of 37

the Word2Vec feature vector. The final feature vector for the above requirement pairs is
{0.24, 0.16, 0.41, −0.15, 0.63, −0.02, 0.12, −0.26, 0.46, −0.18, 0.65, 0.00}.

4. Requirement Dependency Extraction Based on Improved Stacking Model

This section introduces an automatic extraction of requirement dependency based on
an improved stacking ensemble machine learning model. The model diagram is shown as
Figure 8. In Section 3, the requirement terms are pre-processed by a series of operations in-
cluding removing stop words, word segmentation, loading domain lexicons, part-of-speech
tagging, dependency syntax analysis, and feature engineering. The information features of
the requirement are extracted, and feature vectors are generated. However, when using ma-
chine learning models to extract the requirement dependency, standalone machine learning
models are used. To further improve the accuracy, this section proposes a requirement
dependency extraction method based on ensemble machine learning models. This model
is based on the stacking model and incorporates algorithms with low correlations and
a grid search. The Low Correlation Algorithm can select classifiers with high contrast
and accuracy from numerous machine learning models. The Grid Search Algorithm can
automatically select base classifiers for the stacking model, and select the best combination
of base classifiers from the candidate classifiers for better prediction performance.

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 37

0.46}. In Step 3, based on the method described in the first paragraph of Section 3.2.5, each
word is mapped to a vector in the vector space. The Word2Vec feature vector for the above
requirement pairs is {0.18, 0.31, 0.27, −0.23, 0.51, −0.05, 0.14, −0.93, 0.34, −0.24, 0.53, 0.00}.
In Step 4, we multiply the corresponding position values of the TF-IDF feature vector with
the Word2Vec feature vector. The final feature vector for the above requirement pairs is
{0.24, 0.16, 0.41, −0.15, 0.63, −0.02, 0.12, −0.26, 0.46, −0.18, 0.65, 0.00}.

4. Requirement Dependency Extraction Based on Improved Stacking Model
This section introduces an automatic extraction of requirement dependency based on

an improved stacking ensemble machine learning model. The model diagram is shown as
Figure 8. In Section 3, the requirement terms are pre-processed by a series of operations
including removing stop words, word segmentation, loading domain lexicons, part-of-
speech tagging, dependency syntax analysis, and feature engineering. The information
features of the requirement are extracted, and feature vectors are generated. However,
when using machine learning models to extract the requirement dependency, standalone
machine learning models are used. To further improve the accuracy, this section proposes
a requirement dependency extraction method based on ensemble machine learning mod-
els. This model is based on the stacking model and incorporates algorithms with low cor-
relations and a grid search. The Low Correlation Algorithm can select classifiers with high
contrast and accuracy from numerous machine learning models. The Grid Search Algo-
rithm can automatically select base classifiers for the stacking model, and select the best
combination of base classifiers from the candidate classifiers for better prediction perfor-
mance.

Start

Requirement
Text

Pre-processing

Generate predicted
probability values

M candidate
classifiers

Using Low Correlation Algorithm to
remove two classifiers

N candidate
classifiers

Using Grid Search Algorithm
to select classifier

Generate predicted results
based on 5-fold cross-validation

Iterations n=2N−1?

New dataset

Training and testing
using meta classifier

Highest F1 value
and base classifier

End

No

Yes

Figure 8. Ensemble machine learning requirement dependency extraction model diagram.

4.1. Ensemble Machine Learning
Ensemble machine learning is a method of combining multiple independent machine

learning models to achieve better prediction and generalization capabilities. Ensemble
machine learning improves overall accuracy and stability by synthesizing the prediction
results of multiple models.

Figure 8. Ensemble machine learning requirement dependency extraction model diagram.

4.1. Ensemble Machine Learning

Ensemble machine learning is a method of combining multiple independent machine
learning models to achieve better prediction and generalization capabilities. Ensemble
machine learning improves overall accuracy and stability by synthesizing the prediction
results of multiple models.

Ensemble learning models have various applications in software engineering, mainly
in areas such as software defect detection, software quality assessment, software project
risk management, requirement analysis, software testing, software tool optimization, soft-
ware measurement and measurement combination. These application areas can improve
efficiency, quality, and maintainability in software engineering from different perspectives.
The advantage of ensemble learning is its ability to integrate the advantages of multiple
machine learning models, thereby providing more robust and generalizable solutions. For

Mathematics 2024, 12, 1272 15 of 37

example, in software defect detection, ensemble learning models can integrate the outputs
of multiple defect prediction models to improve the overall predictive performance. Ba-
sic models include decision tree, Support Vector Machine, Neural Network, etc. When
selecting ensemble learning models, it is necessary to consider the application domains of
different models. At the same time, it is necessary to choose the appropriate basic learners
and ensure their diversity.

There are various forms of ensemble machine learning methods, among which the
most common are voting-based methods such as major voting and weighted voting. These
methods make democratic decisions or weight decisions based on the prediction results
of multiple models, ultimately selecting the final prediction result. Another common
integration method is based on Bagging and Boosting methods, which can obtain the
final prediction by averaging and voting upon the predictions of multiple models. The
Boosting method gradually improves the overall accuracy by iteratively training a series of
weak classifiers. The weights of the next classifier are adjusted based on the errors of the
previous classifier.

Ensemble machine learning can also combine multiple different algorithms, for exam-
ple, Random Forest is an ensemble method that combines multiple decision tree models.
Random Forest trains multiple decision trees by randomly selecting data samples and
features. The prediction results of multiple decision trees are then either voted upon or
averaged to obtain the final prediction result. The stacking model [52] is also an ensem-
ble learning method that combines the prediction results of multiple different types of
base models (also known as primary learners) as inputs, and then trains a higher-level
meta-model (also known as a secondary learner) to make the final prediction.

The stacking model combines different types of base models, which it can fully utilize
the advantages of. The stacking model can also weight or fuse the prediction results of
different base models, thereby improving the overall prediction ability of the model. At the
same time, secondary learners are introduced to further learn the features of the original
data, and to improve the model’s generalization ability. Therefore, in this article, the
stacking ensemble machine learning model is selected to replace a standalone machine
learning model for requirement dependency extraction. Due to the need to train multiple
base models and construct a training set for the meta-model, the stacking model has higher
complexity in both training and prediction. Additionally, the stacking model has a stronger
dependency on data and models. It is also necessary to carefully select the base model and
design the structure of the secondary learners. Therefore, this article has improved the
standard stacking model to reduce subjectivity and uncertainty in building the base model,
while also reducing the risk of overfitting.

4.2. Improving the Stacking Ensemble Model

The stacking model was first proposed by Wolpert [52] in 1992; its core idea is to
model on a stacking of original data. As shown in Figure 9, the base classifier learns the
original data and gets the prediction results which are stacked to build a new dataset, and
then the new sample data are given to the meta-classifier for fitting to output the final
prediction results.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 37

Label
Base Classifier 1

Base Classifier 2

...

Base Classifier n

Meta classifier
Final

Prediction

Data

Figure 9. Standard stacking model.

In this paper, we propose an algorithm that automatically assigns the appropriate
base classifiers when facing different datasets. The diagram of the improved model is
shown in Figure 10.

Requirement Text

Iterations
n=2N−1

Candidate
classifier 1

Candidate
classifier2 ……

Candidate
classifier m

Pre-processing

Candidate
classifier1

Candidate
classifier2 ……

Candidate
classifier T

Low correlation algorithm

Base
classifier1

Base
classifier2 ……

Base classifier
N

Grid search algorithm

New dataset

5-fold cross-validation

Meta classifier

Phase one

No

Highest F1 value
and base classifier

Phase tw
o

Yes

F1 value and
base classifier

Figure 10. P-Stacking model diagram.

4.2.1. Low Correlation Algorithm

In phase one, a suitable machine learning algorithm is selected to build a requirement
dependency extraction model, and then a classifier that can realize the requirement de-
pendency extraction task is added to the candidate classifier set. Due to the large number
of classifier models that have been selected in this paper, there may be situations such as
similar classification effects and unsatisfactory classification effects between classifiers.
Before selecting a base classifier, it is possible to exclude some classifiers with similar clas-
sification effects by comparing the correlation between them. Therefore, the Low Correla-
tion Algorithm has been proposed in this paper. According to the principle of the stacking
model, if the prediction accuracy of a classifier in the base model is too low, the prediction
performance of the meta classifier will be reduced when the prediction results of this clas-
sifier are used as a new dataset for the meta classifier. Therefore, according to the experi-
mental results of a standalone classifier in Section 5, classifiers with F1 values below 60
will be removed from the candidate classifiers. Furthermore, from the constructed set of
candidate classifiers, classifiers with higher correlations are excluded by the Low

Figure 9. Standard stacking model.

Mathematics 2024, 12, 1272 16 of 37

In this paper, we propose an algorithm that automatically assigns the appropriate base
classifiers when facing different datasets. The diagram of the improved model is shown in
Figure 10.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 37

Label
Base Classifier 1

Base Classifier 2

...

Base Classifier n

Meta classifier
Final

Prediction

Data

Figure 9. Standard stacking model.

In this paper, we propose an algorithm that automatically assigns the appropriate
base classifiers when facing different datasets. The diagram of the improved model is
shown in Figure 10.

Requirement Text

Iterations
n=2N−1

Candidate
classifier 1

Candidate
classifier2 ……

Candidate
classifier m

Pre-processing

Candidate
classifier1

Candidate
classifier2 ……

Candidate
classifier T

Low correlation algorithm

Base
classifier1

Base
classifier2 ……

Base classifier
N

Grid search algorithm

New dataset

5-fold cross-validation

Meta classifier

Phase one

No

Highest F1 value
and base classifier

Phase tw
o

Yes

F1 value and
base classifier

Figure 10. P-Stacking model diagram.

4.2.1. Low Correlation Algorithm

In phase one, a suitable machine learning algorithm is selected to build a requirement
dependency extraction model, and then a classifier that can realize the requirement de-
pendency extraction task is added to the candidate classifier set. Due to the large number
of classifier models that have been selected in this paper, there may be situations such as
similar classification effects and unsatisfactory classification effects between classifiers.
Before selecting a base classifier, it is possible to exclude some classifiers with similar clas-
sification effects by comparing the correlation between them. Therefore, the Low Correla-
tion Algorithm has been proposed in this paper. According to the principle of the stacking
model, if the prediction accuracy of a classifier in the base model is too low, the prediction
performance of the meta classifier will be reduced when the prediction results of this clas-
sifier are used as a new dataset for the meta classifier. Therefore, according to the experi-
mental results of a standalone classifier in Section 5, classifiers with F1 values below 60
will be removed from the candidate classifiers. Furthermore, from the constructed set of
candidate classifiers, classifiers with higher correlations are excluded by the Low

Figure 10. P-Stacking model diagram.

4.2.1. Low Correlation Algorithm

In phase one, a suitable machine learning algorithm is selected to build a requirement
dependency extraction model, and then a classifier that can realize the requirement de-
pendency extraction task is added to the candidate classifier set. Due to the large number
of classifier models that have been selected in this paper, there may be situations such
as similar classification effects and unsatisfactory classification effects between classifiers.
Before selecting a base classifier, it is possible to exclude some classifiers with similar
classification effects by comparing the correlation between them. Therefore, the Low Cor-
relation Algorithm has been proposed in this paper. According to the principle of the
stacking model, if the prediction accuracy of a classifier in the base model is too low, the
prediction performance of the meta classifier will be reduced when the prediction results
of this classifier are used as a new dataset for the meta classifier. Therefore, according to
the experimental results of a standalone classifier in Section 5, classifiers with F1 values
below 60 will be removed from the candidate classifiers. Furthermore, from the constructed
set of candidate classifiers, classifiers with higher correlations are excluded by the Low
Correlation Algorithm, in which the Pearson correlation coefficient is used to measure the
correlation between classifiers. The Pearson correlation coefficient is a commonly used
statistical indicator to measure the linear correlation between two variables, which can be
used to measure the strength and direction of the linear relationship between two vari-
ables. The range of the Pearson correlation coefficient’s values is [−1, 1], and the closer the
absolute value is to 0, the smaller the correlation. The formula is calculated as follows.

rxy =
∑m

i=1 (xi − x)(yi − y)√
∑m

i=1 (xi − x)2
√

∑m
i=1 (yi − y)2

(5)

Mathematics 2024, 12, 1272 17 of 37

The pseudo-code of the Low Correlation Algorithm (Algorithm 1) is shown as follows.

