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Abstract: The perishable nature of vegetable commodities poses challenges for superstores, as
reselling them is often unfeasible due to their short freshness period. Reliable market demand analysis
is crucial for boosting revenue. This study simplifies the pricing and replenishment decision-making
process by making reasonable assumptions about the selling time, wastage rate, and replenishment
time for vegetable commodities. A single-objective planning model with the objective of profit
maximization was constructed by fitting historical data using the nonparametric method of support
vector regression (SVR). The study reveals a specific relationship between sales volume and cost-plus
pricing for each category and predicts future cost changes using an LSTM model. Combining these
findings, we substitute the relationship between sales volume and pricing as well as the LSTM
prediction data into the model, and solve it using genetic algorithms in machine learning to derive
the optimal replenishment volume and pricing strategy. Practical results show that the method can
provide reasonable pricing and replenishment strategies for vegetable superstores, and after careful
accounting, we arrive at an expected profit of RMB 22,703.14. The actual profit of the supermarket
was RMB 19,732.89. The method, therefore, increases the profit of the vegetable superstore by 13.08%.
By optimizing inventory management and pricing decisions, the superstore can better meet the
challenges of vegetable commodities and achieve sustainable development.

Keywords: pricing and replenishment; single-objective planning model; LSTM prediction model;
genetic algorithm

MSC: 91G10; 90C90; 90C30

1. Introduction

In recent years, as living standards have risen, there has been a growing pursuit of
a better quality of life [1]. When it comes to fresh commodities like vegetables, people
typically turn to fresh food superstores or vegetable markets for their purchases [2]. With
China’s urbanization progressing, the number of fresh food superstores is increasing. Veg-
etable commodities, being essential daily consumer goods, have gained increasing attention
in terms of supply chain management and sales strategies [3]. Replenishment and pricing
strategies, as key aspects of supply chain management, directly affect retailers’ revenue and
inventory costs, and consumers’ purchasing behavior [4]. Traditional replenishment and
pricing methods often rely on empirical judgment and market research, which may struggle
to adapt to the rapidly changing market environment and consumer demand. Therefore,
the development of an intelligent and efficient replenishment and pricing strategy is of
great significance in enhancing the market competitiveness of vegetable commodities [5].

Nowadays, there are many studies on vegetable superstores. Ward [6] proposed
the use of Wolfram’s asymmetric model to explore the correlation between the prices of
selected fresh vegetables at the three levels of retail, wholesale, and point of transport.
Miranda [7] analyzed qualitatively and quantitatively the variables affecting the determina-
tion of prices of vegetables sold over time in supermarkets. Variables were analyzed based
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on the cost-plus pricing method of the full-price costing method and the expected profitabil-
ity of each category was related to the characteristics of the vegetables. Richard et al. [8]
investigated how fuel price is transmitted to the wholesale product price through the cost
of transportation. The impact of fuel prices on agricultural commodity prices was stud-
ied. Shukla et al. [9] investigated the applicability of the ARIMA model in the wholesale
vegetable market and found that the model can be used to predict the market demand
for fresh produce in the range of 20% mean absolute percentage error. Jana et al. [10]
proposed a new performance appraisal framework for fruit and vegetable outlets in super-
markets using fuzzy k-TOPSIS to determine the criteria for performance assessment, which
allows for ranking and categorization of fruit and vegetable stores. Fernqvist et al. [11]
studied the vegetable value chain by combining a value chain perspective with a food
systems approach, presenting and discussing value chain responses and future challenges,
as well as aspects of value chain dynamics and sustainability issues in the food system.
Burek et al. [12] investigated the environmental impacts of the storage and retailing of
perishables to inform future storage and supermarket management and planning, and
to optimize supply chain network design. Kirci et al. [13] investigated the youth per-
ishability of fruits and supply chains, discussing the mechanisms by which stock age
and product standards influence freshness-day product deterioration, and the importance
of cost savings and reduction of environmental and social footprints of great relevance.
De Oliveira et al. [14] studied moderating factors in the sale of fruits and vegetables from
family farms to the supermarket supply chain, analyzing the participation and impact of
family farms of fruits and vegetables in the supply chain of supermarkets in terms of four
aspects: the characteristics of the producers, the characteristics of the farms, the institu-
tions, and the available infrastructures. Oriyomi et al. [15] used a multi-stage sampling
method to select a study population and collected primary data through semi-structured
questionnaires, which were then analyzed to derive the determinants of customers’ choice
of retail outlets for purchasing fruits and vegetables. Zhan et al. [16] used intelligent al-
gorithms using deep separable convolutional neural networks to automatically identify
fruits and vegetables, which can improve the efficiency of sales in supermarkets. Liu [17]
used a seasonal ARIMA model to predict the selling price and replenishment volume of
merchandise in order to provide an appropriate pricing and replenishment strategy.

