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Abstract: In this article, we delve into the study of statistical solitons on submanifolds of Kenmotsu
statistical manifolds, introducing the presence of concircular vector fields. This investigation is
further extended to study the behavior of almost quasi-Yamabe solitons on submanifolds with both
concircular and concurrent vector fields. Concluding our research, we offer a compelling example
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and an almost quasi-Yamabe soliton. This example serves to reinforce and validate the principles
discussed throughout our study.
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1. Introduction

Information geometry stands as a progressive and an interdisciplinary method in
the realm of probability theory and statistical discussions. The information geometry, or
affine geometry, and the hyperbolic geometry of the statistical manifolds are closely related.
Actually, a Riemannian manifold (B, g) is a statistical manifold of probability space in
which the points represent probability distributions.

To obtain a geometric comprehension of statistical inference, let Ξ be a fixed-event
space; let

σ(Ξ) =
{
P : Ξ −→ R :

∫
Ξ
P(x) ≥ 0, ∀x ∈ Ξ

}
be its probability distribution, while Ω ⊂ Rn is a parameter space on the n-dimensional
smooth family on Ξ. Then, (B, g) can be considered as a statistical manifold, where B and
the Riemannian metric g are defined as follows [1] :

B = {P(x, Θ) ∈ σ(Ξ) : Θ = (Θ1, · · · , Θn) ∈ Ω},

g = ∑
{∫

Ξ

(
∂logP(x, Θ)

∂Θi

)(
∂logP(x, Θ)

∂Θj

)
P(x, Θ)

}
dΘidΘj.

Numerous studies have also addressed certain applications of statistical manifolds in
information geometry. For example, the authors of [2,3] have presented an extension of
the ergodic, mixing, and Bernoulli levels of the ergodic hierarchy for statistical models on
curved manifolds, using elements of the information geometry. They have also presented an
analytical computation of the asymptotic temporal behavior of the information geometric
complexity (IGC) of finite dimensional Gaussian statistical manifolds in the presence of
microcorrelations (correlations between microvariables).
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The concept of statistical manifolds was initially introduced by Amari in [1] and
subsequently applied by Lauritzen in [4]. A statistical manifold, denoted as (B,∇, g), is
defined as a Riemannian manifold (B, g) endowed with a Riemannian metric g if this
metric is symmetric and a pair of torsion-free affine connections ∇ and ∇∗

on B, satisfies
the following condition:

Gg(E ,F ) = g(∇GE ,F ) + g(E ,∇∗
GF ),

for any E ,F ,G ∈ Γ(TB), where ∇∗
is referred to as the dual connection on B.

Remark 1. A few noteworthy observations about this statistical structure are as follows:

1. ∇ = (∇∗
)∗.

2. 2∇g
= ∇+∇∗,

where ∇g representing the Levi-Civita connection of g on B.
3. if (∇, g) forms a statistical structure on B, then (∇∗

, g) also constitutes a statistical structure.

In a statistical manifold (B,∇, g), let T ∈ Γ(TB(1,2)
) be defined as T = ∇g −∇∗

=
1
2 (∇−∇∗

). This gives rise to the following relationships:

T EF = T FE and g(T EF ,G) = g(F , T EG),

for any E ,F ,G ∈ Γ(TB). Conversely, if T satisfies the above conditions, then the triple
(B,∇ = ∇g

+ T , g) takes on the role of a statistical manifold, and we denote T EF as
T (E ,F ).

The statistical curvature tensor field S∇,∇∗

= S with respect to ∇ and ∇∗
in (B,∇, g),

can be expressed as per [5]:

S(E ,F )G = Rieg
(E ,F )G + [T E , T F ]G (1)

valid for any E ,F ,G ∈ Γ(TB). The symbol Rieg
denotes the curvature tensor field with

respect to ∇g
.

The differential geometry of the Kenmotsu manifold constitutes a valuable component
of contact geometry, offering significant applications in various fields, including theoretical
physics. This significance extends to its statistical counterpart—the Kenmotsu statistical
manifold—which is of comparable importance to the original Kenmotsu manifold.

In Tanno’s classification of connected almost-contact metric manifolds with maximal-
dimension automorphism groups, Kenmotsu [6] explored the third class: B ×s M, where B
is a line and M is a Kaehlerian manifold. Kenmotsu characterized these manifolds, and
later they were recognized as Kenmotsu manifolds. Furuhata et al. [5] extended this by
introducing Kenmotsu statistical manifolds, which were derived by imposing an affine
connection on a Kenmotsu manifold. They outlined a method for constructing Kenmotsu
statistical manifolds as warped products of a holomorphic statistical manifold [7] and a
line. Many researchers have devoted their precious time to studying the statistical version
of named differentiable manifolds, as described in [8].