Algorithm 1. Low Correlation Algorithm

Input: Set of probability values for candidate classifiers D = {(x11, x12, . . ., x17), . . ., (xt1, xt2, . . .,
xt7)};

Set of candidate classifier models ζ = {ζ1, ζ2, . . ., ζt};
Process:
1: for i← 1, 2, . . ., t do
2: for t← 2, 3, . . ., t do
3: rxy = ∑m

i=1 (xi−x)(yi−y)√
∑m

i=1 (xi−x)2
√

∑m
i=1 (yi−y)2

// select two different classifiers and calculate the

correlation between the two classifiers based on the classifier probability values
4: List.append(hit) //add the correlation values between two classifiers to the list
5: end for
6: range (List) //sort the correlation values in the list
7: if F1[m]<60 then: // if the classifier’s F1 value is lower than 0.6, remove this classifier
8: delete ζm
9: else F1[n]<60 then: //if the F1 value of the classifier is lower than 0.6, remove this classifier
10: delete ζn
11: else then: //otherwise, remove the two classifiers with the highest correlation between
the two groups
12: delete ζList [1], ζList [2]
13: end if
14: update(ζ) // update the set of classifiers
Output: a collection of candidate classifier models ζ.

4.2.2. Grid Search Algorithm

In the phase two, from the set of classifiers that have removed those with high cor-
relations and F1 values below 60, the Grid Search Algorithm is used to select different
classifiers in turn to build the base model. The Grid Search Algorithm is a method used
for hyperparameter tuning, which searches for the best combination of parameters to
optimize model performance by traversing a given parameter space. The basic idea of the
Grid Search Algorithm is to exhaustively search for all possible combinations of the given
hyperparameters and evaluate the performance of the model through cross-validation. In
this article, the Grid Search Algorithm is used to search for the optimal combination of the
given classifiers, to improve the predictive performance of the stacking model. Due to the
high complexity of Grid Search Algorithms, especially when the parameter space is large,
this can lead to longer search times. Therefore, before using the Grid Search Algorithm,
phase one is to use a Low Correlation Algorithm to remove some candidate classifiers,
thereby reducing the parameter space. At the same time, to prevent the risk of overfitting, a
5-fold cross-validation method is used for training. The training results will be stacked into
a new dataset and sent to the meta-classifier for final training and testing. The F1 value of
the prediction result and the base classifier combination of the current round are recorded.
After exhausting all classifier combinations, the highest F1 value and the corresponding
base classifier combination are selected.

The Grid Search Algorithm (Algorithm 2) in pseudo-code is shown as follows.

Mathematics 2024, 12, 1272 18 of 37

Algorithm 2. Grid Search Algorithm

Input: Training set T = {(x1, y1), . . ., (xt, yt)};
Test set U = {{(x1, y1), . . ., (xm, ym)}};
The set of candidate classifier models ζ = { ζ1, ζ2, . . ., ζT};

Process:
1: for i← 1, 2, . . ., 2**T do
2: for j← 1, 2, . . ., T do // exhaustively each combination of classifiers constitutes an
ensemble learning model
3: if(i>>j)%2
4: score← P_Stacking.score(T,U) //use ensemble model to get F1 score value
5: if score > best_score // determine if this F1 value is the largest
6: best_score← score
7: best_ζ.append(ζj) //update the F1 value, the F1 value at the end of the loop
is the final result
8: end if
9: end if
10: end for
Output: a collection of candidate classifier models best_ζ.

4.2.3. Five-Fold Cross-Validation

In cross-validation, the main purpose of the data being cut into different layers is to
more reliably evaluate the performance of the model. It is common practice to divide the
data into 3-folds, 5-folds, and 10-folds, etc. The choice of the divide layer number will
affect the stability of the model’s evaluation and calculation cost. The more layers, the
more data will be used to train and test, which will result in a more stable performance
evaluation of the model. However, this also means that more training and testing iterations
are required, increasing the computational cost. Conversely, the fewer the layers, the
lower the computational cost, but the stability of the performance evaluation may be
worse. Therefore, in this paper, the data are divided into 5-folds based on comprehensive
considerations of model performance and computational cost.

The reasons for choosing cross-validation in the stacking model in this paper are as
follows. Firstly, the stacking model relies on the prediction results of multiple base models
as inputs. By utilizing five-fold cross-validation, we can ensure that each base model is
trained and tested on different subsets of data, thereby enabling a more comprehensive
evaluation of its performance. Secondly, cross-validation can help avoid data bias issues.
The stacking model needs to ensure that the predictions of the base model are made on
previously unseen data in order to more accurately assess its generalization ability.

In this paper, the process of 5-fold cross-validation is as follows. The dataset is split into
five folds, and each time four folds are taken for training, the other one fold is predicted. The
predicted value is passed to the next layer of the model as a new dataset so that overfitting
can be effectively avoided. The 5-fold cross-validation model diagram is shown in Figure 11,
where the data are divided into 5-folds. Therefore, five sets of datasets are generated, four
of which are used as the training set, and the other set is used as the validation set. The
training set is given to the model for training. The output of the validation set is obtained
by using the model to predict it. Because it is a 5-fold cross-validation, which will form
five validation sets, the prediction results of each validation set will be stacked to get the
prediction results of the complete dataset. The method in Figure 11 is only for a single
model. For the other models, the same method is used to obtain the prediction results,
based on which, a new dataset is constructed.

Mathematics 2024, 12, 1272 19 of 37

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 37

is only for a single model. For the other models, the same method is used to obtain the
prediction results, based on which, a new dataset is constructed.

5-fold

Label

Label

Model

Model

Model

Model

Model

Prediction

Merge

New
dataset

Data

Data

Figure 11. Diagram of the 5-fold cross-validation model.

4.3. Example of Requirement Dependency Extraction
4.3.1. Requirement Dependency Extraction Based on Single Part-of-Speech Weights

For requirement dependency extraction based on the ensemble learning model in
Figure 10, the Course Management System dataset is taken as an example.

Firstly, the requirement terms are combined into pairs to generate a requirement de-
pendency pair, encoded by the TF-IDF features, and the TF-IDF features are improved
based on Figure 6. Then, Word2Vec is fused to generate the final feature vector as input
for the classification model. For the requirement pairs {the teaching assistants can assist
students in complete projects in the system, the teaching assistants can help students an-
swer questions in the system} in the Course Management System dataset, the feature vec-
tors for different features are shown in Table 1. Then, the feature vectors of requirement
pairs are transferred into the ensemble learning model and the final ensemble learning
model is determined by using the F1 value as the evaluation criterion. Finally, the depend-
ency relationship of the above requirement pairs is extracted as a similarity relationship.

Table 1. The feature vectors for different features.

FEATURE FEATURE VECTOR
TF-IDF {0.96, 0.52, 1.08, 0.66, 0.84, 0.42, 0.64, 0.28, 1.04, 0.68, 0.94, 0.46}

IMPROVED TF-IDF {1.32, 0.52, 1.48, 0.66, 1.24, 0.42, 0.85, 0.28, 1.36, 0.68, 1.23, 0.46}
WORD2VEC {0.18, 0.31, 0.27, −0.23, 0.51, −0.05,0.14, −0.93, 0.34, −0.24, 0.53, 0.00}

TF-IDF*WORD2VEC {0.17, 0.16, 0.29, −0.15, 0.43, −0.02, 0.09, −0.26, 0.35, −0.16, 0.50,
0.00}

IMPROVED TF-IDF
*WORD2VEC {0.24, 0.16, 0.41, −0.15, 0.63, −0.02, 0.12, −0.26, 0.46, −0.18, 0.65, 0.00}

4.3.2. Requirement Dependency Extraction Based on Multiple Part-of-Speech Weights
The ensemble learning model, TF-IDF feature vectors, and Word2Vec feature vectors

used in this section are the same as those in Section 4.3.1. The requirement pair is {the
teaching assistants can assist students in complete projects in the system, the teaching as-
sistants can help students answer questions in the system}. However, the key difference
lies in the improved TF-IDF features. Based on the method outlined in Section 3.2.4, the
dataset is partitioned into distinct groups. Particles conduct searches within each group

Figure 11. Diagram of the 5-fold cross-validation model.

4.3. Example of Requirement Dependency Extraction
4.3.1. Requirement Dependency Extraction Based on Single Part-of-Speech Weights

For requirement dependency extraction based on the ensemble learning model in
Figure 10, the Course Management System dataset is taken as an example.

Firstly, the requirement terms are combined into pairs to generate a requirement
dependency pair, encoded by the TF-IDF features, and the TF-IDF features are improved
based on Figure 6. Then, Word2Vec is fused to generate the final feature vector as input
for the classification model. For the requirement pairs {the teaching assistants can assist
students in complete projects in the system, the teaching assistants can help students answer
questions in the system} in the Course Management System dataset, the feature vectors
for different features are shown in Table 1. Then, the feature vectors of requirement pairs
are transferred into the ensemble learning model and the final ensemble learning model
is determined by using the F1 value as the evaluation criterion. Finally, the dependency
relationship of the above requirement pairs is extracted as a similarity relationship.

Table 1. The feature vectors for different features.

FEATURE FEATURE VECTOR

TF-IDF {0.96, 0.52, 1.08, 0.66, 0.84, 0.42, 0.64, 0.28, 1.04, 0.68, 0.94, 0.46}
IMPROVED TF-IDF {1.32, 0.52, 1.48, 0.66, 1.24, 0.42, 0.85, 0.28, 1.36, 0.68, 1.23, 0.46}

WORD2VEC {0.18, 0.31, 0.27, −0.23, 0.51, −0.05,0.14, −0.93, 0.34, −0.24, 0.53, 0.00}
TF-IDF*WORD2VEC {0.17, 0.16, 0.29, −0.15, 0.43, −0.02, 0.09, −0.26, 0.35, −0.16, 0.50, 0.00}
IMPROVED TF-IDF

*WORD2VEC {0.24, 0.16, 0.41, −0.15, 0.63, −0.02, 0.12, −0.26, 0.46, −0.18, 0.65, 0.00}

4.3.2. Requirement Dependency Extraction Based on Multiple Part-of-Speech Weights

The ensemble learning model, TF-IDF feature vectors, and Word2Vec feature vectors
used in this section are the same as those in Section 4.3.1. The requirement pair is {the teach-
ing assistants can assist students in complete projects in the system, the teaching assistants
can help students answer questions in the system}. However, the key difference lies in the
improved TF-IDF features. Based on the method outlined in Section 3.2.4, the dataset is
partitioned into distinct groups. Particles conduct searches within each group indepen-
dently, ultimately determining seven part-of-speech weights. For conflict relationships, the
weights from Section 4.3.1 are adopted. Seven sets of part-of-speech weights are used to
weight the TF-IDF, respectively. When predicting the dependency relationships between
requirements, the seven weighted TF-IDF features are fed into the prediction model. By
comparing the prediction values, the dependency type with the highest prediction value is
chosen as the final result. The part-of-speech weights for each group are shown in Table 2.

Mathematics 2024, 12, 1272 20 of 37

The seven feature vectors for the requirement pair instance are shown in Tables 3–9. It
is ultimately determined that the highest prediction probability is achieved when using
part-of-speech weight W6. The highest prediction probability based on Mul-TFIDF is
80.14%, indicating a similarity relationship. The highest prediction probability based on
Mul-TFIDF*Word2Vec is 85.56%, also indicating a similarity relationship.

Table 2. Part-of-speech weights in datasets with different dependency types.

