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Abstract: This paper presents a comprehensive study on fall recognition and forecasting for recon-
figurable stair-accessing robots by leveraging deep learning techniques. The proposed framework
integrates machine learning algorithms and recurrent neural networks (RNNs), specifically Long
Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), for fall detection of service robots
on staircases. The reconfigurable stair-accessing robot sTetro serves as the platform, and the fall
data required for training models are generated in a simulation environment. The two machine
learning algorithms are compared and their effectiveness on the fall recognition task is reported. The
results indicate that the BiLSTM model effectively classifies falls with a median categorical accuracy
of 94.10% in simulation and 90.02% with limited experiments. Additionally, the BiLSTM model can
be used for forecasting, which is practically valuable for making decisions well before the onset of a
free fall. This study contributes insights into the design and implementation of fall detection systems
for service robots used to navigate staircases through deep learning approaches. Our experimental
and simulation data, along with the simulation steps, are available for reference and analysis via the
shared link.

Keywords: reconfigurable robots; deep learning; fall detection; design principles; recurrent neural
network; LSTM; BiLSTM; service robots

MSC: 68T40; 68T07

1. Introduction

Staircase-cleaning robots represent a significant advancement in robotics for facility
maintenance. Cleaning robots form a major sector of the commercial robots in use today,
with a global market valued at USD 8.34 billion in 2021 and a compound annual growth
rate of 22.7% [1]. Among cleaning robots, floor cleaning robots are the most common [2];
however, conventional floor cleaning robots are unable to handle staircase environments.
One reason staircase robots in general are rare and commercial staircase cleaning robots
nonexistent is that staircases represent a risky operating environment. Robots are suscepti-
ble to falls caused by collisions with people or objects as well as from errors in movement
resulting in a loss of balance. In a case where a robot falls from the staircase, it will likely
slide or tumble down the stairs, causing severe damage to the robotic system and anything
in its path. The inherent risk and large impact of falls during operation necessitates the
development of intelligent systems capable of fall recognition and prediction to ensure the
safety of the robot, prevent damage to the surroundings, and mitigate potential injuries to
people nearby.
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In studying falls, whether for robots or humans, accurate detection, classification,
and forecasting are crucial. Detection involves identifying the occurrence of a fall event
or the presence of specific incidents in a given context, i.e., detecting whether a fall has
happened based on sensor data or environmental cues. Wang et al. [3] detailed various
fall detection technologies and reported their sensitivity and accuracy. Classification refers
to assigning a label or category to a fall event based on predefined classes, for example,
backward/forward falls, left/right leaning falls, and slip/spin falls. In Kerdjidj et al. [4],
human activities such as sitting, running, standing, and falling were classified based on
data from wearable sensors. Forecasting or prediction refers to foreseeing future fall events
based on historical data or patterns. One example is the gait-based human fall prediction
model using deep learning approach employed in Sampath et al. [5]. The significance
of fall recognition lies in its ability to trigger appropriate responses and mechanisms to
mitigate damage caused by falls. This paper further explores fall detection, classification,
and forecasting along with their application in the context of a service robot employed in
staircase cleaning.

Fall prediction and forecasting are widely studied topics for bipedal robots. This is due to
the inherent imbalance arising from their smaller support base (footprint) and higher center
of gravity compared to other robot types. Two main approaches are used to predict falls for
these robots: the inverted pendulum model, and machine learning approaches. An example of
the inverted pendulum model is the Energy-based Fall Prediction (EFP) method developed
in [6]. This method provides an analytical and quantitative measure of balance by monitoring
the robot’s state in real time. Studies have shown that EFP can successfully predict falls about
0.3 s in advance, outperforming other indicators such as Capture Point (CP) and Foot Rotation
Indicator (FRI) in both simulated and real-world scenarios. Previous studies have explored
various strategies for fall avoidance and recovery in bipedal robots, including the use of
walking sticks as proposed in [7] and model-based approaches for fall detection and prevention
in [8]. However, by using fall data and applying supervised learning methods, researchers
aim to achieve more reliable fall prediction, with experiments on ASIMO-like robots showing
promising results [9]. To mitigate this risk, machine learning-based fall detection methods
have been proposed, requiring minimal training data and utilizing support vector machines to
enhance detection accuracy [10,11]. In short,the training data are essential for machine learning
approaches, whereas a model-based approach such as inverted pendulum does not require
extensive data for modeling.

The use of synthetic IMU data generated with biomechanical simulations was used
to address limitations in acquiring real fall data for machine learning-based fall detection
in [12]. Despite these advancements, challenges remain in acquiring sufficient and diverse
fall data for training robust machine learning models as well as in ensuring the generaliz-
ability of these models across different robot platforms and environments. Additionally,
the complex dynamics and unpredictability of human movements pose challenges for
accurate fall prediction in real-time scenarios. These challenges underscore the importance
of continued research efforts to develop more reliable fall prediction methods for a given
robot design operating in a given environment.