Ricci solitons, Yamabe solitons, η–Ricci solitons, and almost quasi-Yamabe solitons
represent natural extensions of Einstein metrics. Hamilton’s introduction of the Ricci
flow and Yamabe flow in 1982 gained substantial prominence, with the Ricci flow being
described by the partial differential equation [9] used to smooth out metric singularities.
Ricci flow has become a powerful tool for studying Riemannian manifolds with positive or
negative curvature. A Ricci soliton on a Riemannian manifold (B, g) is a tuple (g, E , λ) that
satisfies the following equation:

Ric +
1
2
LE g + λg = 0, (2)
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where Ric represents the Ricci tensor, LE is the Lie derivative along the direction of the
vector field E , and λ is a real scalar. Such a soliton can be categorized as shrinking, steady,
or expanding if λ < 0, λ = 0, or λ > 0, respectively.

An extension of Ricci solitons in a manifold conceding with an arbitrary linear connec-
tion ∇, distinguished from the Levi-Civita connection of g, is explained in [10].

The statistical manifold (B,∇, g) is called Ricci-symmetric if the Ricci operator Q with
respect to ∇(equivalently, the dual operator Q∗ with respect to ∇∗

) is symmetric (for more
details, see [10]).

Definition 1. A pair (E , λ) is called a statistical soliton on a Ricci-symmetric statistical manifold
(B,∇, g) if the triplet (E , λ, g) is ∇-Ricci and R∗-Ricci solitons, we have [10]

∇E + Q + λI = 0, and ∇∗E + Q∗
+ λI = 0, (3)

where g(QE ,F ) = Ric(E ,F ) and g(Q∗E ,F ) = Ric∗(E ,F ), for all vector fields E ,F on B, and
Ric and Ric∗ indicate the Ricci tensor fields with respect to ∇ and ∇∗, respectively.

In the field of differential geometry, the Yamabe problem centers on the quest for
Riemannian metrics characterized by a constant scalar curvature. This problem is named
after the mathematician Hidehiko Yamabe, who first put forth this inquiry in 1960. Within
the field of differential geometry, the Yamabe flow stands as an intrinsic geometric process
that induces the deformation of the metric of a Riemannian manifold. Notably, the fixed
points of the Yamabe flow correspond to metrics exhibiting a constant scalar curvature.

The notion of Yamabe solitons plays a pivotal role, giving rise to self-similar solutions
in the context of the Yamabe flow, as highlighted in [9]. A Yamabe soliton is essentially a
self-similar solution within the framework of the Yamabe flow.

When the dimension of the manifold is n = 2, the Yamabe flow coincides with the
Ricci flow defined by Equation (2). However, for dimensions exceeding n > 2, the Yamabe
flow and the Ricci flow do not align. This discrepancy arises from the fact that the Yamabe
flow preserves the conformal class of the metric, whereas the Ricci flow does not hold this
property in general.

A Riemannian manifold (B, g) is known as a Yamabe soliton if it possesses a vector
field E satisfying:

LE g = 2(R − λ)g, (4)

where λ is a real number. Moreover, the concept of Yamabe solitons corresponds to self-
similar solutions of the Yamabe flow.

In their recent work published in [11], Chen and Deshmukh delved into the concept
of quasi-Yamabe solitons. In the context of our present study, we expand upon this concept,
encompassing a more general scenario in which the constants are treated as functions. If λ
is a smooth function defined on the manifold B, then the metric satisfying Equation (4) is
referred to as an almost Yamabe soliton [12].

Consider an n-dimensional Riemannian manifold (B, g) with n > 2, where E repre-
sents a vector field and η is a 1-form on B. We have

Definition 2. Let (B, g) be an n-dimensional Riemannian manifold (n > 2), while E represents a
vector field and η represents a 1-form on B. An almost quasi-Yamabe soliton on B is defined by the
set (g, E , λ, ω), which satisfies the equation [11]:

1
2
LE g + (λ − R)g + ωη ⊗ η = 0, (5)

where λ and ω are smooth functions defined on B.
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The theory of concircular vector fields on a Riemannian manifold (B, g) was introduced
by Fialkow in 1939 [13]. These vector fields adhere to the following condition:

∇Ev = δE , (6)

where E ∈ Γ(TB) and ∇ represents the Levi-Civita connection. Notably, TB denotes the
tangent bundle of B, and δ stands for a non-trivial function on B. These concircular vector
fields are sometimes referred to as geodesic fields due to the fact that their integral curves
follow geodesic paths [13]. Additionally, Chen [14] conducted a study involving Ricci
solitons on submanifolds of Riemannian manifolds equipped with concircular vector fields.
In the specific instance when δ = 1 in Equation (6), the concircular vector field v is known
as a concurrent vector field.

The research of Ricci solitons, Yamabe solitons, and their variants in diverse geometric
contexts has gained significant traction over the last two decades, with applications in
fields such as general relativity, applied mathematics, and theoretical physics. These
investigations have been extended to almost contact manifolds, including work by Nagaraja
and Premalatha [15], Blaga [16,17], Calin [18], Danish [19,20], Aliya et al. [21–23], and
others [24–26].