Group Dependency Type Part-of-Speech Weight

W0 Independency {0.24, 0.50, 0.12, 0.58, 0.22, 0.34}
W1 Notification {0.44, 0.28, 0.40, 0.18, 0.32, 0.38}
W2 Arouse {0.36, 0.26, 0.46, 0.22, 0.40, 0.30}
W3 Call {0.42, 0.60, 0.14, 0.20, 0.34, 0.30}
W4 Conflict {0.38, 0.36, 0.47, 0.32, 0.31, 0.28}
W5 Aggregation {0.48, 0.32, 0.28, 0.38, 0.20, 0.34}
W6 Similar {0.32, 0.50, 0.22, 0.34, 0.46, 0.16}

Table 3. The feature vectors of different features when the part-of-speech weight is W0.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.19, 0.52, 1.62, 0.66, 0.94, 0.42, 1.01, 0.28, 1.27, 0.68, 1.26, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.22, 0.17, 0.44, −0.15, 0.48, −0.01, 0.12, −0.26, 0.58, −0.17, 0.82, 0.00}

Table 4. The feature vectors of different features when the part-of-speech weight is W1.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.38, 0.52, 1.31, 0.66, 1.36, 0.42, 1.15, 0.28, 1.42, 0.68, 1.27, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.25, 0.17, 0.35, −0.15, 0.69, −0.01, 0.16, −0.26, 0.48, −0.17, 0.67, 0.00}

Table 5. The feature vectors of different features when the part-of-speech weight is W2.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.38, 0.52, 1.36, 0.66, 1.73, 0.42, 1.15, 0.28, 1.42, 0.68, 1.27, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.25, 0.17, 0.37, −0.15, 0.88, −0.01, 0.16, −0.26, 0.68, −0.17, 0.67, 0.00}

Table 6. The feature vectors of different features when the part-of-speech weight is W3.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.18, 0.52, 1.23, 0.66, 0.96, 0.42, 1.02, 0.28,1.08, 0.68, 1.02, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.21, 0.17, 0.33, −0.15, 0.49, −0.01, 0.14, −0.26, 0.37, −0.17, 0.54, 0.00}

Table 7. The feature vectors of different features when the part-of-speech weight is W4.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.32, 0.52, 1.48, 0.66, 1.24, 0.42, 0.85, 0.28, 1.36, 0.68, 1.23, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.24, 0.16, 0.41, −0.15, 0.63, −0.02, 0.12, −0.26, 0.46, −0.16, 0.65, 0.00}

Mathematics 2024, 12, 1272 21 of 37

Table 8. The feature vectors of different features when the part-of-speech weight is W5.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.37, 0.52, 1.46, 0.66, 1.39, 0.42, 1.58, 0.28, 1.23, 0.68, 1.52, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.25, 0.17, 0.39, −0.15, 0.71, −0.01, 0.22, −0.26, 0.42, −0.17, 0.81, 0.00}

Table 9. The feature vectors of different features when the part-of-speech weight is W6.

FEATURE FEATURE VECTOR

IMPROVED TF-IDF {1.30, 0.52, 1.22, 0.66, 1.22, 0.42, 1.37, 0.28,1.26, 0.68, 1.09, 0.46}
IMPROVED TF-IDF

*WORD2VEC {0.23, 0.17, 0.33, −0.15, 0.62, −0.01, 0.19, −0.26, 0.43, −0.17, 0.58, 0.00}

5. Experiments

In this paper, we argue the feasibility of the proposed method in the following varia-
tions. Firstly, when the ensemble learning model is not used, the classification performance
of a standalone classifier is under different features. Secondly, the classification performance
of a standalone classifier and the P-Stacking model after adding part-of-speech features.
Thirdly, the classification performance of a standalone classifier and the P-Stacking model
after adding multiple part-of-speech weight features. Fourthly, after improving the method
of extracting the backbone of requirement sentences, an experimental evaluation is con-
ducted on the CMS system dataset. Finally, we analysed the running time of the model
proposed in this paper.

5.1. Datasets

In this paper, three datasets are used to validate the feasibility of the proposed method
in terms of different features and different models. The Course Management System dataset
(dataset 1) [49] contains 17 requirement sentences and generates 272 dependency pairs.
The Composition Evaluation dataset (dataset 2) [53] contains 19 requirement sentences
and generates 342 dependency pairs. The CMS System dataset (dataset 3) [50] contains
27 requirement sentences and generates 702 dependency pairs.

5.2. Experimental Environment and Parameter Settings
5.2.1. Experimental Environment

The environment configuration of the experimental platform is shown in Table 10.

Table 10. Experimental environment table.

Environment Configuration

CPU i5-10210U
Random Access Memory (RAM) 16 GB

Development Software Pycharm 2020.3.5
Development Language Python 3.6

Ten classifiers are selected in this paper, including the K-Nearest Neighbor (KNN),
decision tree (DT), logistic regression (LGR), Random Forest (RF), Support Vector Machine
(SVM), Gaussian Naive Bayes (GNB), Multinomial Naive Bayes (MNB), Support Vector
Regression (SVR), Linear Regression (LR) and the improved stacking model (P-Stacking).

Seven features are used in this paper, including the TF-IDF, the improved TF-IDF
(P-TFIDF), the Multi-Weighted TF-IDF (Mul-TFIDF), Word2Vec, the TF-IDF*Word2Vec
(TIW2V), the improved TF-IDF*Word2Vec (P-TIW2V), and the Multi-Weighted
TF-IDF*Word2Vec (Mul-TIW2V). The symbol “*” indicates the fusion of two features.

Mathematics 2024, 12, 1272 22 of 37

5.2.2. PSO Algorithm Parameter Settings

When determining the parameters of PSO, we did not adjust them based on a vali-
dation set. Instead, we adopted the following approach for parameter determination. In
reference [54], the author suggests that the inertia weight w should be selected within the
range of [0.4, 0.9]. The individual learning factor c1 and the social learning factor c2 should
be set to equal values and chosen within the range of [0, 4]. Reference [54] found that
when c1 = 2 and c2 = 2, particles can achieve a faster convergence speed. As the problem
addressed in this paper is a six-dimensional one with a relatively high dimension, there
is a risk of falling into local optima. Therefore, a set of parameter combinations with a
larger c1 than c2 are selected as a comparative experiment. We conducted experiments on
three datasets based on different values of w, c1, and c2. The evaluation index is the F1 value
of the Random Forest. The F1 value represents the fitness value. The experimental results
are shown in Figures 12–14. The highest fitness values for each parameter combination are
shown in Table 11. When w = 0.5, c1 = 2.0, and c2 = 2.0, three datasets have the highest
fitness value. Thus, the final parameters of the PSO algorithm are shown in Table 12.

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 37

(TIW2V), the improved TF-IDF*Word2Vec (P-TIW2V), and the Multi-Weighted TF-
IDF*Word2Vec (Mul-TIW2V). The symbol “*” indicates the fusion of two features.

5.2.2. PSO Algorithm Parameter Settings
When determining the parameters of PSO, we did not adjust them based on a valida-

tion set. Instead, we adopted the following approach for parameter determination. In ref-
erence [54], the author suggests that the inertia weight w should be selected within the
range of [0.4, 0.9]. The individual learning factor c1 and the social learning factor c2 should
be set to equal values and chosen within the range of [0, 4]. Reference [54] found that when
c1 = 2 and c2 = 2, particles can achieve a faster convergence speed. As the problem ad-
dressed in this paper is a six-dimensional one with a relatively high dimension, there is a
risk of falling into local optima. Therefore, a set of parameter combinations with a larger
c1 than c2 are selected as a comparative experiment. We conducted experiments on three
datasets based on different values of w, c1, and c2. The evaluation index is the F1 value of
the Random Forest. The F1 value represents the fitness value. The experimental results are
shown in Figures 12–14. The highest fitness values for each parameter combination are
shown in Table 11. When w = 0.5, c1 = 2.0, and c2 = 2.0, three datasets have the highest
fitness value. Thus, the final parameters of the PSO algorithm are shown in Table 12.

(a) (b)

Figure 12. F1 values for the different c1, c2, and w values in dataset 1. (a) c1 = 2.0, c2 = 1.0; (b) c1 =
2.0, c2 = 2.0.

(a) (b)

Figure 13. F1 values for the different c1, c2, and w values in dataset 2. (a) c1 = 2.0, c2 = 1.5; (b) c1 =
2.0, c2 = 2.0.

Figure 12. F1 values for the different c1, c2, and w values in dataset 1. (a) c1 = 2.0, c2 = 1.0; (b) c1 = 2.0,
c2 = 2.0.

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 37

(TIW2V), the improved TF-IDF*Word2Vec (P-TIW2V), and the Multi-Weighted TF-
IDF*Word2Vec (Mul-TIW2V). The symbol “*” indicates the fusion of two features.

5.2.2. PSO Algorithm Parameter Settings
When determining the parameters of PSO, we did not adjust them based on a valida-

tion set. Instead, we adopted the following approach for parameter determination. In ref-
erence [54], the author suggests that the inertia weight w should be selected within the
range of [0.4, 0.9]. The individual learning factor c1 and the social learning factor c2 should
be set to equal values and chosen within the range of [0, 4]. Reference [54] found that when
c1 = 2 and c2 = 2, particles can achieve a faster convergence speed. As the problem ad-
dressed in this paper is a six-dimensional one with a relatively high dimension, there is a
risk of falling into local optima. Therefore, a set of parameter combinations with a larger
c1 than c2 are selected as a comparative experiment. We conducted experiments on three
datasets based on different values of w, c1, and c2. The evaluation index is the F1 value of
the Random Forest. The F1 value represents the fitness value. The experimental results are
shown in Figures 12–14. The highest fitness values for each parameter combination are
shown in Table 11. When w = 0.5, c1 = 2.0, and c2 = 2.0, three datasets have the highest
fitness value. Thus, the final parameters of the PSO algorithm are shown in Table 12.

(a) (b)

Figure 12. F1 values for the different c1, c2, and w values in dataset 1. (a) c1 = 2.0, c2 = 1.0; (b) c1 =
2.0, c2 = 2.0.

(a) (b)

Figure 13. F1 values for the different c1, c2, and w values in dataset 2. (a) c1 = 2.0, c2 = 1.5; (b) c1 =
2.0, c2 = 2.0.

Figure 13. F1 values for the different c1, c2, and w values in dataset 2. (a) c1 = 2.0, c2 = 1.5; (b) c1 = 2.0,
c2 = 2.0.

Mathematics 2024, 12, x FOR PEER REVIEW 23 of 38

(a) (b)

Figure 14. F1 values for the different c1, c2, and w values in dataset 3. (a) c1 = 2.0, c2 = 1.5; (b) c1 =
2.0, c2 = 2.0.

Table 11. F1 values for different w, c1, and c2 values (%).

C1 C2 W
FITNESS VALUE F1

(DATASET 1)
FITNESS VALUE
F1 (DATASET 2)

FITNESS VALUE
F1 (DATASET 3)

2.0 1.0

0.4 88.63 77.45 68.39
0.5 89.02 78.48 68.78
0.6 88.66 77.76 68.43
0.7 88.35 77.62 68.16
0.8 88.59 77.63 67.92
0.9 88.75 78.15 68.01

2.0 2.0

0.4 88.72 77.60 68.61
0.5 89.24 78.71 68.93
0.6 88.81 77.83 68.54
0.7 88.59 77.65 68.28
0.8 88.69 77.69 67.99
0.9 88.76 78.36 68.12

Table 12. PSO parameter values.

Parameter Value
c1 2.0
c2 2.0
w 0.5

particle number 50
iterations 30

Vmax −0.1, +0.1

5.3. Experimental Process and Data Statistics
Firstly, the requirement text is pre-processed to form requirement pairs, and the par-

ticle swarm optimization algorithm is used to match the optimal weights for each part of
speech in the requirement pairs, and then the matched weights are used to improve the
TF-IDF features. Secondly, the feature vectors are passed into the ensemble learning
model, and the Low Correlation Algorithm, shown as Algorithm 1, is used to remove two
classifiers with F1 values below 60 or high correlations. Finally, the Grid Search Algorithm
is used to determine the optimal ensemble learning model, which is trained and tested to
extract requirement dependencies as well as being evaluated according to its performance
on different datasets.

The evaluation criteria used in this article are the Precision, Recall, and the F1 mean.
Precision refers to the proportion of samples predicted or classified as positive that truly
belong to positive examples. The calculation formula is shown in Formula (6), where TP
represents True Positive samples and FP represents False Negative samples. Recall refers to

Figure 14. F1 values for the different c1, c2, and w values in dataset 3. (a) c1 = 2.0, c2 = 1.5; (b) c1 = 2.0,
c2 = 2.0.

Mathematics 2024, 12, 1272 23 of 37

Table 11. F1 values for different w, c1, and c2 values (%).

C1 C2 W FITNESS VALUE
F1 (DATASET 1)

FITNESS VALUE
F1 (DATASET 2)

FITNESS VALUE
F1 (DATASET 3)

2.0 1.0

0.4 88.63 77.45 68.39
0.5 89.02 78.48 68.78
0.6 88.66 77.76 68.43
0.7 88.35 77.62 68.16
0.8 88.59 77.63 67.92
0.9 88.75 78.15 68.01

2.0 2.0

0.4 88.72 77.60 68.61
0.5 89.24 78.71 68.93
0.6 88.81 77.83 68.54
0.7 88.59 77.65 68.28
0.8 88.69 77.69 67.99
0.9 88.76 78.36 68.12

Table 12. PSO parameter values.