Moreover, human fall recognition has been widely studied using various approaches.
A systematic review of human fall recognition was presented in detail in [13,14]. The
development of a fall detection and prevention system to improve quality of life for older
individuals was presented in [14]. The utilization of machine learning algorithms to pre-
dict and mitigate the risk of falls in order to minimize their adverse consequences was
detailed in [3]. An integrated vision-based method utilizing pixel-based features and a
Generalized Likelihood Ratio (GLR) scheme for accurate fall detection and classification
in home environments was presented in [15]. Meanwhile, in [16], the authors presented a
machine learning-based fall detection algorithm that achieved high sensitivity, specificity,
and accuracy, particularly notable for its efficient performance using Support Vector Ma-
chine (SVM) classification on publicly available datasets. Logacjov et al. (2021) introduced
the HARTH dataset, a comprehensive resource for human activity recognition in machine
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learning applications [17], while Micucci et al. (2017) developed the UNIMIB-SHAR dataset
specifically for recognizing human activities using acceleration data from smartphones [18].
Moreover, an analysis of public datasets for wearable fall detection was presented in [19].
However, fall data for robots accessing staircases are not readily available, and are also
both model- and design-dependent. In this paper, we present a method for generating
synthetic data along with a simplified model of a staircase-accessing robot. Table 1 provides
a summary of the methods presented in the literature for fall prediction and other forms of
interaction between robots, humans, and the environment.

Table 1. General advantages and disadvantages of different methods from the literature. Note that
the referenced studies are often limited to humans or bipedal robots. This highlights a significant gap
in research regarding fall detection for robots deployed in diverse conditions.

Method Advantages Limitations

Conventional/Statistical
methods [20–23]

Fast, easy to use, interpretable (lin-
ear)

Limited to low dimensions, not ideal for large
datasets, doesn’t consider interactions between
variables

Learning/classification
methods [24–31]

Fast, handles missing data, ac-
curate prediction, interpretable
(sometimes)

Needs some expertise, can be computationally ex-
pensive

Deep Learning [32–45] Effective, real-time processing
(trained), handles large data and
non-linearity

Slow to train, not always interpretable, generally
requires large datasets

Various approaches to stair-climbing robot designs have been explored in the literature.
Limited ability to ascend and descend common types of stairs were demonstrated by the
robotdesigned in [46]. Additionally, recent advancements in stair-climbing technology, such as
flexible wheels and adaptable soft materials, have paved the way for innovative designs such
as MOBINN and WAVES, offering improved stability and versatility in stair negotiation [47,48].
Despite the challenges in developing market-ready stair-climbing robots, as surveyed in [49],
ongoing efforts underscore the importance of mobility in indoor service robots, with a fo-
cus on mechanism, sensing, and performance evaluation. Similarly, reconfigurable robotic
systems present innovative approaches to robot design and functionality. The limitations
of fixed-morphology cleaning and maintenance robots can be addressed by introducing a
heuristic framework for reconfigurable robotic system design such as the one in [50], while
the use of sensors integrated for navigation has been highlighted in [51,52]. A taxonomy and
evaluation framework for self-reconfigurable robots based on mechanism reconfigurability
and autonomy levels was presented in [53], along with an evaluation of a staircase-climbing
robot. A reconfigurable cleaning robot called S-Sacrr capable of traversing stairs and slopes
by transformations was reported in [54]. Moreover, the use of a deep learning approach for
staircase detection was highlighted in [55].

The existing works mostly prioritize the design of staircase-climbing robots and the
resulting benefits. However, these robots are susceptible to falls due to constrained space,
obstacle type, or disturbance, and fall behavior in this context has not been previously studied.
Ensuring the safety of these service robots in human environments invariably necessitates the
implementation of robust fall detection, forecasting, and prevention mechanisms. In this paper,
the reconfigurable robot sTetro is used in the study of fall prediction and forecasting, filling a
gap in the study of robot falling behavior when accessing staircases. In light of the preceding
background discussion, the objectives outlined for this paper are as follows:

• We propose a framework for studying the falling behavior of a service robot designed
using reconfigurable principles for stair access and cleaning. This research can enhance
the robot’s adaptability and safety features.

• We propose a method for modeling and acquiring the essential sensor data using
physics-based simulations for the sTetro reconfigurable stair-accessing robot. Falls are
categorized into six classes: Backwards Fall (BF), Leftwards Fall (LF), Rightwards Fall
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(RF), Counterclockwise Pivot (CCW) or Left Pivot (LP) and fall, Clockwise Pivot (CW)
or Right Pivot (RP) and fall, or No Fall (NF).

• We demonstrate the performance of machine learning-based approaches for fall classi-
fication and forecasting in both simulations and experiments.

• We propose a time series method for forecasting falls under both openloop and clos-
edloop conditions. Early fall detection in this way can help to stabilize the robot and
prevent falls.