Given this backdrop, our study is motivated by a desire to extend Ricci solitons and
Yamabe solitons to Kenmotsu statistical manifolds. We embark on establishing this novel
framework by introducing these solitons in the context of a statistical constant curvature in
the Kenmotsu statistical manifold.

2. Preliminaries

Let (N,∇, g) be a statistical submanifold in (B,∇, g). Then, the Gauss formulae are
given by [27]:

∇EF = ∇EF + h(E ,F ), (7)

and

∇∗
EF = ∇∗

EF + h∗(E ,F ), (8)

for any E ,F ∈ Γ(TN). We denote the dual connections on Γ(TN⊥) by D⊥ and D⊥∗. Then,
the corresponding Weingarten formulae are as follows[27]:

∇EU = −AUE + D⊥
E U, (9)

and

∇∗
EU = −A∗

UE + D⊥∗
E U, (10)

for any E ∈ Γ(TN) and U ∈ Γ(TN⊥). The embedding curvature tensors of N in B, which
are symmetric and bilinear in nature, are represented as h and h∗ respectively. The linear
transformations AU and A∗

U are precisely defined in [27] as

g(h(E ,F ), U) = g(A∗
UE ,F ), (11)

and

g(h∗(E ,F ), U) = g(AUE ,F ). (12)

A submanifold (N,∇, g) of a statistical manifold (B,∇, g) is totally umbilical if

h(E ,F ) = g(E ,F )H (13)
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and

h∗(E ,F ) = g(E ,F )H∗ (14)

for any vector fields E ,F ∈ Γ(TN). Moreover, if h = 0 and h∗ = 0, then N is totally
geodesic. Additionally, when H = 0 and H∗ = 0, N is minimal in B. Also, N is referred to
as U-umbilical with respect to a normal vector field U if AU = f I and A∗

U = f I, where f
is a function on N and I stands for the identity map.

The Riemannian curvature tensor fields with respect to ∇ and ∇∗
are denoted by Rie

and Rie∗, respectively. Furthermore, Rie and Rie∗ symbolize the Riemannian curvature
tensor fields in connection with the induced connections ∇ and ∇∗ from ∇ and ∇∗

,
respectively. As outlined in [27], the Gauss equations take the following form:

g(Rie(E ,F )G, H) = g(Rie(E ,F )G, H) + g(h(E ,G), h∗(F , H))

−g(h∗(E , H), h(F ,G)), (15)

and

g(Rie∗(E ,F )G, H) = g(Rie∗(E ,F )G, H) + g(h∗(E ,G), h(F , H))

−g(h(E , H), h∗(F ,G)), (16)

for any E ,F ,G, H ∈ Γ(TN). Also, we have

2S = Rie + Rie∗, (17)

and

2S = Rie + Rie∗, (18)

where S∇,∇∗
= S ∈ Γ(TN(1,3)) denotes the statistical curvature tensor field with respect to

∇ and ∇∗ of N.
In most cases, it is not possible to define sectional curvature using the standard

definitions with respect to dual connections that might not satisfy the metric properties.
Nevertheless, Opozda introduced a novel approach to defining sectional curvature on a
statistical manifold, as described in [28,29]:

Sec(E ∧ F ) = g(S(E ,F )F , E)

=
1
2
(g(Rie(E ,F )F , E) + g(Rie∗(E ,F )F , E)), (19)

for any orthonormal vectors E ,F ∈ Γ(TB).
Kenmotsu geometry constitutes a distinctive field in differential geometry, finding

valuable applications in various domains such as the mechanics of dynamical systems
with time-dependent Hamiltonians, geometrical optics, thermodynamics, and geometric
quantization. Additionally, the examination of submanifolds in the framework of Kenmotsu
ambient spaces is an essential aspect of Kenmotsu geometry, and it has garnered substantial
attention from numerous geometers.

Definition 3 ([5]). Let (B,∇, g, ϕ, ξ) be a Kenmotsu manifold. A quadruplet (B,∇ = ∇g
+

T , g, ϕ, ξ) is called a Kenmotsu statistical manifold if (∇, g) is a statistical structure on B and
the formula

T (E , ϕF ) = −ϕT (E ,F ) (20)

holds for any E ,F ∈ Γ(TB). Here, we describe (∇, g, ϕ, ξ) as a Kenmotsu statistical structure
on B.



Mathematics 2024, 12, 1279 6 of 16

Any E ∈ Γ(TN) can be decomposed uniquely into its tangent and normal parts PE
and CE , respectively,

ϕE = PE + CE .

A statistical submanifold (N,∇, g) in a Kenmotsu statistical manifold (B,∇, g, ϕ, ξ)
is called invariant when C = 0, or, in the case of being anti-invariant, when P = 0. In the
former case, it signifies that ϕE ∈ Γ(TN) for any E ∈ Γ(TN); conversely, in the latter case,
it implies that ϕE ∈ Γ(TN⊥) for any E ∈ Γ(TN).