Parameter Value

c1 2.0
c2 2.0
w 0.5

particle number 50
iterations 30

Vmax −0.1, +0.1

5.3. Experimental Process and Data Statistics

Firstly, the requirement text is pre-processed to form requirement pairs, and the
particle swarm optimization algorithm is used to match the optimal weights for each part
of speech in the requirement pairs, and then the matched weights are used to improve
the TF-IDF features. Secondly, the feature vectors are passed into the ensemble learning
model, and the Low Correlation Algorithm, shown as Algorithm 1, is used to remove two
classifiers with F1 values below 60 or high correlations. Finally, the Grid Search Algorithm
is used to determine the optimal ensemble learning model, which is trained and tested to
extract requirement dependencies as well as being evaluated according to its performance
on different datasets.

The evaluation criteria used in this article are the Precision, Recall, and the F1 mean.
Precision refers to the proportion of samples predicted or classified as positive that truly
belong to positive examples. The calculation formula is shown in Formula (6), where TP
represents True Positive samples and FP represents False Negative samples. Recall refers
to the proportion of correctly predicted or retrieved positive cases in the total number of
actual positive cases. The calculation formula is shown in Formula (7), where TP represents
True Positive samples and FN represents False Negative samples. F1 is the harmonic mean of
the Precision and Recall. The calculation formula is shown in Formula (8).

Precision = TP / (TP + FP) (6)

Recall = TP / (TP + FN) (7)

F1 = 2× Presicion× Recall
Presicion + Recall

(8)

5.4. Experimental Results

This section will summarize the F1, Precision, and Recall scores of the three datasets
for different features and different classifier models. The set of classifiers ζ = {KNN, DT,
LGR, RF, SVM, GNB, MNB, LR}. Due to the plethora of ways to combine feature variables

Mathematics 2024, 12, 1272 24 of 37

and base classifiers, each base classifier combination identified when using the Grid Search
Algorithm is represented in rounds.

5.4.1. The Experimental Evaluation of the Standalone Classifiers for Three Datasets at
Single Part-of-Speech Weights

In the experiments on the three datasets, each of the classifiers is trained and tested
using the same experimental environment configuration. Five features are used for com-
parative evaluation. In this paper, the ratio of the training set to the test set is divided into
7:3 and experiments are conducted on nine standalone classifiers. In the particle swarm
optimization algorithm, the number of particles is 50, the number of iterations is 30, and
RF is used for training and testing to determine the fitness value of each particle. The
part-of-speech weight results determined by the PSO algorithm are shown in Table 13. The
F1 scores are shown in Tables 14–16. The Precision values and the Recall values are shown
in Tables 17–19. After introducing part-of-speech weights for the TF-IDF features, the high-
est F1 scores for the requirement dependency extraction performed on the three datasets
reached 89.12, 78.65 and 74.89, respectively. The highest Recall values for the requirement
dependency extraction performed on the three datasets reached 89.89, 77.56, and 77.36,
respectively. The highest Precision values for the requirement dependency extraction per-
formed on the three datasets reached 90.03, 79.68, and 73.36, respectively. After using the
improved TF-IDF weighted Word2Vec vector, the highest F1 values reached 90.01, 82.69 and
79.06, respectively. The highest Recall values for the requirement dependency extraction
performed on the three datasets reached 90.32, 80.14, and 78.52, respectively. The highest
Precision values for the requirement dependency extraction performed on the three datasets
reached 92.70, 85.36, and 81.03, respectively.

Table 13. Part-of-speech weights for the three datasets.

Datasets Part-of-Speech Weights

Dataset 1 {0.38, 0.36, 0.47, 0.32, 0.31, 0.28}
Dataset 2 {0.47, 0.53, 0.37, 0.44, 0.72, 0.25}
Dataset 3 {0.49, 0.31, 0.41, 0.55, 0.69, 0.32}

Table 14. F1 scores (%) for each classifier on dataset 1 at different features.

Classifier TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

KNN 65.98 73.67 69.12 68.55 75.37
DT 83.42 88.02 81.45 89.28 89.45

LGR 81.27 85.38 80.73 84.03 87.62
RF 86.69 89.12 84.58 89.73 90.01

SVM 87.04 88.79 85.01 87.72 89.43
GNB 57.64 63.95 70.64 71.5 72.27
MNB 70.1 71.53 70.63 68.6 74.56
SVR 83.72 85.2 80.67 85.23 87.06
LR 81.96 83.24 80.33 82.47 85.24

Table 15. F1 scores (%) for each classifier on dataset 2 at different features.

Classifier TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

KNN 52.05 55.39 59.53 61.12 63.74
DT 71.23 72.68 68.9 72.63 75.12

LGR 61.85 63.14 54.21 58.84 64.98
RF 72.26 78.65 80.53 80.75 82.69

SVM 70.49 73.9 67.99 68.85 73.27

Mathematics 2024, 12, 1272 25 of 37

Table 15. Cont.

Classifier TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

GNB 45.25 48.08 49.53 51.62 52.3
MNB 54.07 55.47 41.84 43.54 47.28
SVR 60.67 68.93 64.32 69.06 74.58
LR 62.35 65.41 53.89 60.58 65.9

Table 16. F1 scores (%) for each classifier on dataset 3 at different features.

Classifier TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

KNN 42.24 50.19 64.57 69.46 75.87
DT 62.9 67.06 73.82 73.08 78.29

LGR 66.44 68.27 63.65 69.25 70.48
RF 59.75 69.36 75.4 77.98 79.06

SVM 70.03 71.25 69.0 74.52 77.23
GNB 30.7 38.59 59.1 58.45 60.27
MNB 58.48 60.27 27.99 30.34 30.6
SVR 72.38 74.89 71.26 74.78 77.85
LR 67.45 72.04 65.86 70.67 74.61

Table 17. Precision and Recall values (%) for each classifier on dataset 1 at different features.

TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

Classifier Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

KNN 64.45 67.44 72.96 74.28 70.41 67.76 67.95 69.02 74.21 76.56
DT 85.14 81.63 87.25 88.91 82.69 80.14 87.26 91.28 89.32 89.57

LGR 81.25 81.17 85.23 85.47 79.57 81.84 84.25 83.74 88.56 86.62
RF 86.24 87.02 89.96 88.16 83.15 86.25 89.67 89.80 87.45 92.70

SVM 88.17 85.75 87.45 90.03 84.04 86.09 86.14 89.46 90.32 88.55
GNB 54.93 61.04 64.57 63.25 72.94 68.36 73.47 69.53 71.14 73.43
MNB 69.14 71.16 71.69 71.28 73.45 68.14 69.32 67.91 74.52 74.64
SVR 84.68 82.67 86.47 83.84 78.36 83.16 85.27 85.21 84.47 89.83
LR 82.35 81.63 82.74 83.62 80.99 79.66 83.96 81.34 86.36 84.14

Table 18. Precision and Recall values (%) for each classifier on dataset 2 at different features.

TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

Classifier Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

KNN 51.32 52.74 55.27 55.46 56.18 63.32 64.64 57.81 64.58 62.86
DT 72.84 69.58 76.14 69.47 69.32 68.54 71.85 73.52 74.65 75.51

LGR 62.95 60.65 64.25 62.14 55.20 53.24 56.29 61.74 65.21 64.68
RF 72.41 72.23 77.56 79.68 81.94 79.26 81.96 79.40 80.14 85.36

SVM 71.46 69.61 73.36 74.59 66.57 69.38 67.31 70.51 74.54 72.16
GNB 47.12 43.65 49.70 46.63 48.26 50.63 50.62 52.67 54.26 50.56
MNB 53.73 54.32 56.31 54.74 42.61 41.25 44.68 42.49 45.96 48.72
SVR 61.87 59.64 69.83 68.14 65.85 62.77 69.67 68.56 78.36 71.06
LR 63.65 61.18 66.37 64.52 52.65 55.21 61.37 59.72 66.03 65.79

Mathematics 2024, 12, 1272 26 of 37

Table 19. Precision and Recall values (%) for each classifier on dataset 3 at different features.

TF-IDF P-TFIDF WORD2VEC TIW2V P-TIW2V

Classifier Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

KNN 45.97 39.15 54.87 46.14 66.67 62.38 68.63 70.22 76.96 74.65
DT 63.46 62.47 66.12 68.25 72.91 74.56 70.46 75.81 75.64 81.03

LGR 65.32 67.52 70.58 66.03 60.53 67.04 71.96 66.76 71.36 69.12
RF 59.47 60.07 74.67 64.86 76.55 74.16 75.67 80.32 78.48 79.68

SVM 71.65 68.30 70.35 72.03 71.96 66.30 72.67 76.42 76.34 78.06
GNB 27.01 35.46 34.52 43.66 62.01 56.36 56.65 60.25 64.26 56.68
MNB 56.31 60.75 59.41 61.04 25.36 31.24 36.39 26.10 35.49 26.76
SVR 75.64 69.42 76.36 73.36 74.36 68.31 72.68 77.06 78.52 77.23
LR 68.17 66.87 72.68 71.50 60.89 71.72 74.13 67.65 75.64 73.54

5.4.2. Experimental Evaluation of P-Stacking Models for Three Datasets at Single
Part-of-Speech Weights

In the P-Stacking model, a logistic regression model is selected for the meta-classifiers.
When determining the combination of base classifiers, the Low Correlation Algorithm is
used to remove two classifiers from the nine candidate classifiers. Then, the Grid Search
Algorithm and 5-fold cross-validation are used to determine the combination of classifiers
with the highest F1 score. Among the five features, for the Course Management System
dataset, F1 scores reached their maximum at 30, 63, 103, 79, and 63 rounds, respectively.
For the Composition Evaluation dataset, F1 scores reached their maximum at 33, 54, 63, 56,
and 79 rounds, respectively. For the CMS System dataset, F1 scores reached their maximum
at 91, 93, 62, 107, and 32 rounds, respectively. To demonstrate the advancement of the
P-Stacking model, the two classifiers with the largest predicted mean values among the
standalone classifiers are selected for comparative analysis with the ensemble learning
model. As shown in Figures 15–17, after the introduction of the part-of-speech features
and the P-Stacking model, the F1 values on the three datasets reached 92.72, 87.72 and
82.32, respectively. The experimental results of P-Stacking are shown in Table 20, and the
highest Recall values for the requirement dependency extraction performed on the three
datasets reached 93.65, 87.46, and 81.09, respectively. The highest Precision values for the
requirement dependency extraction performed on the three datasets reached 92.49, 89.75,
and 83.64, respectively.

Mathematics 2024, 12, x FOR PEER REVIEW 26 of 37

SVR 61.87 59.64 69.83 68.14 65.85 62.77 69.67 68.56 78.36 71.06
LR 63.65 61.18 66.37 64.52 52.65 55.21 61.37 59.72 66.03 65.79

Table 19. Precision and Recall values (%) for each classifier on dataset 3 at different features.