The rest of this paper is structured into seven sections. After the introduction, Section 2
presents the overview of the problem, including the design of the reconfigurable sTetro
robot and its features. Section 3 details the Machine Learning (ML) techniques and Re-
current Neural Networks (RNN) used for fall classification and forecasting of falls for
stair-accessing robots. In Section 4, the simulation method we employed is elucidated,
followed by an examination of its outcomes. Section 5 integrates the techniques proven
by simulation with experimental data, then presents and discusses the results. Finally, the
limitations and conclusions of this work are presented in Sections 6 and 7, respectively.

2. System Overview

This system overview provides a comprehensive framework of the falling behavior of
stair-accessing robots, sTetro in particular. Figure 1 illustrates the overall framework of this
study. This framework can be applied to other robot or human fall behavior studies. In this
paper, however, the focus is solely on the falling behavior of stair-accessing robots, specifically
sTetro. A brief explanation of the overview illustrated in Figure 1 is provided below.

Design Space Task Space Incident/Fall space Sensors output space

K-mean SVM KNN Decision tree

CNN Auto encoderRNN

Data 
preprocessing

Data processing, classification, prediction, etc.DetectionAction Space

Robot falling! 
What should it do? 
Switch Control? 
New Design? 
Other actions …

Studied in this work Potential scaling or other applications

Figure 1. Overview of the study framework.

Design Space: sTetro, the robot used for this fall study, has a unique modular structure.
Its three modules are connected via vertically-placed linear actuators, facilitating vertical
motion. This modular design allows for effective reconfiguration, which is crucial for
traversing stairs during cleaning operations.

Task Space: sTetro’s operations involve accessing and cleaning stairs. The design
accounts for the constraints posed by narrow staircases and the requirements for the robot
to efficiently navigate and clean along the width of each step.

Incident or Fall Space: Factors contributing to falls in the fall space include distur-
bances from external sources, an unstable position of the Center of Mass (CoM), and
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potential sensor faults. External disturbances can lead to unexpected movements that
may compromise the robot’s stability. An unstable CoM position, especially during stair
climbing, increases the risk of falling.

Sensor Output Space: sTetro relies on Inertial Measurement Unit (IMU) sensors to
provide crucial data on the robot’s orientation and movement, such as quaternion readings,
angular velocity, and linear acceleration. These sensor outputs contribute to understanding
the robot’s orientation, motion, and acceleration, forming the basis for fall detection and
classification. Other sensors, namely, 2D LiDAR and cameras, aid in the robot’s autonomy.

Data/Signal Acquisition: This involves capturing information from IMU sensors,
including quaternion representations for orientation, angular velocity indicating rotational
speed, and linear acceleration reflecting changes in linear velocity. Other sensors, if incor-
porated, can contribute additional insights into the robot’s environment.

Data Processing and classification: Machine learning approaches, including deep
learning techniques, are employed for fall classification. The collected sensor data are
processed, then models are trained to classify falls into specific categories such as Backwards
Fall, Leftwards Fall, Rightwards Fall, Counterclockwise Pivot Fall, Clockwise Pivot Fall,
and No Fall. This classification enhances the robot’s ability to respond appropriately to
different fall scenarios.

Detection and Forecasting: The fall detection process involves real-time analysis of
sensor data, with the trained model identifying patterns indicative of a potential fall.
Forecasting techniques enable the robot to anticipate and react to potential falls in advance,
allowing for proactive fall prevention measures.

Action or Control Space:The robot can take corrective actions based on fall detection,
such as adjusting its posture, altering locomotion patterns, or initiating emergency braking.
The action and control space are not part of this study. Additionally, insights from fall
detection studies may influence modifications in the robot’s design to incorporate essential
safety features, further mitigating fall risks. The details of the design and gait of the robot
are discussed in the next sections.

2.1. Design and Task Space

The operation of sTetro encompasses several crucial elements facilitating its traver-
sal of staircases for cleaning tasks. The modular design of the robot is inspired by the
expand/collapse design principle, and it uses a telescopic facilitator, as detailed in [50,56].
The modular design of the reconfiguration and locomotion units is provided below for
brevity. For the detailed design, please refer to [54].

• Reconfiguration module: sTetro (Figure 2a) consists of three modules interconnected
by vertical linear actuator systems. The length, width, and height of the robot are 0.28,
0.32, and 0.45 cm, respectively. The net weight of the robot is approximately 40 kg.
Each linear actuator system is comprises of motorized threaded screws. The front and
back modules are mounted on the rail carriages, which are seated in the linear rails
attached to the central module. This actuation system allows sTetro’s modules to move
vertically relative to each other, allowing it to climb staircases while remaining upright.
Controlled by servo motors, the system lifts the front module onto the approaching
step, enabling the robot to mount the steps sequentially. This process is then repeated
for the remaining two segments, eventually lifting the entire robot unit up the steps.

• Locomotion module: Initially, after approaching the stair, the front module is lifted
onto the step, as depicted in Figure 2b,c. The robot travels along the stair width to
cover the step area, as illustrated in Figure 2h,i. Bumper sensors on both sides of
the first module detect the side wall, signaling sTetro to change its direction on the
staircase. Four additional bumper sensors on the sides of the second and third modules
aid in aligning with the staircase when the first or second module is one stair up. The
complete gait of the robot while ascending and descending a single step of the stairs
is shown in Figure 2b–g. This capability enables the robot to navigate transversely
along the steps to efficiently clean along the width of each step before ascending the
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staircase. Passive wheels on the front and back modules reduce unnecessary drag on
the floor during specific motions and ensure optimal mobility and speed for the robot.