However, there is a scarcity of research on the use of machine learning-like algorithms
to solve the pricing strategy as well as the replenishment strategy of vegetable superstores
for vegetable commodities. In fresh food supermarkets, the general freshness of vegetable
commodities is relatively short, and their quality deteriorates with increasing sales time.
Due to the wide variety of vegetables sold and their diverse origins, purchases typically
occur in the early morning, around 3:00–4:00 am. Most commodities need to be sold on
the same day; otherwise, they cannot be sold the next day. Without a well-planned and
reasonable stocking strategy, fresh produce supermarkets may face significant waste and
losses. Currently, most vegetable supermarkets adopt a seasonal replenishment strategy,
dividing vegetables into off-season and peak-season categories based on recent sales vol-
umes. However, this approach lacks accurate data and scientific judgment, often leading to
unnecessary waste and losses.

To provide vegetable superstores with a more scientific basis and reference for pricing
as well as replenishment decisions, we use genetic algorithms in machine learning to solve
such problems. In this study, we employ a support vector regression (SVR) nonparametric
method to initially fit historical data, deriving correlation curves between sales volume and
cost-plus pricing for each category. Subsequently, an LSTM prediction model is developed
using historical selling price data as the input, combined with mathematical expressions
to predict future cost-plus pricing. Utilizing feature vectors from historical selling price
data, the LSTM model predicts future pricing. These predicted cost-plus pricings are then
substituted into the fitted relationship between total sales volume and cost-plus pricing to
ascertain the total sales volume. Similarly, another LSTM model is constructed to predict
future superstore costs by category using historical cost data. Subsequently, a single-
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objective planning model is formulated with profit maximization as the goal, solved via a
genetic algorithm to derive pricing and replenishment strategies for vegetable superstores.
This approach holds significant implications for the operational efficacy and development
of vegetable superstores.

2. Methodology and Research Methods
2.1. The Main Research Goal: A Single-Objective Planning Modeling

The main research goal was to maximize revenue. Thus, a single-objective planning
model was devised with the total profit of each category in the forthcoming week as
the objective function. The decision variables encompassed replenishment and pricing
strategies, while constraints such as market demand, supply capacity, and inventory
capacity were considered. Given that the average selling price, sales volume, and average
wholesale price of each category were unknown, these values had to be ascertained for
the upcoming week. Note that the word ‘average’ will be omitted in the following. By
amalgamating available data, we constructed an LSTM model to predict values for the
ensuing week. Based on the “cost-plus pricing” method, we established daily pricing
for each category. After scrutinizing the relevant literature, we adopted cost-plus pricing
Formula (1) as follows:

Di = (1 + k) Cit (1)

Firstly, we defined the objective Function (2), where the revenue of the superstore is cal-
culated as the pricing minus the cost. Then, we defined the constraints (3): (1) Replenishment
constraints: considering the limited capacity of the superstore, the total daily replenishment
of each category should be less than the daily sales volume. (2) Cost pricing constraints:
these can be derived from the cost-plus pricing equation mentioned earlier. (3) Revenue
constraints: the pricing of vegetables cannot be infinitely large, as it would not correspond
to the actual market scenario. Therefore, the pricing should be less than the maximum
historical pricing. (4) Loss constraint: due to potential damage and dehydration during
transportation, the replenishment quantity for each type of vegetable should exceed the
sales volume. Taking all these considerations into account, we established a single-objective
planning model, as follows:

Objective function:
max(Z) = ∑6

i=1 ∑7
t=1 Mit (2)

Constraint conditions:

s.t.