 TF-IDF P-TFIDF Word2vec TIW2V P-TIW2V

Classifier Recall
Precisio

n
Recall Precision Recall

Precisio
n

Recall Precision
Recal

l
Precision

KNN 45.97 39.15 54.87 46.14 66.67 62.38 68.63 70.22 76.96 74.65
DT 63.46 62.47 66.12 68.25 72.91 74.56 70.46 75.81 75.64 81.03

LGR 65.32 67.52 70.58 66.03 60.53 67.04 71.96 66.76 71.36 69.12
RF 59.47 60.07 74.67 64.86 76.55 74.16 75.67 80.32 78.48 79.68

SVM 71.65 68.30 70.35 72.03 71.96 66.30 72.67 76.42 76.34 78.06
GNB 27.01 35.46 34.52 43.66 62.01 56.36 56.65 60.25 64.26 56.68
MNB 56.31 60.75 59.41 61.04 25.36 31.24 36.39 26.10 35.49 26.76
SVR 75.64 69.42 76.36 73.36 74.36 68.31 72.68 77.06 78.52 77.23
LR 68.17 66.87 72.68 71.50 60.89 71.72 74.13 67.65 75.64 73.54

5.4.2. Experimental Evaluation of P-Stacking Models for Three Datasets at Single Part-of-
Speech Weights

In the P-Stacking model, a logistic regression model is selected for the meta-classifiers.
When determining the combination of base classifiers, the Low Correlation Algorithm is
used to remove two classifiers from the nine candidate classifiers. Then, the Grid Search
Algorithm and 5-fold cross-validation are used to determine the combination of classifiers
with the highest F1 score. Among the five features, for the Course Management System
dataset, F1 scores reached their maximum at 30, 63, 103, 79, and 63 rounds, respectively.
For the Composition Evaluation dataset, F1 scores reached their maximum at 33, 54, 63,
56, and 79 rounds, respectively. For the CMS System dataset, F1 scores reached their max-
imum at 91, 93, 62, 107, and 32 rounds, respectively. To demonstrate the advancement of
the P-Stacking model, the two classifiers with the largest predicted mean values among
the standalone classifiers are selected for comparative analysis with the ensemble learning
model. As shown in Figures 15–17, after the introduction of the part-of-speech features
and the P-Stacking model, the F1 values on the three datasets reached 92.72, 87.72 and
82.32, respectively. The experimental results of P-Stacking are shown in Table 20, and the
highest Recall values for the requirement dependency extraction performed on the three
datasets reached 93.65, 87.46, and 81.09, respectively. The highest Precision values for the
requirement dependency extraction performed on the three datasets reached 92.49, 89.75,
and 83.64, respectively.

Figure 15. The P-Stacking model vs. the standalone classifiers for dataset 1. Figure 15. The P-Stacking model vs. the standalone classifiers for dataset 1.

Mathematics 2024, 12, 1272 27 of 37
Mathematics 2024, 12, x FOR PEER REVIEW 27 of 37

Figure 16. The P-Stacking model vs. the standalone classifiers for dataset 2.

Figure 17. The P-Stacking model vs. the standalone classifiers for dataset 3.

Table 20. Precision and Recall values (%) for P-Stacking on three datasets at different features.

 TF-IDF P-TFIDF Word2vec TIW2V P-TIW2V
Datasets Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision
Dataset 1 89.47 91.13 92.64 90.14 89.17 87.38 89.27 92.49 93.65 91.79
Dataset 2 85.21 81.69 84.60 86.84 84.91 80.32 87.46 82.79 85.73 89.75
Dataset 3 76.58 72.13 74.28 78.59 75.34 78.21 78.62 79.42 81.09 83.64

5.4.3. Experimental Evaluation of Standalone Classifiers for Three Datasets with
Multiple Part-of-Speech Weights

Based on the method in Section 3.2.4, different weights are assigned to the TF-IDF
features. The features of multi-weighted TF-IDFs (Mul-TFIDFs) are compared with the
improved TF-IDF (P-TFIDF). The part-of-speech weights for each group are shown in Ta-
bles 21–23. The F1 scores are shown in Tables 24–26. The Precision values and the Recall
values are shown in Tables 27–29. The multi-weighted TF-IDF features are trained and
tested in nine standalone classifier models. Although in some classifiers, the F1 score of a
Mul-TFIDF feature is slightly lower than that of a P-TFIDF feature, the overall experi-
mental effect of multi part-of-speech weights is better than that of single part-of-speech
weights. The highest F1 scores for the requirement dependency extraction performed on
the three datasets are 89.86, 78.52, and 76.65, respectively. The highest Recall values for the
requirement dependency extraction performed on the three datasets reached 89.64, 77.29,
and 78.13, respectively. The highest Precision values for the requirement dependency ex-
traction performed on the three datasets reached 90.96, 79.66, and 74.68, respectively.
When Word2Vec vector fuses with multi-weighted TF-IDF (Mul-TIW2V), the highest F1
scores reached 90.58, 82.94, and 81.54, respectively. The highest Recall values for the

Figure 16. The P-Stacking model vs. the standalone classifiers for dataset 2.

Mathematics 2024, 12, x FOR PEER REVIEW 27 of 37

Figure 16. The P-Stacking model vs. the standalone classifiers for dataset 2.

Figure 17. The P-Stacking model vs. the standalone classifiers for dataset 3.

Table 20. Precision and Recall values (%) for P-Stacking on three datasets at different features.

 TF-IDF P-TFIDF Word2vec TIW2V P-TIW2V
Datasets Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision
Dataset 1 89.47 91.13 92.64 90.14 89.17 87.38 89.27 92.49 93.65 91.79
Dataset 2 85.21 81.69 84.60 86.84 84.91 80.32 87.46 82.79 85.73 89.75
Dataset 3 76.58 72.13 74.28 78.59 75.34 78.21 78.62 79.42 81.09 83.64

5.4.3. Experimental Evaluation of Standalone Classifiers for Three Datasets with
Multiple Part-of-Speech Weights

Based on the method in Section 3.2.4, different weights are assigned to the TF-IDF
features. The features of multi-weighted TF-IDFs (Mul-TFIDFs) are compared with the
improved TF-IDF (P-TFIDF). The part-of-speech weights for each group are shown in Ta-
bles 21–23. The F1 scores are shown in Tables 24–26. The Precision values and the Recall
values are shown in Tables 27–29. The multi-weighted TF-IDF features are trained and
tested in nine standalone classifier models. Although in some classifiers, the F1 score of a
Mul-TFIDF feature is slightly lower than that of a P-TFIDF feature, the overall experi-
mental effect of multi part-of-speech weights is better than that of single part-of-speech
weights. The highest F1 scores for the requirement dependency extraction performed on
the three datasets are 89.86, 78.52, and 76.65, respectively. The highest Recall values for the
requirement dependency extraction performed on the three datasets reached 89.64, 77.29,
and 78.13, respectively. The highest Precision values for the requirement dependency ex-
traction performed on the three datasets reached 90.96, 79.66, and 74.68, respectively.
When Word2Vec vector fuses with multi-weighted TF-IDF (Mul-TIW2V), the highest F1
scores reached 90.58, 82.94, and 81.54, respectively. The highest Recall values for the

Figure 17. The P-Stacking model vs. the standalone classifiers for dataset 3.

Table 20. Precision and Recall values (%) for P-Stacking on three datasets at different features.

TF-IDF P-TFIDF Word2vec TIW2V P-TIW2V

Datasets Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

Dataset 1 89.47 91.13 92.64 90.14 89.17 87.38 89.27 92.49 93.65 91.79
Dataset 2 85.21 81.69 84.60 86.84 84.91 80.32 87.46 82.79 85.73 89.75
Dataset 3 76.58 72.13 74.28 78.59 75.34 78.21 78.62 79.42 81.09 83.64

5.4.3. Experimental Evaluation of Standalone Classifiers for Three Datasets with Multiple
Part-of-Speech Weights

Based on the method in Section 3.2.4, different weights are assigned to the TF-IDF
features. The features of multi-weighted TF-IDFs (Mul-TFIDFs) are compared with the
improved TF-IDF (P-TFIDF). The part-of-speech weights for each group are shown in
Tables 21–23. The F1 scores are shown in Tables 24–26. The Precision values and the Recall
values are shown in Tables 27–29. The multi-weighted TF-IDF features are trained and
tested in nine standalone classifier models. Although in some classifiers, the F1 score of
a Mul-TFIDF feature is slightly lower than that of a P-TFIDF feature, the overall experi-
mental effect of multi part-of-speech weights is better than that of single part-of-speech

Mathematics 2024, 12, 1272 28 of 37

weights. The highest F1 scores for the requirement dependency extraction performed on
the three datasets are 89.86, 78.52, and 76.65, respectively. The highest Recall values for
the requirement dependency extraction performed on the three datasets reached 89.64,
77.29, and 78.13, respectively. The highest Precision values for the requirement dependency
extraction performed on the three datasets reached 90.96, 79.66, and 74.68, respectively.
When Word2Vec vector fuses with multi-weighted TF-IDF (Mul-TIW2V), the highest F1
scores reached 90.58, 82.94, and 81.54, respectively. The highest Recall values for the re-
quirement dependency extraction performed on the three datasets reached 90.83, 81.06, and
82.49, respectively. The highest Precision values for the requirement dependency extraction
performed on the three datasets reached 92.70, 84.89, and 81.65, respectively.

Table 21. Part-of-speech weights in dataset 1 with different dependency types.

Group Dependency Type Part-of-Speech Weights

W0 Independency {0.24, 0.50, 0.12, 0.58, 0.22, 0.34}
W1 Notification {0.44, 0.28, 0.40, 0.18, 0.32, 0.38}
W2 Arouse {0.36, 0.26, 0.46, 0.22, 0.40, 0.30}
W3 Call {0.42, 0.60, 0.14, 0.20, 0.34, 0.30}
W4 Conflict {0.38, 0.36, 0.47, 0.32, 0.31, 0.28}
W5 Aggregation {0.48, 0.32, 0.28, 0.38, 0.20, 0.34}
W6 Similar {0.32, 0.50, 0.22, 0.34, 0.46, 0.16}

Table 22. Part-of-speech weights in dataset 2 with different dependency types.

Group Dependency Type Part-of-Speech Weights

W0 Independency {0.38, 0.25, 0.22, 0.36, 0.56, 0.35}
W1 Notification {0.45, 0.53, 0.52, 0.75, 0.26, 0.70}
W2 Arouse {0.52, 0.63, 0.55, 0.51, 0.79, 0.51}
W3 Call {0.65, 0.30, 0.45, 0.39, 0.64, 0.26}
W4 Conflict {0.50, 0.23, 0.75, 0.31, 0.74, 0.64}

Table 23. Part-of-speech weights in dataset 3 with different dependency types.

Group Dependency Type Part-of-Speech Weights

W0 Independency {0.37, 0.22, 0.32, 0.41, 0.65, 0.43}
W1 Notification {0.56, 0.55, 0.76, 0.44, 0.67, 0.35}
W2 Arouse {0.43, 0.36, 0.33, 0.53, 0.77, 0.55}
W3 Call {0.39, 0.25, 0.35, 0.73, 0.41, 0,37}
W5 Aggregation {0.74, 0.40, 0.35, 0.36, 0.63, 0.37}
W6 Similar {0.29, 0.42, 0.69, 0.24, 0.70, 0.28}

Table 24. F1 scores (%) for each classifier on the Course Management System dataset at different
features.

Classifier P-TFIDF MUL-TFIDF P-TIW2V MUL-TIW2V

KNN 73.67 73.52 75.37 75.36
DT 88.02 88.65 89.45 89.76

LGR 85.38 86.02 87.62 88.34
RF 89.12 89.86 90.01 90.58

SVM 88.79 88.23 89.43 89.52
GNB 63.95 63.25 72.27 73.22
MNB 71.53 72.65 74.56 74.89
SVR 85.2 85.36 87.06 87.41
LR 83.24 83.41 85.24 86.23

Mathematics 2024, 12, 1272 29 of 37

Table 25. F1 scores (%) for each classifier on the Composition Evaluation dataset at different features.

Classifier P-TFIDF MUL-TFIDF P-TIW2V MUL-TIW2V

KNN 55.39 56.03 63.74 64.20
DT 72.68 72.79 75.12 75.26

LGR 63.14 63.17 64.98 66.31
RF 78.65 78.52 82.69 82.94

SVM 73.9 75.23 73.27 74.14
GNB 48.08 48.57 52.3 53.03
MNB 55.47 55.36 47.28 47.25
SVR 68.93 69.01 74.58 74.69
LR 65.41 66.74 65.9 67.21

Table 26. F1 scores (%) for each classifier on the CMS System dataset at different features.

Classifier P-TFIDF MUL-TFIDF P-TIW2V MUL-TIW2V

KNN 50.19 50.63 75.87 76.41
DT 67.06 68.62 78.29 80.16

LGR 68.27 69.20 70.48 71.54
RF 69.36 71.53 79.06 80.32

SVM 71.25 72.65 77.23 78.21
GNB 38.59 40.23 60.27 61.03
MNB 60.27 61.94 30.6 35.26
SVR 74.89 76.45 77.85 79.01
LR 72.04 74.64 74.61 75.36

Table 27. Precision and Recall values (%) for each classifier on dataset 1 at different features.