#1#2#3

𝑙𝑙 × 𝑤𝑤 × ℎ =
0.37 ×0.41 ×0.50 m

𝑙𝑙

ℎ

𝑤𝑤

(a)

(b)

(e) (f) (g)

(h)

(i)

(c) (d)

Figure 2. sTetro staircase cleaning service robot (a) Dimension of the robot, (b–g) Transition using
reconfiguration of three vertical units on a single step gait, and (h,i) Sideways locomotion on the
constrained step width of a stair.

2.2. Incident Space

This section highlights the incident space, i.e., fall behavior. Falling may be caused
by several factors, such as unstable equilibrium, sensor faults, external disturbance, and
others. The incident is captured inside the simulated environment to log the essential data
from the sensors, i.e., the IMU, to perform classification and forecasting of falls by the robot
while traversing stairs.

Figure 3a depicts the four stages of falling for sTetro after a force or disturbance is
applied to it such that it falls over.

Initial 
state

Force/Disturbance 
applied

Imbalance 
condition

Acceleration 
phase

OR

Free fall

First impact

Rebound/rest

Post impact 
motion

Stable state 
after fall 
complete

(a) Stages or instances of fall 

(b) Situation on a staircase (c) Fall classes

BF: Backward Fall

LF: Left lean and Fall

LP: Left pivot and fall

RP: Right pivot and Fall

NF: No Fall

RF: Right lean and Fall

Figure 3. Phases of sTetro fall, situation or conditions of the fall, and class of fall (Backwards,
Leftwards, Counterclockwise Pivot, Rightwards, Clockwise Pivot, or No Fall).

Initial State: The sTetro robot is in a stable state as it navigates the stairs. Its initial
state is characterized by a balanced and upright posture, with all modules functioning to
maintain equilibrium.

Release or Applied Force: When subjected to an external disturbance or otherwise
entering an unbalanced state, the robot loses equilibrium, leading to the initiation of a fall.
As an example, Figure 3b shows a scenario in which a person using the stairs collides with
the robot, resulting in the situation depicted in Figure 3a. The primary focus in this study is
not on identifying the specific cause of the fall, but on characterizing the types of falls that
can occur under the influence of various forces or unbalanced states. The robot is assumed
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to be a rigid body with stiff actuators, ensuring that its configuration remains unchanged
during the fall and application of force.

Acceleration or Fall Phase: Following the release phase, sTetro enters an acceleration
phase as it responds to the applied force. This phase involves rapid motion and an increase
in the robot’s angular velocity. As the acceleration phase progresses, sTetro transitions into a
falling state. The duration of the fall is relatively short. Analyzing the robot’s motion in this
phase aids in evaluating the robot’s stability and fall behavior as well as the development
of potential recovery mechanisms.

Impact or Landing: The fall concludes with an impact or landing on the surface
below. This stage determines the severity of the fall and the potential damage to the
robot. The impact can lead to energy dissipation and deformation within the robot’s
structure. Upon impact, there is an exchange of energy between the robot and the landing
surface. This deformation as a result of impact was not a part of the present study, although
understanding the energy transfer and deformation is essential for assessing the potential
damage and structural integrity of sTetro. Following the impact, sTetro may undergo post-
impact motion, exhibiting residual movements or vibrations. This phase is characterized
by the robot’s response to the impact forces and any remaining energy within its system.

3. Methodology
3.1. Machine Learning Algorithms

Table 2 lists the machine learning approaches used for classification and prediction.
The selection of measures depends on user preferences and the task’s context, for instance,
choosing a model with high negative predictive value for cancer screening. Model training
involves splitting data into separate sets for fitting, selection, and validation to avoid overfitting.
Techniques such as cross-validation and temporal validation further reduce overfitting risks.
The metrics used for performance evaluation are briefly discussed in Section 3.3.

Table 2. Machine learning classification approaches.

Approaches Description

Naïve Bayes • Probabilistic algorithm based on Bayes’ theorem.
• Suitable for text classification and simple models.
• Assumes independent features (hence “naïve”).

KNN (k-Nearest
Neighbors)

• Instance-based algorithm.
• Predicts the class of a data point based on the majority class

of its k-nearest neighbors.
• Effective for small to medium-sized datasets.

Decision Tree • Constructs a tree-like model of decisions based on features.
breaks down a dataset into subsets.

• Interpretable and suitable for both classification
and regression.

SVM (Support Vector
Machine)

• Divides data into groups using a hyperplane in a multi-
dimensional space.

• New data points are assigned to groups based on their posi-
tion relative to this hyperplane.

Random Forest • Ensemble learning algorithm based on decision trees; builds
multiple trees and merges their predictions to improve accu-
racy and control overfitting.

• Suitable for large datasets.