Bit ≥ Xit
1−βi

Di = (1 + k)Cit

Mit = Di × Xit − Ci × Bit

Dim > Di > Ci

∑7
t=1 Bit < H, i = 1, · · ·, 6

(3)

The related symbols are described as follows: i,t denote category i and day t, respec-
tively. i ≥ 6, t ≥ 7. Mit is the profit of day t of class i. Di, Ci are pricing and costs for category
i, respectively. k is the profit margin for cost-plus pricing. Bit, Xit are replenishment volume
and sales volume for day t of category i, respectively. Dim is the all-time-high pricing for
category i and is calculated to be 119.9 CNY. (7) H is the maximum supermarket stock,
calculated as 2483.88 kg. βi is the attrition rate for class i.

2.2. Data Preparation for Planning Modeling—LSTM Modeling

In order to solve the single-objective planning model, some data like the daily cost
and sales volume needed to be predicted in advance. Hence, we built an LSTM model [18]
to predict the change curve of the selling price of the superstore in terms of category in
the coming week. Firstly, historical selling price data were used as the input vector and
combined with the mathematical expression of the LSTM model. The feature vector Ht



Mathematics 2024, 12, 1289 4 of 16

of the historical selling price data could be used as the input portion of the input gate,
oblivion gate, output gate, and candidate cell state of the LSTM model; similarly, the LSTM
model was then established to use the historical cost data as the input vector to predict the
1–7 July 2023 superstore category-based cost change curve. Assuming that in the LSTM
model, the input to the input gate is it, the input to the forget gate is ft, the input to the
output gate is Ot, the input to the candidate cell state is Ct, and the eigenvector ht of
the historical sales price data is used as a part of the hidden state ht−1 of the previous
timestep, it is possible to combine the mathematical expression of the LSTM model with
the integrated input vector xt in combination. The relevant equation is as follows:

(1) Using Equations (4) and (5), the value of the input gate it is calculated, along with the

candidate state value of the input cell at time t,
∼
Ct

it = δ(Wi × (Xt, ht−1) + bi) (4)
∼
Ct = tanh (Wc × (Xt, ht−1) + bc) (5)

(2) Using Equation (6), the activation value of the forgetting gate at time t is calculated, ft.

ft = δ
(

W f × (Xt, ht−1) + b f

)
(6)

(3) From the above two steps, the cell state update value
∼
Ct at time t is calculated by

Equation (7).

Ct = it ×
∼
Ct + ft × Ct−1 (7)

(4) By using Equations (8) and (9), the cell state update value and the output gate value
are calculated.

Ot = δ(Wo × (Xt, ht−1) + bo) (8)

ht = Ot × tanh (Ct) (9)

where Xt = [hi, pi] is the synthesized input vector, Wi, Wf, Wo, and WC are the weight
matrices of the corresponding gating units, and bi, bf, bo, and bC are the corresponding
bias vectors. By synthesizing historical stock price data and governmental policies
into the input vector Xt, and using them as inputs to the LSTM model, the information
of the two could be fused in the computation of the LSTM, which could achieve
the modeling and prediction tasks of stock price forecasting The related flowchart is
shown in Figure 1.
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2.3. Solving the Planning Model: Genetic Algorithm

A genetic algorithm was finally used to solve the proposed single-objective planning
model to obtain the optimal replenishment volume and pricing strategy by vegetable
commodity category. A genetic algorithm simulates the natural evolution process to
solve numerical optimization problems. It involves four main steps: selection, crossover,
mutation, and sampling, which are shown as below. The detailed flowchart of the genetic
algorithm is shown in Figure 2.
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(1) Selection: this step selects individuals based on their fitness (objective function value)
for reproduction.

(2) Crossover: Genetic information from two selected individuals is merged to create new
offspring. Properly chosen coding ensures that good parents produce good children.

(3) Mutation: Genetic material undergoes random changes, similar to mutations in natu-
ral evolution. This random deformation of strings occurs with a certain probability,
preserving genetic diversity and preventing the convergence to local maxima.

(4) Sampling: new generations are computed from the previous one and its offspring,
completing the evolutionary cycle [19].