3. Essential Results for Kenmotsu Statistical Manifolds

Within this section, we revisit certain fundamental findings from [5], which will be
essential for establishing the results presented in this article.

Proposition 1 ([5]). Let (B̃, G, J) be an almost Hermitian manifold. Set B = B̃ × R,

g = exp2α g + (dα)2, ξ = ∂
∂α ∈ Γ(TB) and define ϕ ∈ Γ(TB(1,1)

) by ϕE2 = JE2 for any
E2 ∈ Γ(TB̃) and ϕξ = 0. Then,

1. The triple (g, ϕ, ξ) is an almost contact metric structure on B.
2. The pair (G, J) is a Kähler structure on B̃ if and only if the triple (g, ϕ, ξ) is a Kenmotsu

structure on B.

Theorem 1 ([5]). Let (B,∇, g) be a statistical manifold and (g, ϕ, ξ) an almost-contact metric
structure on B. (∇, g, ϕ, ξ) is a Kenmotsu statistical structure B if and only if the following
conditions hold:

∇E (ϕF )− ϕ∇∗
EF = −η(F )ϕE + g(ϕE ,F )ξ, (21)

∇E ξ = E − [η(E)− µ(E ]ξ, (22)

for any E ,F ∈ Γ(TB), where µ(E) = −η(∇∗
E ξ) = η(∇E ξ) = η(T (ξ, ξ))η(E).

Proposition 2 ([5]). Let (B̃, ∇̃ = ∇G + T , G, J) be a holomorphic statistical manifold, and
(B = B̃ ×R, g, ϕ, ξ) the Kenmotsu manifold (as in Proposition 1). For any β ∈ C∞(B), define

T ∈ Γ(TB(1,2)
) by

T (E2,F2) = T (E2,F2), T (E2, ξ) = T (ξ, E2) = 0, and T (ξ, ξ) = βξ.

Then, (∇ = ∇g + T , g, ϕ, ξ) is a Kenmotsu statistical structure on B.

4. Statistical Solitons on Submanifolds of Kenmotsu Statistical Manifolds

Consider the pair (ξ, λ) on (N,∇, g) and let dim(N) = s. This pair is labeled as a
statistical soliton if the triple (g, ξ, λ) satisfies both ∇–Ricci and ∇∗–Ricci soliton conditions,
as defined in Equation (3). Consequently, referring to Equation (3), we obtain

g(∇E ξ,F ) + Ric∇(E ,F ) + λg(E ,F ) = 0, (23)

where Ric∇ signifies the Ricci curvature tensor of N with respect to ∇.

Using Equation (7) and Theorem 1, we get

E − [η(E)− µ(E)]ξ = ∇E ξ = ∇E ξ + h(E , ξ). (24)

It is important to mention here that µ(E) = η(T )η(E) = βη(E). Equation (24) becomes

∇E ξ + h(E , ξ) = E + (β − 1)η(E)ξ. (25)
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If ξ is tangent to N then, equating tangential and normal components of (25), we get

∇E ξ = E + (β − 1)η(E)ξ and h(E , ξ) = 0. (26)

The torsion tensor field of ∇ vanishes, that is ∇EF − ∇FE = [E ,F ] and upon
considering (23) and (26), we can deduce the following relation:

Ric∇(E ,F ) = −(λ + 1)g(E ,F ) + (1 − β)η(E)η(F ), (27)

which indicates that N is an η-Einstein submanifold.

Consequently, we can establish the subsequent result:

Theorem 2. If the data (g, ξ, λ) show statistical soliton on a submanifold (N,∇, g) of a Kenmostsu
statistical manifold (B,∇, g, ξ) (as in Proposition 2) and ξ is tangent to N, then N is the η–
Einstein manifold.

Remark 2. By examining the dual counterparts of the Equations (26) in Theorem 2, we achieve the
following results: ∇∗

E ξ = E + (β − 1)η(E)ξ and h∗(E , ξ) = 0, which can be succinctly expressed
as H∗ = 0.

Thus, we can also formulate the dual case, as follows:

Theorem 3. If the data (g, ξ, λ) are a statistical soliton on a submanifold (N,∇∗, g) of a Ken-
mostsu statistical manifold (B,∇∗

, g, ξ) (as in Proposition 2) and ξ is tangent to N, then N is
η–Einstein manifold.

Now, employing the formula:

Rie∇(E ,F )ξ = ∇E∇F ξ −∇F∇E ξ −∇[E ,F ]ξ. (28)

By utilizing Equation (26), we arrive at

Rie∇(E ,F )ξ = (1 − β)[η(E)F − η(F )E ] + (1 − β)η([E ,F ])ξ

+F [(1 − β)η(E)]− E [(1 − β)η(F )], (29)

which implies:

Ric∇(E , ξ) = [(1 − β)(1 − s) +
s

∑
i=1

ei(β)]η(E) + E(β) for all E . (30)

By substituting F = ξ into (27) and using (30), we obtain

λ = −[β + (1 − s)(1 − β) +
s

∑
i=1

ei(β) + ξ(β)] < 0

always. This leads to the subsequent outcome:

Theorem 4. Let N be a submanifold of a Kenmotsu statistical manifold (B,∇, g, ξ) (as in Proposition 2)
while ξ is tangent to N. Then, statistical soliton (g, ξ, λ) is always shrinking.