Ensemble Technique • Combine multiple different machine learning models.
• Predictions are based on a consensus among the component

models.
• More robust and generalized than using a singular model.
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ML models offer flexibility, outperforming statistical counterparts in predictive perfor-
mance and handling unstructured data. However, they require large datasets, and biases
in design, training data, or application can impact the results. Certain ML models lack
transparency due their to complexity, necessitating ongoing research in explainable artifi-
cial intelligence for interpretable models understandable by non-technical users. Careful
consideration of trade-offs between model performance and computational cost is crucial
when choosing ML approaches, especially in this work, where the model is to be used for
real-time fall detection on a robot, which demands both accuracy and having a lightweight
model so as to not affect operations. Algorithm 1 shows the framework within which the
ML models were generated in this work.

Algorithm 1 Pseudocode for the splitting the data for ML modeling and training

1: Split data into windows of size N
2: Apply normalization or standardization
3: Handle missing values (if any) of preprocessed sequences (X1, X2, . . . , XN)
4: Choose model architecture (SVM, KNN, Decision Tree, etc.)
5: Configure hyperparameters (layers, units, learning rate, etc.)
6: Train model on historical data to classify values

3.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs), as depicted in Figure 4, excel at handling sequen-
tial data such as word sequences in machine translation, audio data, and time series data
in forecasting. These types of data share a crucial feature, namely, temporal dependence
between elements. In RNN architectures, as shown in Figure 4a, both past and current
data serve as inputs. Different architectures are used depending on the data flow, such
as one-to-one (single input, single output), one-to-many (single input, multiple outputs),
many-to-one (multiple inputs, single output), and many-to-many (multiple inputs, multiple
outputs). For classification tasks, many-to-one architectures are common. Additionally, in
time series scenarios, the input sequence length typically differs from the output sequence
size, which usually represents the number of predicted samples. Unlike traditional neural
networks, which process data one point at a time, RNNs can process entire sequences of
data. RNNs have the ability to capture context and dependencies over time, making them
powerful for tasks requiring sequential information processing. This makes them well-
suited for tasks involving sequential data such as machine translation, speech recognition,
and natural language processing. The IMU data used in this work consists of sequential
data, which makes RNN-based approaches attractive.

When using IMU data with ten channels (i.e., quaternion, angular velocity, and linear
acceleration) to classify and predict the type of fall, the problem falls under the category of
sequence-to-label or many-to-one classification. The fundamental equations governing the
dynamics of an RNN are as follows:

ht = σ(Wihxt + Whhht−1 + bh), (1)

yt = softmax(Whyht + by), (2)

where xt represents the input at time step t, ht is the hidden state at time t, and yt is the
output at time t. The weight matrices Wih, Whh, and Why along with the bias vectors bh
and by are the learnable parameters of the network.

Equation (1) computes the hidden state ht based on the current input xt and the
previous hidden state ht−1. The sigmoid activation function σ(·) introduces nonlinearity to
the hidden state computation. Equation (2) generates the output yt by applying the softmax
function to a linear transformation of the hidden state ht. The softmax function ensures
that the output represents a probability distribution over possible classes.
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Figure 4. Recurrent Neural Network, LSTM, and BiLSTM architectures, along with the sequence for
time series forecasting.

3.2.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)
architecture, as shown in Figure 4b. Traditional RNNs suffer from a problem called the
vanishing gradient problem. This problem occurs because the gradients used to train the
network can become very small as they are backpropagated through the network. This
makes it difficult to train the network to learn long-term dependencies in the data.

LSTMs were made to overcome the vanishing gradient problem by introducing a
special type of memory cell that can store information for long periods of time. This
memory cell is controlled by gates that regulate the flow of information into and out of the
cell. The gates can learn to forget information that is no longer relevant and to remember
information that is important for the task at hand.

Forget gate: ft = σ(Wx f xt + Wh f ht−1 + b f ), (3)

Input gate: it = σ(Wxixt + Whiht−1 + bi), (4)

Output gate: ot = σ(Wxoxt + Whoht−1 + bo), (5)

C.C state: C̃t = tanh(WxCxt + WhCht−1 + bC), (6)

Cell state: Ct = ftCt−1 + itC̃t, (7)

Hidden state: ht = ot ⊙ tanh(Ct). (8)

In the above equations, the variables ft, it, ot, C̃t, Ct, ht ∈ Rn from Equations (3)–(8),
where n indicates the number of hidden layers in the LSTM network. Notably, the symbol
σ(·) denotes the logistic sigmoid activation function, defined as σ : R → (0, 1), with the
expression σ(x) = ex

1+ex . Furthermore, tanh(·) represents the logistic hyperbolic tangent

activation function, characterized as tanh : R→ (−1, 1) and defined by tanh(x) = ex−e−x

ex+e−x .
The weight matrices Wxr ∈ Rn×17 and Whr = diag

(
wj

)
, wj ∈ R, j = 1, . . . , n, where

r ∈ f , i, o, C, represent the weights associated with the input and hidden states for the forget
gate layer, input gate layer, output gate layer, and input modulation gate layer. Finally,
br, where r ∈ f , i, o, C, denotes the corresponding bias terms and ⊙ signifies element-wise
matrix multiplication.
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3.2.2. Bidirectional LSTM

The conventional LSTM architecture may lose valuable feature information during
the training process, as it only considers input vectors along one specific direction in time,
meaning that the sequence information cannot be analyzed thoroughly. Hence, BiLSTM is
designed with a bidirectional structure to capture time series data representations in both
the forward and backward directions, as shown in Figure 4c.