For the single-objective planning model that we constructed earlier in Equations (2) and (3),
we optimized parameters such as replenishment quantity, cost-plus pricing, etc., in the
model by using the above-mentioned genetic algorithm. The whole process was imple-
mented through MATLAB R2022a so that the optimal pricing, as well as replenishment
strategy, could be obtained.
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3. Modeling Preparation
3.1. Model Assumptions

Before constructing the model, it was essential to conduct an in-depth analysis and
understanding of the actual problem, clarifying the objectives and constraints. Market
dynamics, consumer behavior, and supply chain characteristics of vegetable commodities
had to be considered to ensure the model accurately reflected the essential characteristics
of the problem. Based on this analysis, model assumptions were made to abstract and
simplify the pricing and replenishment decision-making process of vegetable commodities.
These assumptions provided a solid foundation for subsequent mathematical modeling
and the application of genetic algorithms. Through reasonable modeling assumptions,
complex practical problems can be transformed into manageable mathematical problems.
Genetic algorithms can then be utilized to determine optimal pricing and replenishment
strategies, offering scientific and effective decision support for vegetable retailers. The
following assumptions were made before modeling:

(1) It is assumed that all varieties cannot be re-sold the next day if they are not sold on
that day.

(2) It is assumed that goods not sold in three years will not be sold after three years.
(3) The wear-and-tear rate was assumed to be the rate at which merchandise is sold

compared to the rate at which merchandise is brought in.
(4) It is assumed that merchants restock early enough in the day so as not to affect the

sale of vegetables on that day.

3.2. Data Preprocessing

Data preprocessing is an indispensable and important part of constructing a vegetable
commodity pricing and replenishment model based on a genetic algorithm. It involves
cleaning, converting, and organizing raw data to provide high-quality, structured data sup-
port for the subsequent modeling work [20]. The following were the specific preprocessing
steps made in this study:

(1) Data cleaning

Missing value handling: due to the incompleteness of individual data, we used
Newton interpolation to estimate and fill in missing values.

Outlier handling: outliers were identified and removed by the box-and-line
diagram method.

(2) Data integration

Due to the large number of vegetable categories, we categorized the data into six main
groups based on species: mosaic and leafy, cauliflower, aquatic rhizomes, nightshades, chili
peppers, and edible mushrooms.

(3) Data transformation

The data were normalized to subsequently increase the speed of convergence of the
model and to eliminate the effect of magnitude on the model.

In this study, the data related to the purchasing and sales of each category between
July 2020 and June 2023 at a vegetable superstore were selected, and the relative standard
monthly sales, cost, and loss rate of each category between July 2020 and June 2023 were
obtained through the preprocessing steps mentioned above. Reliable support was provided
for subsequent modeling as well as training of the model.

3.3. Data Analysis

As customers typically purchase vegetables across various categories, there may exist
correlations between different vegetable categories. Hence, this paper initially analyzed
the distribution pattern of sales volumes across various vegetable categories and their
interrelationships. This analysis aims to provide a broad direction for the replenishment
strategy of a vegetable superstore.
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3.3.1. Category Sales Distribution Pattern

To understand the trend of the six categories, this paper utilized Excel pivot tables to
generate tables showing the sales changes over time for each category. These tables depict
the percentage of total sales accounted for by each category, allowing for the visualization
of the total sales distribution across the six categories over three years, as shown in Figure 3.
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Observing Figure 3 reveals that mosaic and leafy items account for the largest pro-
portion of sales, comprising approximately half of the total sales. In contrast, nightshades,
cauliflower, and aquatic rhizomes make up relatively small portions, with none exceeding
10%. Particularly, nightshade sales represent only 5% of the total, suggesting that supermar-
kets should prioritize stocking more mosaic and leafy items and fewer nightshade items in
their replenishment strategies.

Given the typical fluctuation of sales volume over time, this study adopts the month
as the unit of analysis. It computes the total sales data for each category monthly over the
past three years and illustrates the sales volume change curve for each category over time.
It is notable that the sales volume of nightshades collectively comprises only 5% of the
total sales volume. A line graph of sales volume over time for each category is shown in
Figure 4.
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3.3.2. Correlation Analysis of Vegetable Sales Volume

The Pearson correlation coefficient [21] measures the degree of similarity between
two statistical variables, indicating the extent of their linear relationship. It helps assess
the correlation between features and categories, identifying whether they are positively
correlated, negatively correlated, or uncorrelated. By calculating the correlation coefficient
between category sales through Equation (10), we can analyze their interrelationships. The
correlation formula and corresponding strength are presented in Table 1.