In the case where ξ is normal to N, considering any E ∈ Γ(TN) and utilizing
Equation (24), the result is

∇E ξ = E and h(E , ξ) = (β − 1)η(E)ξ. (31)
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As a consequence, we have

g(∇E ξ,F ) + Ric∇(E ,F ) + λg(E ,F ) = 0. (32)

Using equations (23), (31), and (32), we arrive at

Ric∇(E ,F ) = −(λ + 1)g(E ,F ). (33)

This indicates that N possesses Einstein properties.

Therefore, we can present the following result:

Theorem 5. If the data (g, ξ, λ) show statistical soliton on a submanifold N of a Kenmotsu
statistical manifold (B,∇, g, ξ) (as in Proposition 2) and ξ is normal to N, then N is Einstein.

By considering both of the Equations (31) in Theorem 5, we can also present the dual
case in the following manner:

Theorem 6. If the data (g, ξ, λ) show statistical soliton on a submanifold N of a Kenmotsu
statistical manifold (B,∇∗

, g, ξ) (as in Proposition 2) and ξ is normal to N, then N is Einstein.

Furthermore, from Equation (31), it follows that Rie∇(E ,F )ξ = 0, which consequently
yields Ric∇(E ,F ) = 0. By utilizing (33), we can derive

Ric∇(E , ξ) = −(λ + 1)η(E). (34)

As a result, we find that λ = −1 < 0. This leads to the subsequent outcome:

Theorem 7. Let N be a submanifold of a Kenmotsu statistical manifold (B,∇, g, ξ) (as in Proposition 2)
and ξ be normal to N. Then, statistical soliton (g, ξ, λ) is always shrinking.

Remark 3. Theorems 4 and 7 hold true for the dual counterpart.

5. Statistical Solitons Featuring a Concircular Vector Field

In this section, we delve into the investigation of statistical solitons on submanifolds
of the Kenmotsu statistical manifold, as outlined in Proposition 2: (B,∇ = ∇g + T , g, ϕ, ξ),
taking into consideration the existence of a concircular vector field v.

Now, the concircular vector field v with respect to ∇ and ∇∗
is given by

∇Ev = δE , ∇∗
Ev = δE , (35)

where δ : B → R is a smooth function.
To begin with, we obtain the following outcomes:

Lemma 1. Let N be a submanifold of a Kenmotsu statistical manifold (B,∇, g, ξ) with a concircular
vector field on v. Then, N is vnor-umbilical if and only if vtan is a concircular vector field on N with
respect to ∇.

Proof. Since v is a concircular vector field on B, we have ∇Ev = δE . Using (7) and (9),
we get

δE = ∇Evtan + h(E , vtan)− AvnorE + D⊥
E vnor, (36)

for any vector field E tangent to N. By comparing the tangential component in (36), we have

∇Evtan = AvnorE + δE , (37)
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which shows that vtan is a concircular vector field on N, such that ∇Evtan = ( f + δ)E , since
N is vnor-umbilical.

Conversely, if vtan is a concircular vector field on submanifold N, then there is a
non-trivial function σ on N, such that

∇Evtan = σE . (38)

By comparing Equations (37) and (38), we get

AvnorE = (σ − δ)E . (39)

This (39) shows that N is vnor-umbilical.

Remark 4. Now, by examining the dual forms of Equations (36) and (37), we derive the subse-
quent equations:

δE = ∇∗
Evtan + h∗(E , vtan)− A∗

vnorE + D⊥∗
E vnor (40)

∇∗
Evtan = A∗

vnorE + δE . (41)

Hence, we can also establish the dual version of Lemma 1:

Lemma 2. Let N be a submanifold of a Kenmotsu statistical manifold (B,∇∗
, g, ξ) with a con-

circular vector field on v. Then, N is vnor-umbilical if and only if vtan is a concircular vector field
on N.

Consider that v acts as a concircular vector field on (B,∇ = ∇g + T , g, ϕ, ξ),

v = vtan + vnor. (42)

Based on (3) and (37), it can be inferred that (N, vtan, λ, g) represents a statistical soliton
if and only if

Ric(E ,F ) + δg(E ,F ) + g(h(E ,F ), vnor) + λg(E ,F ) = 0. (43)

Subsequently, by employing (43), we obtain the following results:

Theorem 8. A submanifold N admits statistical soliton (g, vtan, λ) in a Kenmotsu statistical
manifold (B,∇, g, ξ), then the Ricci tensor of N satisfies

Ric(E ,F ) = −(λ + δ)g(E ,F )− g(h(E ,F ), vnor). (44)

for any vector fields E ,F tangent to N.