BiLSTM covers two parallel LSTM layers in both the forward and backward propaga-
tion directions. In the forward direction, the internal state stores information in H f (t) from
the past time series values; in the backward direction, information is stored in Hb(t) from
the future sequence values. The separate hidden states H f (t) and Hb(t) at time step t are
linked in sequence to generate the final output. The recurrent states of the BiLSTM network
at time step t for the two directional layers are as follows:

h f t = ψ
(

W f hxt + W f hhh(t−1) + b f b

)
, (9)

hb(t) = ψ
(

WbhXt + Wbhhhb(t+1) + bb

)
, (10)

where the weight matrices W f h and Wbh denote the forward and backward weights from
input to recurrent units, respectively, W f h and Wbh refer to the forward and backward
weights, respectively, from the recurrent unit to itself, the terms b f b and bb respectively de-
note the bias signals in each direction, and ψ denotes the recurrent layer activation function.
In this paper, ψ is set to tanh. To predict the state yt at time t, a linear transformation of the
hidden state to the output state of the network is performed:

ỹt = WOHt + bO (11)

where WO ∈ Rm×n is the weight matrix, bO ∈ Rm is the bias vector for the output, and m is
the dimension of the output state.

3.2.3. Time Series Forecasting

The steps for time series forecasting using BiLSTM are shown in Figure 4d. Time series
forecasting using Bidirectional Long Short-Term Memory (BiLSTM) networks involves
leveraging the capabilities of LSTM neural networks with sequential output. At each time
step in the input sequence, the BiLSTM network learns to predict the value of the next
time step, facilitating the modeling of temporal dependencies within the data. There are
two main methods for time series forecasting, namely, openloop and closedloop forecasting.
Table 3 presents a comparison of the two methods. The use of this approach is demonstrated
in the simulation and experimental section in this work with the goal of forecasting the fall
behavior of a staircase-climbing robot.

Table 3. Comparison of openloop and closedloop forecasting.

Open Loop Forecasting Closed Loop Forecasting

• Predicts the next time step in a sequence
using only the input data.

Predicts subsequent time steps by using pre-
vious predictions as input.

• True values from the data source are used
as input for subsequent time steps.

The model does not require true values for
prediction.

•Useful when true values are available before
making predictions.

Useful for forecasting multiple subsequent
time steps.
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3.3. Evaluation Metrics

The confusion matrix is a crucial tool for evaluating classification model performance,
providing insights into accuracy and errors. Key metrics include the following:

• Accuracy (Acc): Measures overall correctness, calculated as TP+TN
Total Instances .

• Precision (Prec): Ratio of true positives to all predicted positives, calculated as TP
TP+FP .

• Recall (Rec): Ratio of true positives to total actual positives, calculated as TP
TP+FN .

• F1-Score (F1S): Harmonic mean of precision and recall, calculated as 2×TP
2×TP+FP+FN .

In the above equations, True Positives (TP) are instances where the model correctly
classifies an instance as the correct fall type, True Negatives (TN) are instances where the
model correctly discards an instance from the wrong fall type, False Positives (FP) are
instances where the model incorrectly assigns a fall type to an instance, and False Negatives
(FN) are instances where the model fails to classify an instance to a particular fall type.
These metrics provide insights into model performance considering both false positives
and false negatives.

4. Simulation Results and Discussion

The use of simulation is essential to this study. Primarily, simulations provide a
controlled environment in which various machine learning (ML) techniques can be sys-
tematically evaluated and compared. Unlike real-world experiments, simulations offer
scalability and repeatability, allowing for the generation of large volumes of synthetic data
under different scenarios and conditions. By leveraging the simulation environment, we
aim to gain insights into the performance of the algorithms and make informed decisions
about their applicability in experimental scenarios.

4.1. Simulation Setup

The process of simulating the sTetro robot model in Gazebo was carried out in several
steps. First, the sTetro model was designed and built in SolidWorks, ensuring accurately
representation of the physical robot’s structure and components. When the SolidWorks
model was finalized, it was exported into a format compatible with Gazebo, in this case
URDF (Unified Robot Description Format). The URDF file was then imported into Gazebo,
a popular robotics simulation environment, as shown in Figure 5a. In Gazebo, the model
was further refined to ensure that all components behaved as expected in the simulation
environment. To enable sensor data collection, IMU (Inertial Measurement Unit) sensors
were placed near the base of sTetro in Gazebo. These sensors were configured to capture
data related to the robot’s orientation, angular velocity, and linear acceleration during the
simulations. Next, a Python script was written to automate the process of applying forces
to the sTetro robot model. The plugin utilized ROS services to apply wrench forces to
specific parts of the robot, simulating external stimuli or environmental conditions. Addi-
tionally, the plugin was programmed to interact with the IMU sensors while subscribing
to the sensor data topic and logging the data for further analysis. After the plugin was
implemented and the IMU sensors were integrated, the simulation was ready to proceed.
During simulation, the ROS plugin was used to automatically apply forces to the robot
model as per the predefined conditions, while the IMU sensors continuously collected data
on the robot’s motion and orientation.
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𝑍𝑍𝑊𝑊
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sTetro Robot (0.41x0.37x0.51) m