P-TFIDF MUL-TFIDF P-TIW2V MUL-TIW2V

Classifier Recall Precision Recall Precision Recall Precision Recall Precision

KNN 72.96 74.28 74.56 72.61 74.21 76.56 74.26 76.33
DT 87.25 88.91 88.66 88.57 89.32 89.57 89.64 89.96

LGR 85.23 85.47 87.41 84.63 88.56 86.62 86.47 90.32
RF 89.96 88.16 88.94 90.96 87.45 90.24 90.83 92.70

SVM 87.45 90.03 89.64 86.72 90.32 88.55 88.87 90.07
GNB 64.57 63.25 65.41 61.38 71.14 73.43 74.51 71.86
MNB 71.69 71.28 70.54 74.76 74.52 74.64 73.17 76.55
SVR 86.47 83.84 85.77 84.82 84.47 89.83 88.69 86.07
LR 82.74 83.62 83.56 83.25 86.36 84.14 88.69 85.89

Table 28. Precision and Recall values (%) for each classifier on dataset 2 at different features.

P-TFIDF MUL-TFIDF P-TIW2V MUL-TIW2V

Classifier Recall Precision Recall Precision Recall Precision Recall Precision

KNN 55.27 55.46 55.78 56.14 64.58 62.86 63.58 64.67
DT 76.14 69.47 71.03 74.58 74.65 75.51 77.64 73.16

LGR 64.25 62.14 64.26 62.14 65.21 64.68 68.43 64.36
RF 77.56 79.68 77.29 79.66 80.14 85.36 81.06 84.89

SVM 73.36 74.59 73.65 76.78 74.54 72.16 72.87 75.49
GNB 49.70 46.63 46.98 50.16 54.26 50.56 54.39 51.86
MNB 56.31 54.74 58.47 52.54 45.96 48.72 49.61 45.25
SVR 69.83 68.14 70.14 67.85 78.36 71.06 75.67 73.65
LR 66.37 64.52 65.39 68.20 66.03 65.79 68.59 65.79

Mathematics 2024, 12, 1272 30 of 37

Table 29. Precision and Recall values (%) for each classifier on dataset 3 at different features.

P-TFIDF MUL-TFIDF P-TIW2V MUL-TIW2V

Classifier Recall Precision Recall Precision Recall Precision Recall Precision

KNN 54.87 46.14 51.94 49.24 76.96 74.65 77.42 75.26
DT 66.12 68.25 66.67 70.51 75.64 81.03 81.67 78.68

LGR 70.58 66.03 70.25 68.24 71.36 69.12 70.69 72.34
RF 74.67 64.86 70.43 72.61 78.48 79.68 82.49 78.32

SVM 70.35 72.03 74.56 70.69 76.34 78.06 76.85 79.64
GNB 34.52 43.66 45.97 35.69 64.26 56.68 63.56 58.57
MNB 59.41 61.04 63.04 60.91 35.49 26.76 38.15 32.65
SVR 76.36 73.36 78.13 74.68 78.52 77.23 76.49 81.65
LR 72.68 71.50 75.96 73.25 75.64 73.54 77.25 73.58

5.4.4. Experimental Evaluation of P-Stacking Models for Three Datasets at Multiple
Part-of-Speech Weights

To prove the feasibility of using multi-word weight features in P-Stacking models, the
multi-weight TF-IDF (Mul-TFIDF) features are compared with the single-weight improved
TF-IDF (P-TFIDF) features, and the two standalone classifiers with the highest predicted
means in the classifiers are selected for comparison and analysis with the P-Stacking model,
and the results of the experiments are shown in Figures 18–20. The F1 values on the three
datasets reached 92.87, 88.12 and 84.74, respectively. The experimental results of P-Stacking
are shown in Table 30, and the highest Recall values for the requirement dependency
extraction performed on the three datasets reached 93.01, 89.03, and 80.59, respectively. The
highest Precision values for the requirement dependency extraction performed on the three
datasets reached 93.47, 89.93, and 89.53, respectively.

Mathematics 2024, 12, x FOR PEER REVIEW 30 of 37

LGR 70.58 66.03 70.25 68.24 71.36 69.12 70.69 72.34
RF 74.67 64.86 70.43 72.61 78.48 79.68 82.49 78.32

SVM 70.35 72.03 74.56 70.69 76.34 78.06 76.85 79.64
GNB 34.52 43.66 45.97 35.69 64.26 56.68 63.56 58.57
MNB 59.41 61.04 63.04 60.91 35.49 26.76 38.15 32.65
SVR 76.36 73.36 78.13 74.68 78.52 77.23 76.49 81.65
LR 72.68 71.50 75.96 73.25 75.64 73.54 77.25 73.58

5.4.4. Experimental Evaluation of P-Stacking Models for Three Datasets at Multiple
Part-of-Speech Weights

To prove the feasibility of using multi-word weight features in P-Stacking models,
the multi-weight TF-IDF (Mul-TFIDF) features are compared with the single-weight im-
proved TF-IDF (P-TFIDF) features, and the two standalone classifiers with the highest
predicted means in the classifiers are selected for comparison and analysis with the P-
Stacking model, and the results of the experiments are shown in Figures 18–20. The F1
values on the three datasets reached 92.87, 88.12 and 84.74, respectively. The experimental
results of P-Stacking are shown in Table 30, and the highest Recall values for the require-
ment dependency extraction performed on the three datasets reached 93.01, 89.03, and
80.59, respectively. The highest Precision values for the requirement dependency extrac-
tion performed on the three datasets reached 93.47, 89.93, and 89.53, respectively.

Figure 18. The P-Stacking model vs. the standalone classifiers for the Course Management System
dataset.

Figure 19. The P-Stacking model vs. the standalone classifiers for the Composition Evaluation da-
taset.

Figure 18. The P-Stacking model vs. the standalone classifiers for the Course Management Sys-
tem dataset.

Mathematics 2024, 12, x FOR PEER REVIEW 30 of 37

LGR 70.58 66.03 70.25 68.24 71.36 69.12 70.69 72.34
RF 74.67 64.86 70.43 72.61 78.48 79.68 82.49 78.32

SVM 70.35 72.03 74.56 70.69 76.34 78.06 76.85 79.64
GNB 34.52 43.66 45.97 35.69 64.26 56.68 63.56 58.57
MNB 59.41 61.04 63.04 60.91 35.49 26.76 38.15 32.65
SVR 76.36 73.36 78.13 74.68 78.52 77.23 76.49 81.65
LR 72.68 71.50 75.96 73.25 75.64 73.54 77.25 73.58

5.4.4. Experimental Evaluation of P-Stacking Models for Three Datasets at Multiple
Part-of-Speech Weights

To prove the feasibility of using multi-word weight features in P-Stacking models,
the multi-weight TF-IDF (Mul-TFIDF) features are compared with the single-weight im-
proved TF-IDF (P-TFIDF) features, and the two standalone classifiers with the highest
predicted means in the classifiers are selected for comparison and analysis with the P-
Stacking model, and the results of the experiments are shown in Figures 18–20. The F1
values on the three datasets reached 92.87, 88.12 and 84.74, respectively. The experimental
results of P-Stacking are shown in Table 30, and the highest Recall values for the require-
ment dependency extraction performed on the three datasets reached 93.01, 89.03, and
80.59, respectively. The highest Precision values for the requirement dependency extrac-
tion performed on the three datasets reached 93.47, 89.93, and 89.53, respectively.

Figure 18. The P-Stacking model vs. the standalone classifiers for the Course Management System
dataset.

Figure 19. The P-Stacking model vs. the standalone classifiers for the Composition Evaluation da-
taset.

Figure 19. The P-Stacking model vs. the standalone classifiers for the Composition Evaluation dataset.

Mathematics 2024, 12, 1272 31 of 37Mathematics 2024, 12, x FOR PEER REVIEW 31 of 37

Figure 20. The P-Stacking model vs. the standalone classifiers for the CMS System dataset.

Table 30. Precision and Recall values (%) for P-Stacking on three datasets using different features.

 P-TFIDF TIW2V P-TIW2V Mul-TFIDF
Dataset Recall Precision Recall Precision Recall Precision Recall Precision

Dataset 1 90.56 92.18 92.14 91.16 91.86 93.47 93.01 92.61
Dataset 2 83.29 88.36 86.64 85.17 85.62 89.93 89.30 86.75
Dataset 3 73.61 79.39 80.59 76.10 84.17 80.36 80.26 89.53

5.4.5. Experimental Evaluation When Improving the Backbone Extraction Method for a
Requirement Sentence

In this paper, when extracting the requirement sentence’s backbone, the subject-pred-
icate-object triad of the requirement sentence is extracted as the sentence backbone using
dependency syntax analysis, and this triad is divided into three parts of speech for weight
allocation. The above experiments are based on this method. However, in the CMS system
dataset, for some requirement sentences, the extracted subject-verb-object triad cannot re-
flect the information contained in the requirement sentences. Therefore, in Section 3.2.1, a
method to improve the backbone extraction of requirement sentences is given, which is
only used in the CMS System dataset. The experimental results are shown in Table 31.
After improving the method for extracting the backbone of requirement sentences, Mul-
TIW2V features are used for training and testing in nine standalone classifiers and P-
Stacking models. Compared with the original method for extracting the backbone of re-
quirement sentences, the experimental effect is significantly improved. The highest F1
score, Recall value, and Precision value reached 86.48, 88.57, and 89.53, respectively. In this
paper, the original requirement sentence backbone extraction method is named OE, and
the improved requirement sentence backbone extraction method is named PE.

Table 31. The F1, Recall, and Precision (%) values of different requirement sentence backbone extrac-
tion methods on each classifier.

 OE PE
Classifier Recall Precision F1 Recall Precision F1

KNN 77.42 75.26 76.41 75.24 79.64 77.42
DT 81.67 78.68 80.16 82.04 80.11 80.98

LGR 70.69 72.34 71.54 76.35 72.18 74.25
RF 82.49 78.32 80.32 80.26 83.09 81.69

SVM 76.85 79.64 78.21 78.94 79.36 79.18
GNB 63.56 58.57 61.03 68.36 63.89 66.03
MNB 38.15 32.65 35.26 41.29 37.86 39.46
SVR 76.49 81.65 79.01 82.67 78.25 80.34
LR 77.25 73.58 75.36 78.39 75.97 77.12

P-Stacking 80.26 89.53 84.74 88.57 84.39 86.48

Figure 20. The P-Stacking model vs. the standalone classifiers for the CMS System dataset.

Table 30. Precision and Recall values (%) for P-Stacking on three datasets using different features.

P-TFIDF TIW2V P-TIW2V Mul-TFIDF

Dataset Recall Precision Recall Precision Recall Precision Recall Precision

Dataset 1 90.56 92.18 92.14 91.16 91.86 93.47 93.01 92.61
Dataset 2 83.29 88.36 86.64 85.17 85.62 89.93 89.30 86.75
Dataset 3 73.61 79.39 80.59 76.10 84.17 80.36 80.26 89.53

5.4.5. Experimental Evaluation When Improving the Backbone Extraction Method for a
Requirement Sentence

In this paper, when extracting the requirement sentence’s backbone, the subject-
predicate-object triad of the requirement sentence is extracted as the sentence backbone
using dependency syntax analysis, and this triad is divided into three parts of speech for
weight allocation. The above experiments are based on this method. However, in the
CMS system dataset, for some requirement sentences, the extracted subject-verb-object
triad cannot reflect the information contained in the requirement sentences. Therefore, in
Section 3.2.1, a method to improve the backbone extraction of requirement sentences is
given, which is only used in the CMS System dataset. The experimental results are shown in
Table 31. After improving the method for extracting the backbone of requirement sentences,
Mul-TIW2V features are used for training and testing in nine standalone classifiers and
P-Stacking models. Compared with the original method for extracting the backbone of
requirement sentences, the experimental effect is significantly improved. The highest F1
score, Recall value, and Precision value reached 86.48, 88.57, and 89.53, respectively. In this
paper, the original requirement sentence backbone extraction method is named OE, and
the improved requirement sentence backbone extraction method is named PE.

Table 31. The F1, Recall, and Precision (%) values of different requirement sentence backbone extraction
methods on each classifier.