Also, we demonstrate the duality of Theorem 8:

Theorem 9. A submanifold N admits a statistical soliton (g, vtan, λ) in a Kenmotsu statistical
manifold (B,∇∗

, g, ξ), then the Ricci tensor of N satisfies

Ric∗(E ,F ) = −(λ + δ)g(E ,F )− g(h(E ,F ), vnor). (45)

Assuming a statistical soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu statis-
tical manifold (B,∇, g, ξ) to be totally umbilical, we can deduce from Lemma 1 that vtan
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corresponds to a concircular vector field, that is, ∇Evtan = σE . By combining (43) and (45)
with (1), we can derive the ensuing pair of equations:

Ric(E ,F ) = −(λ + σ)g(E ,F ) (46)

and

Ric∗(E ,F ) = −(λ + σ)g(E ,F ). (47)

Equations (46) and (47) yield the ensuing theorems:

Theorem 10. Let (g, vtan, λ, ω) represent totally umbilical statistical soliton on a submanifold N
of a Kenmotsu statistical manifold (as shown in Proposition 2) (B,∇, g, ξ). Then, N is isometric to
a sphere and its quasi-Einstein.

Theorem 11. Let (g, vtan, λ, ω) be totally umbilical statistical soliton on a submanifold N of a
Kenmotsu statistical manifold (as in Proposition 2) (B,∇∗

, g, ξ). Then, N is isometric to a sphere
and its quasi-Einstein.

6. Almost Quasi-Yamabe Soliton on Submanifolds of Kenmotsu Statistical Manifold

In this section, our assumptions revolve around the structure (B,∇∗
, g, ξ), representing

a Kenmotsu statistical manifold in accordance with Proposition 2, while also considering the
presence of a concircular vector field v. Concurrently, let N be a submanifold in B. Notably,
we designate the tangential and normal components of v as vtan and vnor, respectively.

Continuing in the same vein, given that v qualifies as a concircular vector field and
making use of Equations (7) and (9), we are able to come to the following conclusion:

δE = ∇Evtan + h(E , vtan)− AvnorE + D⊥
E vnor, (48)

for any E tangent to N. By comparing the tangential and normal components, we arrive at

∇Evtan = AvnorE + δE , h(E , vtan) = D⊥
E vnor. (49)

From the definition of Lie-derivative and (49), we have

(Lvtan g)(E ,F ) = 2δg(E ,F ) + 2g(AvnorE ,F ). (50)

On combining (5) and (50), we find that

(R − λ − δ)g(E ,F ) = g(AvnorE ,F )− ωη(E)η(F ). (51)

As a result, we are now in a position to enunciate the following:

Theorem 12. The almost quasi-Yamabe soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu
statistical manifold (B,∇, g, ξ) (as in Proposition 2) satisfies

(R − λ − δ)g(E ,F ) = g(AvnorE ,F )− ωη(E)η(F ). (52)

In the context of the dual case, an analogous theorem emerges:

Theorem 13. The almost quasi-Yamabe soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu
statistical manifold (B,∇∗

, g, ξ) (as in Proposition 2) satisfies

(R∗ − λ − δ)g(E ,F ) = g(A∗
vnorE ,F )− ωη(E)η(F ). (53)
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Substituting E = F = ξ into (53) and considering the fact that N is minimal, we can
employ (13) and (14) to deduce that

R = λ − ω + δ. (54)

In light of the above, we can succinctly state the following results:

Theorem 14. If an almost quasi-Yamabe soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu
statistical manifold (B,∇, g, ξ) (as in Proposition 2) is minimal, then R = λ − ω + δ.

Theorem 15. If an almost quasi-Yamabe soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu
statistical manifold (B,∇∗

, g, ξ) (as in Proposition 2) is minimal, then R = λ − ω + δ.

Presently, we can derive the subsequent corollaries specifically for the case in which
δ = 1, considering the concurrent vector field scenario:

Corollary 1. If an almost quasi-Yamabe soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu
statistical manifold (B,∇, g, ξ) (as in Proposition 2) with the concurrent vector field is minimal,
then R = λ − ω + 1.

Corollary 2. If an almost quasi-Yamabe soliton (g, vtan, λ, ω) on a submanifold N of a Kenmotsu
statistical manifold (B,∇∗

, g, ξ) (as described in Proposition 2) with the concurrent vector field is
minimal, then R∗ = λ − ω + 1.

7. Some Examples

Example 1. We examine a 5-dimensional Kenmotsu manifold as presented in [30]:

(B = {(x, y, z, u, v) ∈ R5|v > 0}, g, ϕ, ξ),

where the standard coordinates in R5 are denoted as (x, y, z, u, v). We designate the vector fields
v1, v2, v3, v4, v5 as follows:

v1 = exp−v ∂

∂x
, v2 = exp−v ∂

∂y
,

v3 = exp−v ∂

∂z
, v4 = exp−v ∂

∂u
,

v1 =
∂

∂v
= ξ.