(b) Coordinate frames assigned (c) Illustration of force applied on the sTetro robot

Plugins, Sensors
Models …

Physics, ODE, …

Robot model

Steps to get simulation 
environment in Gazebo:
1.Use of solid work plugin to 
translate SW assembly to 
gazebo readable format
2.Set or add the linkages
3.Set the collision element.
4.Set the visual element.
5.Set the inertial properties.
6.Go to #1 until all links have 
been added.
7.Add all joints (as per design).
8.Add required plugins.

(a) Simulation environment setup

Figure 5. Coordinate frames, sensor frame (IMU), and an application of force. Samples of the robot’s
fall behavior in the simulations can be found at the following link: https://drive.google.com/drive/
u/2/folders/1Z4Irfuh8CiQ2davPHGxAkcPCTvubOgwJ (accessed on 22 April 2024).

4.2. Sensor Space and Data Logging in Simulations

Figure 5b shows the reference frames of the world and robot frames in the simulated
Gazebo environment. Gazebo is an application used for modeling the mechanical and
physical behavior of robots, the version used is Gazebo 9.0 with ROS Melodic installed
on Ubuntu 18.04.06 (Bionic) used for the simulations in this research. Figure 5b shows an
example of an external force applied at a given point. The physical properties of the robot
in the simulated environment are listed in the picture as well.

The Robot Operating System (ROS) was used to interface with the Gazebo environ-
ment, as shown in Figure 5. The logging frequency was set to 40 Hz, a commonly available
rate in standard IMU sensors, although high-precision IMU sensors can achieve frequencies
up to 1000 Hz. This study focused on using the IMU to log the orientation and motion data
of free falls starting from the moment that the external force was applied. The logged data
included quaternion values (w, x, y, z), angular velocity (ωx, ωy, ωz), and linear accelera-
tion (ax, ay, az). Figure 6 shows the data captured by the IMU sensor under the different
fall categories. In total, ten channels of data were logged, while the force application was
automated using a Python program interfacing with the simulation via the ROS. The range
of values for the different parameters of the applied forces are detailed in Table 4.

The t-SNE plot in Figure 6 was generated from a sample of 5000 data points, which
were drawn from a total of 10,000 data points representing six different classes of falls. Here,
t-SNE (t-Distributed Stochastic Neighbor Embedding) refers to a dimensionality reduction
technique commonly used for visualizing high-dimensional data in lower dimensions
while preserving local structures and relationships between data points. The data are
tagged with the proper identity in a column to assign the type of fall, i.e., BF, LF, RF, CCW,
CW, or NF. The range of values defined in Table 1 heavily biases the type of fall generated;
however, it does not guarantee that only a particular fall type will be generated. Thus,
noise is present in the dataset in the form of miscategorized falls. Before feeding the data
into the the machine learning training model, they were normalised using the pseudocode
in Algorithm 2.

https://drive.google.com/drive/u/2/folders/1Z4Irfuh8CiQ2davPHGxAkcPCTvubOgwJ
https://drive.google.com/drive/u/2/folders/1Z4Irfuh8CiQ2davPHGxAkcPCTvubOgwJ
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Algorithm 2 Normalizing the data obtained from the IMU for feeding to the ML model

Load Data: Load IMU data with 10 channels, including quaternion, angular velocity,
and linear acceleration readings. IMU data sequences (x1, x2, . . . , xT)
Data Normalization: Normalize predictors and targets to have zero mean and
unit variance. Concatenate sequences in the time dimension to calculate mean
and standard deviation.
for n = 1 to n do

XTrain[n]← (XTrain[n]− µX)/σX
TTrain[n]← (TTrain[n]− µT)/σT

end for
Normalised data sequences (X1, X2, . . . , XN)
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Note The above plots indicates the data logged with IMU during the class of fall indicated. Moreover, the data is stacked for 
the multiple events captured during the simulation. In this work 40 data set captured during approx. 0.75 sec of fall 
after the force or fall condition applied.

Data set 𝐱𝐱𝑡𝑡 = [𝑤𝑤, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦,𝜔𝜔𝑧𝑧, 𝑎𝑎𝑥𝑥, 𝑎𝑎𝑦𝑦, 𝑎𝑎𝑧𝑧] and stacked data for the fall data from a single event as 𝐗𝐗𝑡𝑡 = [𝐱𝐱1, … , 𝐱𝐱𝑡𝑡]𝑇𝑇

Similarly other data are stacked the with labelled format and continues to the number of sample taken. 

t-SNE (t-distributed Stochastic Neighbor Embedding) revealing hidden patterns and structure within 9 channel IMU datasets.

t-SNE plot for the 5000 simulated data
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Figure 6. Sensor data space, consisting of the data captured by the IMU sensor during a fall.