ρX,Y =
cov(X, Y)

σXσY
=

E(XY)− E(X)E(Y)√
E(X2)− E(X2)

√
E(Y2)− E(Y2)

(10)

Table 1. Table of strengths of relevant grades.

Numerical Range Degree of Relevance

0.8–1.0 Highly relevant
0.6–0.8 Strong correlation
0.4–0.6 Moderately relevant
0.2–0.4 Weak correlation
0–0.2 Very weak correlation or no correlation

1. Normal distribution analysis

Before utilizing the Pearson correlation coefficient, it is essential to ensure that the
data follow a normal distribution. To verify this assumption for the sales data of the six
categories, we conducted a normality test using the Lillietest method due to the small
sample size. This test compares the empirical distribution of the data with a normal
distribution function based on the estimated parameters. MATLAB R2022a was used to
calculate the H and p values for each category, as shown in the table below. A result of h = 0
indicates conformity with the normal distribution, and when the probability of occurrence
p > 0.05, h is accepted. Therefore, we concluded that the sales data for each category
conform to a normal distribution based on the results in Table 2.

Table 2. Results of normal distribution of category sales.

Category
Name

Mosaic and
Leafy Cauliflower Aquatic

Rhizomes Nightshades Chili Peppers Edible
Mushrooms

H
(hypothetical) 0 0 0 0 0 0

P (variance
probability) 0.5 0.294 0.18 0.5 0.05 0.23

2. Pearson correlation coefficient heat map

The correlation strength between each category was determined using the Pearson
correlation coefficient formula mentioned earlier. To present these correlations visually,
a heat map of the Pearson correlation coefficients for each category was generated. Ob-
serving Figure 5, we note that mosaic and leafy items exhibit a strong correlation with
chili peppers, cauliflower, and edible mushrooms. However, there is a weak correlation
between aquatic rhizomes and nightshades. Based on these findings, the six categories can
be initially divided into two groups: one comprising mosaic and leafy items, cauliflower,
chili peppers, edible mushrooms, and aquatic rhizomes, showing moderate to strong cor-
relations; and the other consisting of nightshades, displaying a weak correlation with the
remaining categories.
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3.4. Average LOSS RATE

To determine the relationship between category sales volume and wholesale volume,
data were collected for the production of a category average attrition rate table. The relevant
results were obtained, as shown in Table 3, by using Equation (11).

βi =
1
l ∑l

k=1 βk (11)

Table 3. Average wastage rate by category (%).

Category Name Mosaic and
Leafy Cauliflower Aquatic

Rhizomes Nightshades Chili Peppers Edible
Mushrooms

Average wastage rate 15.51 13.65 12.83 9.45 9.24 6.68

Through Table 3, we can see that the highest average wastage rate is found in the
mosaic and leafy category, while the lowest average wastage rate is found in the edible
mushrooms category. The average wastage rates of mosaic and leafy items, cauliflower,
and aquatic rhizomes even exceed 12%, which means that these vegetables have exces-
sive wastage during transportation and waiting for sales, thus affecting sales. Therefore,
when restocking, we need to carefully consider the amount of replenishment for these
commodities, and not only based on the number of sales to replenish.

4. Results and Discussions
4.1. Relationship between Total Sales and Cost-Plus Pricing in the Vegetable Category

Organizing the data, a scatter plot of sales volume versus cost-plus pricing for each
category was plotted as in Figure 6. From Figure 6, it can be found that there is a negative
correlation between sales volume and pricing. However, the correlation between the
two variables appears non-linear. To further investigate this relationship, we calculated
the correlation between total sales volume and cost-plus pricing. Using the Pearson’s
correlation coefficient formula, we determined the correlation strength, as shown in Table 4.
The results indicate that the linear correlation between sales volume and cost-plus pricing
is relatively weak, confirming our initial observation of a non-linear relationship between
the two variables.
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Table 4. Pearson’s correlation coefficient between sales and pricing.