OE PE

Classifier Recall Precision F1 Recall Precision F1

KNN 77.42 75.26 76.41 75.24 79.64 77.42
DT 81.67 78.68 80.16 82.04 80.11 80.98

LGR 70.69 72.34 71.54 76.35 72.18 74.25
RF 82.49 78.32 80.32 80.26 83.09 81.69

SVM 76.85 79.64 78.21 78.94 79.36 79.18
GNB 63.56 58.57 61.03 68.36 63.89 66.03
MNB 38.15 32.65 35.26 41.29 37.86 39.46
SVR 76.49 81.65 79.01 82.67 78.25 80.34
LR 77.25 73.58 75.36 78.39 75.97 77.12

P-Stacking 80.26 89.53 84.74 88.57 84.39 86.48

Mathematics 2024, 12, 1272 32 of 37

5.5. Time Complexity Analysis

Due to the large number of particles and numerous iterations, the particle swarm
optimization algorithm consumes significant computing resources during the process of
finding the optimal solution. Additionally, the P-Stacking model necessitates an ergodic
search to identify the optimal combination of base models. Therefore, it is necessary to
analyse the time complexity of the method proposed in this paper.

This paper analyses the time complexity through the program running time. Under
the same computer environment configuration, the program running times of the three
datasets are shown in Table 32. To control the number of variables and to more intuitively
display the time complexity of the method proposed in this paper, the running time of the
program only includes the time spent in the training and testing of the data of the machine
learning model. Time 1 is the time taken to calculate the fitness value using the RF model
when using the PSO algorithm to find the optimal part-of-speech weight. Time 2 is the
time it takes for the nine standalone machine models in the Low Correlation Algorithm to
generate the predicted probability values. Time 3 is the time taken by the seven machine
learning models in the Grid Search Algorithm to generate a new dataset using the method
of 5-fold cross-validation. Time 4 is the time taken to determine the combination of base
models using the Grid Search Algorithm.

Table 32. Program run time (s) for three datasets.

Datasets Time 1 Time 2 Time 3 Time 4 Sum

Dataset 1 136.2554 1.6974 4.1350 11.4882 153.5760
Dataset 2 124.6930 1.2841 5.0362 14.0194 145.0327
Dataset 3 150.2494 1.3758 3.7022 14.9853 170.3127

The time complexity of the proposed method is compared using nine standalone
machine learning models and three deep learning models. The program run time results
of the nine standalone models are shown in Tables 33–35. These nine models use the
same feature vectors as Time 2. Although the method proposed in this paper is much
higher than the standalone machine learning model in the proportion of time used, the
actual running time is not high. The high accuracy rate is worth sacrificing a portion of
the program run time. The standalone machine learning model uses the feature vectors
extracted by the method in this paper, which makes the comparison unfair. Therefore,
this paper uses a deep learning model to extract the requirement dependency without
specifying the characteristics. That is, deep learning models need to learn features from
data on their own. The experimental results are shown in Table 36. In dataset 1, the F1 score
can be 30.42% higher when the program run time is 1.5459 times higher. In dataset 2, the
F1 score can be 34.49% higher when the program run time is 1.0536 times higher. In dataset
3, the F1 score can be 37.69% higher when the program run time is 1.2664 times higher.

Table 33. The nine models of program run time (s) in dataset 1.

Classifier Train Test

KNN 0.1324 0.0102
DT 0.1631 0.0214

LGR 0.1009 0.0165
RF 0.1660 0.0222

SVM 0.0506 0.0166
GNB 0.0796 0.0060
MNB 0.2305 0.0997
SVR 0.1829 0.0172
LR 0.0714 0.0065

Mathematics 2024, 12, 1272 33 of 37

Table 34. The nine models of program run time (s) in dataset 2.

Classifier Train Test

KNN 0.1694 0.0152
DT 0.0823 0.0251

LGR 0.1728 0.0365
RF 0.1166 0.0329

SVM 0.1674 0.0270
GNB 0.0515 0.0041
MNB 0.1002 0.0094
SVR 0.1497 0.0213
LR 0.0879 0.0012

Table 35. The nine models of program run time (s) in dataset 3.

Classifier Train Test

KNN 0.1042 0.0099
DT 0.0641 0.0236

LGR 0.0159 0.0140
RF 0.1249 0.0156

SVM 0.0412 0.0187
GNB 0.0213 0.0045
MNB 0.1746 0.0540
SVR 0.1714 0.0074
LR 0.0616 0.0168

Table 36. Three deep learning models of program run time (s) and F1 (%) in the three datasets.

Datasets Deep
Learning Epochs Time RECALL PRECISION F1

DATASET 1
LSTM 30 60.3233 69.51 56.96 62.45

Bi-LSTM 30 68.9160 57.31 37.09 45.03
CNN 30 35.6623 51.22 39.56 38.40

DATASET 2
LSTM 30 54.3155 52.42 39.80 45.12

Bi-LSTM 30 70.6251 58.25 52.49 53.63
CNN 30 40.2136 55.33 42.98 47.56

DATASET 3
LSTM 30 64.3598 56.39 47.13 39.80

Bi-LSTM 30 75.1466 57.34 44.94 48.79
CNN 30 50.1220 44.61 52.13 45.54

5.6. Discussion

There are two main objectives of this paper. First, the feature representation of a
requirement text is enhanced by feature fusion. Second, the improved stacking ensemble
learning model is used to improve the forecasting performance. Focusing on these two core
objectives, this chapter conducted a detailed experimental comparison and analysis based
on different datasets, various features, and different machine learning models.

The experimental results indicate that the part-of-speech feature extraction method
and feature fusion method proposed in this paper can significantly improve the prediction
performance of a standalone machine learning model. Compared with the method based on
single features, the F1 score of each standalone machine learning model is significantly in-
creased after the gradual fusion of part-of-speech features, TF-IDF features and Word2Verc
features. In addition, after optimizing the part-of-speech feature extraction method, the F1
score of the machine learning model based on multiple part-of-speech weight features is
also improved to a certain extent.

The experimental results show that compared with the two standalone machine learn-
ing models that exhibit the highest prediction accuracy, the improved stacking ensemble
machine learning model can achieve the highest F1 score under each type of feature. This

Mathematics 2024, 12, 1272 34 of 37

proves that the improved superposition model proposed in this paper is advanced. In
addition, the improved stacking model does not need to manually adjust the basic model
combination, and has a strong adaptability to experiments with different datasets.

The results of the time complexity analysis show that although the use of the particle
swarm optimization algorithm to determine the part-of-speech weights will increase the
program running time, it can improve the predictive performance of machine learning.
When the time spent determining features is not considered, the time spent improving the
stacking model is much less than that of the deep learning model. When considering all
the time spent, the proposed method can also greatly improve the accuracy of requirement
dependency extraction while sacrificing part of the time.

6. Conclusions

This paper proposes a requirement dependency extraction method based on feature
fusion and an improved stacking ensemble machine learning model. This method can
extract information and features from requirement texts from multiple dimensions. The
improved stacking model can make full use of these features to better perform the task of
requirement dependency extraction. Compared with the existing machine-learning-based
methods, the proposed method can extract more information content, and give full play to
the advantages of multiple standalone machine learning models, which makes requirement
dependency extraction tasks have better results.

The main content of this study is divided into two parts. The first part is about
extracting more information content from requirement texts. The second part is about
finding a better machine learning model for requirement dependency extraction tasks. The
extracted information features from the first part are the input into the second part of the
machine learning model. The specific implementation steps of the proposed method are
as follows. Firstly, the requirement texts are pre-processed by word segmentation and
other steps. In the feature engineering stage, the part-of-speech features, TF-IDF features,
and Word2Vec features are extracted from the requirement texts, and these three features
are gradually fused into a feature. Secondly, all kinds of features are input into each
standalone machine learning model, respectively. The results of each standalone model
for the requirement dependency extraction tasks are evaluated based on different features.
Thirdly, all kinds of features are input into the improved stacking ensemble learning model.
The performance of the ensemble learning model is compared with that of the standalone
model under the same feature. The experimental results show that the method of mixing
three features and improving the stacking model can achieve the best performance in the
experimental evaluation of three datasets.

The proposed method has the following advantages:

(1) The proposed method of extracting part-of-speech features can assign high weights to
important sentence components in the requirement text, and strengthen the informa-
tion representation ability of important words.

(2) The fusion of part-of-speech features, TF-IDF features and Word2Vec features can
make the feature vector contain part-of-speech information, word frequency infor-
mation and contextual semantic information at the same time, which enriches the
content of the information contained in the feature vector.

(3) The improved stacking ensemble learning model can reduce the possible deviations
of a standalone model by combining the prediction results of multiple standalone
models, so as to improve the overall prediction performance.

(4) The improved stacking ensemble learning model can select the optimal combination
of base learners to the greatest extent, and select the best collocation for each single
model. When the dependency extraction task is changed, the optimal combination of
base learners can be automatically assigned.

The shortcoming of this paper is that the use of supervised learning methods to train
machine learning models requires a large number of labelled data. The manual labelling of
the dependency types between requirement pairs is a task that requires a large amount of

Mathematics 2024, 12, 1272 35 of 37

human resources. Therefore, the future work aims to consider combining neural networks
and ontological reasoning to design an ontology tool that realizes dependency extraction
and performs labelling automatically. We intend to construct an ontology with the subject-
verb-object triples in requirement sentences as nodes and define inference rules based on
temporal relations because there is a temporal relationship between the occurrence and
termination of two requirements. For example, for notification relationships, only when
one requirement is finished is another requirement allowed to begin. We intend to use
neural networks to identify temporal relationships between node words.

Author Contributions: Conceptualization, H.G.; methodology, H.G.; software, H.X.; validation, H.X.;
formal analysis, H.X.; resources, L.C.; data curation, L.C.; writing—original draft preparation, H.X.;
writing—review and editing, H.G.; project administration, H.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by key Laboratory of Industrial Intelligence Technology on Chemical
Process, Liaoning Province Shenyang, 110142, China and Scientific Research Funding Project of
Education Department of Liaoning Province 2021 (LJKZ0434).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, W.; Dumont, F.; Niu, N.; Horton, G. Detecting software security vulnerabilities via requirements dependency analysis.

IEEE Trans. Softw. Eng. 2022, 48, 1665–1675. [CrossRef]
2. Deshpande, G.; Sheikhi, B.; Chakka, S.; Zotegouon, D.L.; Masahati, M.N.; Ruhe, G. Is bert the new silver bullet?—An em-

pirical investigation of requirements dependency classification. In Proceedings of the 2021 IEEE 29th International Require-
ments Engineering Conference Workshops (REW), Notre Dame, IN, USA, 20–24 September 2021; IEEE: Piscataway, NJ, USA;
pp. 136–145.

3. Borrull Baraut, R. Incorporation of Models in Automatic Requirements Dependency Detection. Master’s Thesis, Universitat
Politècnica de Catalunya, Barcelona, Spain, 2018.

4. Zhang, H.; Li, J.; Zhu, L.; Jeffery, R.; Liu, Y.; Wang, Q.; Li, M. Investigating dependencies in software requirements for change
propagation analysis. Inf. Softw. Technol. 2014, 56, 40–53. [CrossRef]

5. Shao, F.; Peng, R.; Lai, H.; Wang, B. DRank: A semi-automated requirements prioritization method based on preferences and
dependencies. J. Syst. Softw. 2017, 126, 141–156. [CrossRef]

6. Motger, Q.; Borrull, R.; Palomares, C.; Marco, J. OpenReq-DD: A requirements dependency detection tool. In Proceedings of the
Requirements Engineering: Foundation for Software Quality, Essen, Germany, 18 March 2019; pp. 1–5.

7. Samer, R.; Stettinger, M.; Atas, M.; Felfernig, A.; Ruhe, G.; Deshpande, G. New approaches to the identification of dependencies
between requirements. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI),
Portland, OR, USA, 4 November 2019; IEEE: Piscataway, NJ, USA; pp. 1265–1270.

8. Jayatilleke, S.; Lai, R.; Reed, K. A method of requirements change analysis. Requir. Eng. 2017, 23, 493–508. [CrossRef]
9. Boehm, B.W. Software Engineering Economics; Prentice Hall: Upper Saddle River, NJ, USA, 1981; p. 768.
10. Wedyan, F.; Alrmuny, D.; Bieman, J.M. The effectiveness of automated static analysis tools for fault detection and refactoring

prediction. In Proceedings of the 2009 International Conference on Software Testing Verification and Validation, Denver, Colorado,
1–4 April 2009; IEEE: Piscataway, NJ, USA; pp. 141–150.