The Riemannian metric g is defined as

g(vi, vj) = 0, g(vi, vi) = 1

for all i ̸= j, where i, j = 1, . . . , 5. A (1, 1) tensor field ϕ is introduced with the following
components:

ϕ(v1) = v3, ϕ(v2) = v4, ϕ(v3) = −v1,

ϕ(v4) = −v2, ϕ(v5) = ϕ(ξ) = 0.

The Levi-Civita connection ∇g of g is determined through Koszul’s formula:

∇g
vi vi = −ξ, ∇g

vi vj = 0,

∇g
vi ξ = vi ∇g

ξ vi = 0,

∇g
ξ ξ = 0,

for all i ̸= j, i, j = 1, . . . , 4.
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Now, for any E ,F ∈ Γ(TB) and a ∈ R, we define the difference tensor field T as:

T (E ,F ) = ag(E , ξ)g(F , ξ)ξ.

Subsequently, the dual torsion-free affine connections ∇ and ∇ are introduced as

∇vi vi = −ξ, ∇vi vj = 0,

∇vi ξ = vi, ∇ξ vi = 0,

∇ξ ξ = aξ,

and

∇∗
vi

vi = −ξ, ∇∗
vi

vj = 0,

∇∗
vi

ξ = vi, ∇∗
ξ vi = 0,

∇∗
ξ ξ = −aξ.

It can be verified that

Gg(E ,F ) = g(∇GE ,F ) + g(E ,∇∗
GF ),

and

T (E , ϕF ) + ϕT (E ,F ) = 0.

Consequently, the manifold (B = (x, y, z, u, v) ∈ R5|v > 0,∇, g, ϕ, ξ) is established as a 5-
dimensional Kenmotsu statistical manifold.

Example 2. Consider the Kenmotsu structure (ϕ, ξ, η, g) on the unit hypersphere S5. By setting
T (E ,F ) = aη(E)η(F ) and ∇ = ∇g + T , it becomes evident that (S5, ϕ, ξ, η, g) satisfies the
conditions of a Kenmotsu statistical manifold (see Example 1). Consequently, when i = 1, 2, let
(xi, yi, v) denote the local coordinates of S5. The following assignments can be made:

1. ξ = ∂
∂v ,

2. ϕ
(

∂
∂xi

)
= ∂

∂yi ,

3. ϕ
(

∂
∂yi

)
= − ∂

∂xi ,

4. ϕ
(

∂
∂v

)
= 0.

Now, consider a 3-dimensional submanifold N = (x1, y1, 0, 0, v) in S5. It is important to note
that N is invariant and ξ is tangent to N.

Example 3. Consider the upper half space (H2 = (x, y) ∈ R2|y > 0, g = y−2(dx2 + dy2)) with
constant curvature −1. An affine connection ∇ on H2 is defined as stated in [31]:

∇∂x∂x = 2y−1∂y,

∇∂y∂y = y−1∂y,

∇∂x∂y = ∇∂y∂x = 0.

This setup defines a statistical manifold (H2,∇, g) with constant curvature 0, making it a Ricci-flat
statistical manifold. As a result, it serves as a steady Ricci soliton with λ = 0.
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Example 4. Let us consider a statistical manifold (M = (x, y) ∈ R2,∇, g = dx2 + dy2) with
constant curvature −1. An affine connection ∇ on M is provided according to [32], as follows:

∇∂x∂x = −∂y,

∇∂y∂y = 0,

∇∂x∂y = ∇∂y∂x = ∂x.

In addition, the conjugate connection ∇∗ on M is defined as follows:

∇∗
∂x∂x = −∂y,

∇∗
∂y∂y = 0,

∇∗
∂x∂y = ∇∗

∂y∂x = −∂x.

Consequently, the scalar curvature of M equals −2, classifying (M,∇, g) as an Einstein statistical
manifold with λ = −1. Therefore, it can be characterized as a shrinking Ricci soliton with λ < 0.

Example 5. Consider an orthonormal frame field v1, v2, v3 on a statistical manifold
(M = (x, y, z) ∈ R3,∇, g = dx2 + dy2 + dz2). An affine connection ∇ on M can be expressed
according to [33] as follows:

∇v1 v1 = bv1,

∇v2 v2 = ∇v3 v3 =
b
2

v1,

∇v1 v2 = ∇v2 v1 =
b
2

v2,

∇v1 v3 = ∇v3 v1 =
b
2

v3,

∇v2 v3 = ∇v3 v2 = 0,

where b represents a constant. Consequently, (M,∇, g) stands as a statistical manifold with
constant curvature b2

4 . The scalar curvature of M equates to 3b2

2 . This configuration classifies it as
an Einstein statistical manifold with λ = b2

2 . Therefore, it can be identified as an expanding Ricci
soliton with λ > 0.