Type Mosaic and
Leafy Cauliflower Aquatic

Rhizomes Nightshades Chili Peppers Edible
Mushrooms

Pearson’s coefficient 0.2231 −0.2919 −0.3045 −0.1908 −0.114 −0.351

To address the non-linear relationship, this study employs the support vector regres-
sion (SVR) nonparametric method to fit the data. The resulting fitted curves of sales volume
and cost-plus pricing for each category are depicted in Figure 7. As can be seen from
Figure 7, the fitting results exhibit fluctuations around the central data points, aligning with
the overall trend of the data. This suggests that the curve fitting is highly effective, indicating
a nonlinear relationship between the total sales of each category and cost-plus pricing.
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4.2. Predicting Daily Cost and Sales Volume Based on the LSTM Model and Cost-Plus
Pricing Relationship

Since the prediction process for all six categories follows the same steps, edible mush-
rooms are chosen as a representative to elaborate on in this paper. In a single CPU environ-
ment, we trained the LSTM model and obtained the prediction results as shown in Figure 8.
As can be seen from the figure, after 400 iterations, the final root mean square error (RMSE)
of the model gradually converges to 0.3, and the loss rate is close to 0.05. This result fully
demonstrates that our model performs well in predictions for edible mushrooms, and the
prediction results are reasonable. It is worth mentioning that for the predictions of the
remaining five categories, we also obtained similar results, i.e., smaller RMSEs and loss
rates. This fact further validates the reasonableness of our modeling for all six categories.
Ultimately, the prediction results for the six categories are presented in Figure 9 in the form
of images, which visualize the accuracy and stability of the predictions for each category.
Through this series of analyses and demonstrations, we can be sure that the prediction
method based on the LSTM model performs well in all six categories and provides strong
support for future prediction work.
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Figure 9. Cost-plus pricing forecasts by category. (a) Cost-plus pricing forecast for mosaic and leafy
items; (b) cost-plus pricing forecast for cauliflower; (c) cost-plus pricing forecast for aquatic rhizomes;
(d) cost-plus pricing forecast for nightshades; (e) cost-plus pricing forecast for chili peppers; and
(f) cost-plus pricing forecast for edible mushrooms.

As shown in Tables 5 and 6, we first derived cost-plus pricing schedules for each of
the six product categories for a seven-day period. We then applied this pricing data to the
fitted relationship between total sales and cost-plus pricing that we had already determined
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earlier by applying the Support Vector Regression SVR nonparametric method. Through
this step, we were able to calculate the total sales accurately. This process ensured that
the pricing was reasonable and provided us with important data on sales performance.
Thus, the required data for the single-objective planning model were obtained. The last
step was to solve the model to get the optimal replenishment volume and pricing strategy
by vegetable commodity category

Table 5. Weekly costs by category (kg).

Date Mosaic and Leafy Cauliflower Aquatic Rhizomes Nightshades Chili Peppers Edible Mushrooms

7.1 4.8938 11.0868 15.6041 9.0484 6.9976 12.8651
7.2 4.7479 10.7197 15.4766 9.1122 6.7918 10.7500
7.3 4.6321 10.3562 15.4912 8.8835 6.6398 10.1832
7.4 4.6051 9.9945 15.4763 8.7756 6.5863 11.3334
7.5 4.7211 9.6345 15.4706 9.0334 6.6043 12.5842
7.6 5.0051 9.2759 15.4692 9.3397 6.6680 12.8870
7.7 5.3782 8.9184 15.4708 9.3353 6.7631 12.4809

Table 6. Weekly sales totals by category (CBY/kg).

Date Mosaic and Leafy Cauliflower Aquatic Rhizomes Nightshades Chili Peppers Edible Mushrooms

7.1 153.587 38.224 34.739 40.586 46.674 65.729
7.2 153.820 41.912 34.739 37.667 30.716 44.091
7.3 162.854 46.614 34.739 47.984 37.645 33.174
7.4 167.166 26.096 34.739 52.265 31.754 57.252
7.5 154.136 53.598 34.739 41.294 30.171 65.729
7.6 156.419 54.745 34.739 30.328 36.359 65.729
7.7 157.945 61.970 34.739 30.444 38.145 65.729

4.3. Optimizing One-Week Pricing and Replenishment Strategies across Categories Using
Genetic Algorithms

We imported the cost and sales data of each category into the established single-
objective planning model and solved the planning problem by a genetic algorithm. After
2000 iterations, we successfully projected the profit margins and wholesale quantities of
the six categories of goods for the following week. Then, we used these margins, combined
with the cost-plus pricing formula and based on the projected cost data, to determine the
replenishment quantities for each category during the week, thus ensuring that the total
revenue was maximized over seven days. Detailed data are shown in Tables 7 and 8.