11. Akimova, E.N.; Bersenev, A.Y.; Deikov, A.A.; Kobylkin, K.S.; Konygin, A.V.; Mezentsev, I.P.; Misilov, V.E. Pytracebugs: A large
python code dataset for supervised machine learning in software defect prediction. In Proceedings of the 2021 28th Asia-Pacific
Software Engineering Conference (APSEC), Taipei, Taiwan, 6–9 December 2021; pp. 141–151.

12. Prenner, J.A.; Robbes, R. Making the most of small Software Engineering datasets with modern machine learning. IEEE Trans.
Softw. Eng. 2021, 48, 5050–5067. [CrossRef]

13. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A survey of machine learning for big code and naturalness. ACM Comput. Surv.
(CSUR) 2018, 51, 1–37. [CrossRef]

14. Le, T.H.; Chen, H.; Babar, M.A. Deep learning for source code modeling and generation: Models, applications, and challenges.
ACM Comput. Surv. (CSUR) 2020, 53, 1–38. [CrossRef]

15. Yang, Y.; Xia, X.; Lo, D.; Grundy, J. A survey on deep learning for software engineering. ACM Comput. Surv. (CSUR) 2022, 54,
1–73. [CrossRef]

16. Wahono, R.S. A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks. J.
Softw. Eng. 2015, 1, 104773.

https://doi.org/10.1109/TSE.2020.3030745
https://doi.org/10.1016/j.infsof.2013.07.001
https://doi.org/10.1016/j.jss.2016.09.043
https://doi.org/10.1007/s00766-017-0277-7
https://doi.org/10.1109/TSE.2021.3135465
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3383458
https://doi.org/10.1145/3505243

Mathematics 2024, 12, 1272 36 of 37

17. Gu, X.; Zhang, H.; Kim, S. Deep code search. In Proceedings of the 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), Gothenburg, Sweden, 3 June 2018; pp. 933–944.

18. Tufano, M.; Watson, C.; Bavota, G.; Di Penta, M.; White, M.; Poshyvanyk, D. An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation. In Proceedings of the 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Montpellier, France, 3–7 September 2018; pp. 832–837.

19. Corley, C.S.; Damevski, K.; Kraft, N.A. Exploring the use of deep learning for feature location. In Proceedings of the 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), Bremen, Germany, 29 September–1 October 2015;
pp. 556–560.

20. Sohan, M.F.; Basalamah, A. A systematic literature review and quality analysis of Javascript malware detection. IEEE Access 2020,
8, 190539–190552. [CrossRef]

21. Abhinav, K.; Kaur Bhatia, G.; Dubey, A.; Jain, S.; Bhardwaj, N. CrowdAssist: A multidimensional decision support system for
crowd workers. J. Softw. Evol. Process 2021, 35, e2404. [CrossRef]

22. Yang, Y.; Li, Z.; Shang, Y.; Li, Q. Sparse reward for reinforcement learning-based continuous integration testing. J. Softw. Evol.
Process 2021, 35, e2409. [CrossRef]

23. Abdulmajeed, A.A.; Al-Jawaherry, M.A.; Tawfeeq, T.M. Predict the required cost to develop Software Engineering projects by
Using Machine Learning. J. Phys. Conf. Ser. 2021, 1897, 012029. [CrossRef]

24. Nakamichi, K.; Ohashi, K.; Namba, I.; Yamamoto, R.; Aoyama, M.; Joeckel, L.; Heidrich, J. Requirements-driven method to
determine quality characteristics and measurements for machine learning software and its evaluation. In Proceedings of the
2020 IEEE 28th International Requirements Engineering Conference (RE), Zurich, Switzerland, 31 August–4 September 2020;
pp. 260–270.

25. Cheligeer, C.; Huang, J.; Wu, G.; Bhuiyan, N.; Xu, Y.; Zeng, Y. Machine learning in requirements elicitation: A literature review.
Artif. Intell. Eng. Des. Anal. Manuf. 2022, 36, e32. [CrossRef]

26. Kolahdouz-Rahimi, S.; Lano, K.; Lin, C. Requirement Formalisation using Natural Language Processing and Machine Learning:
A Systematic Review. In Proceedings of the International Conference on Model-Driven Engineering and Software Development,
Västerås, Sweden, 1–6 October 2023. arXiv:2303.13365.

27. Rahimi, N.; Eassa, F.; Elrefaei, L. An ensemble machine learning technique for functional requirement classification. Symmetry
2020, 12, 1601. [CrossRef]

28. Ali, A.; Nimat Saleem, N. Classification of Software Systems attributes based on quality factors using linguistic knowledge and
machine learning: A review. J. Educ. Sci. 2022, 31, 66–90. [CrossRef]

29. Talele, P.; Phalnikar, R. Software requirements classification and prioritisation using machine learning. In Machine Learning for
Predictive Analysis: Proceedings of ICTIS; Springer: Singapore, 2021; pp. 257–267.

30. Vanamala, M.; Loesch, S.; Caravella, A. Using Machine Learning to Identify Software Weaknesses From Software Requirement
Specifications. arXiv 2023, arXiv:2308.05558.

31. Berhanu, F.; Alemneh, E. Classification and Prioritization of Requirements Smells Using Machine Learning Techniques. In
Proceedings of the 2023 International Conference on Information and Communication Technology for Development for Africa
(ICT4DA), Bahir Dar, Ethiopia, 26–28 October 2023; pp. 49–54.

32. Deshpande, G.; Motger, Q.; Palomares, C.; Kamra, I.; Biesialska, K.; Franch, X.; Ho, J. Requirements dependency extraction
by integrating active learning with ontology-based retrieval. In Proceedings of the 2020 IEEE 28th International Requirements
Engineering Conference (RE), Zurich, Switzerland, 31 August–4 September 2020; IEEE: Piscataway, NJ, USA; pp. 78–89.

33. Guan, H.; Lv, Y.; Jia, C. Automatic acquisition of requirements dependency based on syntax and semantics. Comput. Technol. Dev.
2021, 31, 20–26.

34. Guan, H.; Cai, G.; Xu, H. Automatic extraction of requirements dependency based on ensemble active learning strategy. J.
Shenyang Univ. Chem. Technol. 2022, 36, 376–384.

35. Gräßler, I.; Oleff, C.; Hieb, M.; Preuß, D. Automated requirements dependency Analysis for Complex Technical Systems. Proc.
Des. Soc. 2022, 2, 1865–1874. [CrossRef]

36. Deshpande, G.; Arora, C.; Ruhe, G. Data-driven elicitation and optimization of dependencies between requirements. In
Proceedings of the 2019 IEEE 27th International Requirements Engineering Conference (RE), Jeju Island, Republic of Korea, 23–27
September 2019; IEEE: Piscataway, NJ, USA; pp. 416–421.

37. Deshpande, G. Sreyantra: Automated software requirement inter-dependencies elicitation, analysis and learning. In Proceedings
of the 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
Montréal, Canada, 25–31 May 2019; IEEE: Piscataway, NJ, USA; pp. 186–187.

38. Atas, M.; Samer, R.; Felfernig, A. Automated identification of type-specific dependencies between requirements. In Proceedings
of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, Chile, 3–6 December 2018; IEEE:
Piscataway, NJ, USA; pp. 688–695.

39. Lucassen, G.; Dalpiaz, F.; Werf, J.M.E.; Brinkkemper, S. Visualizing user story requirements at multiple granularity levels via
semantic relatedness. In Proceedings of the International Conference on Conceptual Modeling, Gifu, Japan, 14–17 November
2016; pp. 463–478.

40. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

https://doi.org/10.1109/ACCESS.2020.3031690
https://doi.org/10.1002/smr.2404
https://doi.org/10.1002/smr.2409
https://doi.org/10.1088/1742-6596/1897/1/012029
https://doi.org/10.1017/S0890060422000166
https://doi.org/10.3390/sym12101601
https://doi.org/10.33899/edusj.2022.134024.1245
https://doi.org/10.1017/pds.2022.189

Mathematics 2024, 12, 1272 37 of 37

41. Bhatta, J.; Shrestha, D.; Nepal, S.; Pandey, S.; Koirala, S. Efficient estimation of Nepali word representations in vector space. J.
Innov. Eng. Educ. 2020, 3, 71–77. [CrossRef]

42. Taspinar, Y.S.; Cinar, I.; Koklu, M. Classification by a stacking model using CNN features for COVID-19 infection diagnosis. J.
X-Ray Sci. Technol. 2022, 30, 73–88. [CrossRef]

43. Xie, X.; Pang, S.; Chen, J. Hybrid recommendation model based on deep learning and Stacking ensemble strategy. Intell. Data
Anal. 2020, 24, 1329–1344. [CrossRef]

44. Zheng, C.; Wang, X.; Wang, T. Chinese short text classification algorithm based on Stacking-Bert ensemble learning. J. Sci. Technol.
Eng. 2022, 22, 4033–4038.

45. Nikora, A.P.; Balcom, G. Automated identification of ltl patterns in natural language requirements. In Proceedings of the 20th
International Symposium on Software Re-liability Engineering, Karnataka, India, 16–19 November 2009; pp. 185–194.

46. Chen, Y.; Yao, J. Sentiment analysis using part-of speech-based feature extraction and game-theoretic rough sets. In Proceedings of
the 2021 International Conference on Data Mining Workshops (ICDMW), Virtual Conference, 7–10 December 2021; pp. 110–117.

47. Chen, J.; Hong, Y.; Xu, Q.; Yao, J.; Zhou, G. Enhancing neural aspect term extraction using part-of-speech and syntax dependency
features. In Proceedings of the 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), Virtual
Event, 31 October–2 November 2022; IEEE: Piscataway, NJ, USA; pp. 303–310.

48. Zhang, J.; Liu, J.; Lin, X. Improve neural machine translation by building word vector with part-of-speech. J. Artif. Intell. 2020, 2,
79–88. [CrossRef]

49. Li, T.; Liu, L.; Zhao, D.; Cao, Y. A method of extracting strategic dependencies of requirement text based on dependency grammar.
Chin. J. Comput. 2013, 36, 54–62. [CrossRef]

50. Goknil, A.; Kurtev, I.; Van Den Berg, K.; Spijkerman, W. Change impact analysis for requirements: A meta modelling approach.
Inf. Softw. Technol. 2014, 56, 950–972. [CrossRef]

51. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A compre-
hensive survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

52. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
53. Luo, S.; Zhang, C.; Jin, Y.; Liu, Y. Determining cross cutting concerns through requirements dependency. J. Jilin Univ. 2011, 41,

1065–1070.
54. Shi, Y.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the Evolutionary Programming VII:

7th International Conference, San Diego, CA, USA, 25–27 March 1998; pp. 591–600.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3126/jiee.v3i1.34327
https://doi.org/10.3233/XST-211031
https://doi.org/10.3233/IDA-194961
https://doi.org/10.32604/jai.2020.010476
https://doi.org/10.3724/SP.J.1016.2013.00054
https://doi.org/10.1016/j.infsof.2014.03.002
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1016/S0893-6080(05)80023-1

	Introduction
	Related Work
	Requirement Dependency Extraction Based on Feature Fusion and Standalone Machine Learning
	Types of Requirement Dependencies
	Requirement Pre-Processing
	Dependency Syntax Analysis
	The TF-IDF Model
	Improvement of TF-IDF
	Multi-Weighted TF-IDF
	Weighted Word2Vec

	Requirement Dependency Extraction Based on Improved Stacking Model
	Ensemble Machine Learning
	Improving the Stacking Ensemble Model
	Low Correlation Algorithm
	Grid Search Algorithm
	Five-Fold Cross-Validation

	Example of Requirement Dependency Extraction
	Requirement Dependency Extraction Based on Single Part-of-Speech Weights
	Requirement Dependency Extraction Based on Multiple Part-of-Speech Weights

	Experiments
	Datasets
	Experimental Environment and Parameter Settings
	Experimental Environment
	PSO Algorithm Parameter Settings

	Experimental Process and Data Statistics
	Experimental Results
	The Experimental Evaluation of the Standalone Classifiers for Three Datasets at Single Part-of-Speech Weights
	Experimental Evaluation of P-Stacking Models for Three Datasets at Single Part-of-Speech Weights
	Experimental Evaluation of Standalone Classifiers for Three Datasets with Multiple Part-of-Speech Weights
	Experimental Evaluation of P-Stacking Models for Three Datasets at Multiple Part-of-Speech Weights
	Experimental Evaluation When Improving the Backbone Extraction Method for a Requirement Sentence

	Time Complexity Analysis
	Discussion

	Conclusions
	References