8. Illustration of Statistical and Almost Quasi-Yamabe Solitons on Kenmotsu
Statistical Manifolds

Example 6. Consider a 5−dimensional Kenmotsu statistical manifold denoted as

(B = (x, y, z, u, v) ∈ R5|v > 0,∇, g, ϕ, ξ),

as illustrated in Example 1. In this context, the non-vanishing components of the Riemannian
curvature Rie, the Ricci curvature Ric, and the scalar curvature tensor R concerning both ∇ and
∇∗ can be explicitly expressed as follows:

Rie∇,∇∗
(v1, v2)v1 = v2, Rie∇,∇∗

(v1, v2)v2 = −v1, Rie∇,∇∗
(v1, v3)v1 = v3,

Rie∇,∇∗
(v1, v3)v3 = −v1, Rie∇,∇∗

(v1, v4)v1 = v4, Rie∇,∇∗
(v1, v5)v1 = v5,

Rie∇,∇∗
(v1, v4)v4 = −v1, Rie∇,∇∗

(v1, v5)v5 = −v1, Rie∇,∇∗
(v2, v3)v2 = v3,

Rie∇,∇∗
(v2, v3)v3 = −v2, Rie∇,∇∗

(v2, v4)v2 = v4, Rie∇,∇∗
(v2, v4)v4 = −v2,

Rie∇,∇∗
(v2, v5)v2 = v5, Rie∇,∇∗

(v2, v5)v5 = ae2, Rie∇,∇∗
(v3, v4)v3 = v4,
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Rie∇,∇∗
(v3, v4)v4 = −v3, Rie∇,∇∗

(v3, v5)v3 = aξ, Rie∇,∇∗
(v3, v5)v5 = ae3,

Rie∇,∇∗
(v4, v5)v4 = aξ, Rie∇,∇∗

(v4, v5)v5 = ae4, Rie∇,∇∗
(v1, v4)v4 = −v1.

Hence, from (17) and (18), we derive

S∇,∇∗
(v1, v2)v1 = v2, S∇,∇∗

(v1, v2)v2 = −v1, S∇,∇∗
(v1, v3)v1 = v3,

S∇,∇∗
(v1, v3)v3 = −v1, S∇,∇∗

(v1, v4)v1 = v4, S∇,∇∗
(v1, v5)v1 = v5,

S∇,∇∗
(v1, v4)v4 = −v1, S∇,∇∗

(v1, v5)v5 = −v1, S∇,∇∗
(v2, v3)v2 = v3,

S∇,∇∗
(v2, v3)v3 = −v2, S∇,∇∗

(v2, v4)v2 = v4, S∇,∇∗
(v2, v4)v4 = −v2,

S∇,∇∗
(v2, v5)v2 = v5, S∇,∇∗

(v2, v5)v5 = ae2, S∇,∇∗
(v3, v4)v3 = v4,

S∇,∇∗
(v3, v4)v4 = −v3, S∇,∇∗

(v3, v5)v3 = aξ, S∇,∇∗
(v3, v5)v5 = ae3,

S∇,∇∗
(v4, v5)v4 = aξ, S∇,∇∗

(v4, v5)v5 = ae4, S∇,∇∗
(v1, v4)v4 = −v1.

Ric∇,∇∗
(v1, v1) = Ric∇,∇∗

(v2, v2) = Ric∇,∇∗
(v3, v3) = Ric∇,∇∗

(v4, v4) = −4,

Ric∇,∇∗
(v5, v5) = 3a + 1.

Thus,

R∇,∇∗
= 3a − 15.

Regarding statistical solitons, utilizing (3), for λ = 4, the given data (g, ξ, λ) yield an
expanding statistical soliton on the 5-dimensional Kenmotsu statistical manifold.

In the context of almost quasi-Yamabe solitons, considering Equation (5), we can set λ = 3a − 16
and ω = 1 − β. Consequently, for the configuration (g, ξ, λ, ω), this leads to the establishment
of both an expanding and a shrinking almost quasi-Yamabe soliton. Specifically, these solitons
emerge for the conditions of a > 5 and a < 5, respectively. This scenario unfolds in the setting of a
Kenmotsu statistical manifold (B = (x, y, z, u, v) ∈ R5|v > 0,∇, g, ϕ, ξ).

9. Conclusions

The present work is a specialization of Amari’s theory of information geometry and
statistical Riemannian manifolds. The study of the Kenmotsu manifold is an important
part of contact geometry in differential geometry, with important applications in theoretical
physics, among other areas. Its statistical equivalent, the Kenmotsu statistical manifold
(see [34]), is also significant and is as important as the original Kenmotsu manifold. The
interest from theoretical physicists has extended towards equations involving Ricci solitons
and Yamabe solitons, particularly in the context of Einstein manifolds, quasi-Einstein
manifolds, and string theory. In the study of Ricci and almost quasi-Yamabe solitons within
geometric analysis, a crucial inquiry revolves around identifying the criteria that lead these
entities to simplify into trivial Ricci solitons and trivial Yamabe solitons, respectively. Our
findings represent significant advancements toward answering this question.
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