Table 7. Daily replenishment volume by category (kg).

Date Mosaic and Leafy Cauliflower Aquatic Rhizomes Nightshades Chili Peppers Edible Mushrooms

7.1 151.587 38.224 26.739 14.586 86.674 65.729
7.2 151.820 54.912 26.739 37.667 50.716 40.091
7.3 160.854 36.614 26.739 47.984 47.645 43.174
7.4 164.166 37.096 26.739 52.265 51.754 57.252
7.5 153.136 44.598 26.739 41.294 50.171 65.729
7.6 155.419 35.745 26.739 30.328 46.359 65.729
7.7 156.945 51.970 26.739 30.444 48.145 65.729
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Table 8. Category sales pricing table (CBY/kg).

Date Mosaic and Leafy Cauliflower Aquatic Rhizomes Nightshades Chili Peppers Edible Mushrooms

7.1 6.045 11.174 15.986 9.174 7.463 13.262
7.2 5.899 10.810 15.859 9.206 6.807 11.329
7.3 5.785 10.450 15.874 8.957 6.753 10.452
7.4 5.758 10.092 15.860 8.904 7.319 12.102
7.5 5.873 9.737 15.854 9.159 6.665 13.435
7.6 6.154 9.381 15.853 9.462 7.399 13.634
7.7 6.523 9.027 15.854 9.349 7.010 13.166

Based on the data in Tables 7 and 8, we further developed the calculation of ex-
pected profit values. Specifically, we integrated the replenishment quantity and price
data, performed numerical operations, and subsequently added up the calculation results
for each product category. After careful accounting, we arrived at an expected profit of
RMB 22,703.14. Meanwhile, the supermarket’s actual profit was RMB 19,732.89. Comparing
the predicted profit with the actual weekly profit, we were pleasantly surprised to find that
the predicted profit increased by 13.08% compared to the actual profit.

In order to verify the superiority of our model, we also introduced other models
for comparative analysis. For example, when we directly applied the cost-plus pricing
relationship to develop a pricing strategy based only on the data in Tables 5 and 6, and
used the forecast model to predict the sales volume and used the sales volume results
directly as a replenishment strategy, the predicted profit was RMB 21,459.12, which is an
increase of only 8.04% compared to the actual profit. This result is significantly inferior
to our single-goal planning model. This is because the other models fail to fully consider
the impact of key factors in the decision-making process such as the wastage rate of fresh
vegetables and the inventory level of fresh food supermarkets, which leads to a deviation
of the predicted results from the actual situation. Therefore, these models may have certain
limitations in reflecting the actual situation. Our model, on the other hand, is able to
consider various factors more comprehensively, and provide more accurate and effective
support for decision-making.

5. Outlook and Recommendations

According to the aforementioned model, a profit-maximizing pricing and replen-
ishment strategy for vegetable commodities has been derived. Nonetheless, real-world
commodity markets are fraught with uncertainties, necessitating specific analysis of the
problem rather than relying solely on a fixed model. Thus, to minimize risk and maintain a
stable return while maximizing profit, further optimization is warranted. Specific aspects
of the problem that can be analyzed include the following:

(1) Consumer strategies

To optimize pricing strategies, effective promotions and discount programs can be
developed, and data must be collected on the number and percentage of strategic customers
over time. In today’s marketplace, more and more consumers are planning their purchases
to maximize net utility. These customers, known as strategic customers, carefully consider
the likelihood of price reductions and the timing of product discounts before making a
purchase. They may forego purchasing during normal sales periods in anticipation of future
discounts. Supermarkets can take advantage of this consumer behavior by developing
more refined pricing strategies, and offering targeted promotions and discounts at the right
time to stimulate consumption.

(2) Changing patterns of consumer demand

Given the lagging nature of vegetable sales, purchases usually lag behind sales fluc-
tuations, and merchants often rely on historical sales data to make purchasing decisions.
However, this approach does not necessarily maximize profits and can lead to losses.
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Therefore, merchants must collect timely information about consumer demand and ad-
just replenishment strategies accordingly. Understanding consumer demand patterns
(e.g., cyclical and seasonal) is critical. By making timely adjustments to replenishment
strategies based on real-time consumer demand data, merchants can more effectively adapt
to changing market conditions and optimize profitability.

(3) Industry competitors

Since there are usually several superstores in the same neighborhood, competition
among them is inevitable and their sales strategies will affect the performance of the
superstores. Therefore, it is important to collect information on the sales strategies of
competitors in the neighborhood. By understanding their pricing, promotions, and other
sales strategies, merchants can adjust their pricing as well as replenishment strategies to
remain competitive and maintain sales.

(4) Disaster weather, major events, and important holidays

In addition to traditional factors such as production costs and seasonal variations, un-
predictable events such as extreme weather, major events, and important festivals can have
a significant impact on the vegetable market. These events can lead to sudden fluctuations
in supply and demand, often resulting in oversupply or shortages. These situations pose
higher risks to merchants than typical market conditions. Therefore, merchants must closely
monitor the data associated with such unusual events and special occasions. By staying
informed and reacting promptly, merchants can adjust their pricing and replenishment
strategies accordingly, thereby reducing sales risk and improving profitability.

(5) Local eating habits as well as cuisine

Analyzing local eating habits and dishes commonly prepared at home can provide
valuable information for understanding consumer preferences and purchasing patterns
for different types of vegetables. By collecting and analyzing this data, supermarkets can
adjust their replenishment and pricing strategies to better meet customer needs.

(6) Specific attrition data

Transportation and handling can lead to varying degrees of freshness and quality loss
as vegetables move from replenishment to sale. Merchants can mitigate this problem by
collecting data on transportation loss and quality degradation across different vegetable
categories. By analyzing this data over time, merchants can further optimize pricing and
replenishment strategies.

6. Conclusions

In this study, the inventory management and pricing strategies of vegetable com-
modities in supermarkets are thoroughly investigated through the comprehensive use of
SVR, long- and short-term memory networks, and genetic algorithms. Firstly, through
the collection and analysis of a large amount of vegetable commodity data, this study
uses a Pearson’s correlation coefficient heat map to deeply explore the intrinsic connection
between various commodities, which provides strong data support for the subsequent pric-
ing and replenishment strategies. This analysis not only reveals the interactions between
commodities but also helps us accurately grasp market demand and consumer behavior to
formulate strategies that are more in line with the laws of the market. Second, this study
adopted the nonparametric method of SVR to fit the data and successfully plotted correla-
tion curves between sales volume and cost-plus pricing for each category. Compared with
traditional parametric methods, SVR can better handle complex and nonlinear data rela-
tionships, thus improving the accuracy of sales volume prediction, and providing a reliable
basis for the development of pricing and replenishment strategies. On this basis, this study
further establishes a single-objective planning model to maximize benefits, which integrates
the two key factors of replenishment volume and cost-plus pricing. By optimizing these
two variables, we can increase the profit of the supermarket to RMB 22,703.14, which is a
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13.08% increase in profit compared to the actual profit of RMB 19,732.89, thus achieving a
rational allocation of resources and maximizing profit. In addition, this study innovatively
combines the LSTM model and genetic algorithm for parameter prediction and model
solving. The advantage of the LSTM model in time-series data prediction enables us to
predict market demand changes more accurately, while the global optimization capability
of the genetic algorithm ensures that we find the optimal solution among many possible
strategies. This combined approach not only improves the accuracy and reliability of the
strategies but also demonstrates the advantages of this study in terms of methodological
innovation. It also provides useful guidance for other retail industries and makes a positive
contribution to promoting intelligent and refined development of the entire retail industry.
However, this study has its limitations. In constructing the single-objective planning model
and the solution process, we considered seasonality in terms of time, but the changes in
market supply and demand are real-time and complex. With the continuous development
of big data and artificial intelligence technologies, more advanced algorithmic models, such
as the transformer model in deep learning, can be further explored in the future to more
accurately capture complex patterns and trends in vegetable merchandising data. This will
help supermarkets to more accurately predict market demand and develop more refined
inventory management and pricing strategies.
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