Table 4. Range of values for different aspects of the applied force for each fall type. The origin for the
position of force application is the center of the bottom-most surface of the central module.

Fall Types Position [m] Force [N]
X Y Z X Y Z

BF 0 −0.1 to 0.1 0 to 0.45 −500 to −200 −75 to 75 −75 to 75
LF −0.1 to 0.1 0 0 to 0.45 −75 to 75 200 to 500 −75 to 75
RF −0.1 to 0.1 0 0 to 0.45 −75 to 75 −500 to −200 −75 to 75

CCW 0 −0.175 to −0.11 0 to 0.45 −500 to −200 −75 to 75 −75 to 75
CW 0 0.11 to 0.175 0 to 0.45 −500 to −200 −75 to 75 −75 to 75
NF 0 −0.11 to 0.11 0 to 0.25 −150 to 0 −75 to 75 −75 to 75

4.3. Results and Discussion

For fall classification, different machine learning algorithms demonstrated distinct
strengths and weaknesses in their performance. In this section, the results for the algorithms
presented in Section 3 are shown and discussed. The 80/20 split, also known as the Pareto



Mathematics 2024, 12, 1312 14 of 29

principle, is a common practice in machine learning for dividing data into training and
testing sets, and was used in this paper; 80% of the data were used to train the machine
learning model, allowing it to learn from patterns and relationships within the data, while
the remaining 20% were reserved for testing the model’s performance to evaluate how well
it generalizes to unseen data while avoiding overfitting.

4.3.1. Naïve Bayes Outcome

The Naïve Bayes model demonstrates a mix of strengths and weaknesses in classifying
different fall types, as depicted in Figure 7a. Analyzing the confusion matrix reveals that the
model achieves relatively high accuracy in predicting No Fall (NF) instances, as evidenced
by the high number of true negatives and a recall of 0.97. However, the model faces
challenges in accurately identifying Backwards Fall (BF) instances, reflected in a precision
of 0.62 and a recall of 0.43, indicating a significant number of false positives and false
negatives for this class. Table 5 lists the performance metrics for Naïve Bayes.

Overall, Naïve Bayes demonstrates competency in certain fall types but faces chal-
lenges in accurately classifying others, particularly Backward Fall and Counterclockwise
Pivot Fall. Thus, the precision–recall trade-offs should be carefully considered based on the
specific application requirements.
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Figure 7. Row-normalized confusion matrices for the fall recognition using six classifiers, namely,
Naïve Bayes, SVM, Random Forest, KNN, Decision Tree, and Ensemble class. Note that the diagonal
elements represent correct predictions or recall values and the off-diagonal elements represent
misclassifications. The empty elements, as in (a) Element {4,1}, {4,3}, and {4,6}, indicate zero or empty,
implying that the model did not make any predictions of that class.

Table 5. The evaluation metrics for the different ML algorithms, indicating the Precision, Recall, and
F1-scores.

Class Precision Recall F1 Score

NB KNN DT NB KNN DT NB KNN DT
Class 1 (BF) 0.62 0.9 0.83 0.43 0.85 0.82 0.51 0.87 0.82
Class 2 (LF) 0.46 0.98 0.97 0.87 0.98 0.97 0.61 0.98 0.97
Class 3 (RF) 0.9 0.99 0.98 0.84 0.98 0.97 0.87 0.98 0.97
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Table 5. Cont.

Class Precision Recall F1 Score

Class 4 (CCW) 0.86 0.92 0.9 0.39 0.95 0.9 0.54 0.93 0.9
Class 5 (CW) 0.84 0.93 0.91 0.55 0.95 0.91 0.67 0.94 0.91
Class 6 (NF) 0.71 0.96 0.95 0.97 0.98 0.96 0.82 0.97 0.96

Precision Recall F1 Score

SVM RF Enb SVM RF Enb SVM RF Enb
Class 1 (BF) 0.66 0.88 0.84 0.58 0.86 0.86 0.62 0.87 0.85
Class 2 (LF) 0.94 0.98 0.96 0.81 0.98 0.98 0.87 0.98 0.97
Class 3 (RF) 0.94 0.99 0.98 0.82 0.98 0.97 0.88 0.98 0.98
Class 4 (CCW) 0.8 0.93 0.94 0.69 0.93 0.9 0.74 0.93 0.92
Class 5 (CW) 0.8 0.93 0.93 0.7 0.94 0.92 0.74 0.93 0.92
Class 6 (NF) 0.58 0.96 0.95 0.95 0.98 0.98 0.72 0.97 0.97

4.3.2. Support Vector Machine Outcome

The confusion matrix of the classification of the resulting SVM showing the perfor-
mance of the SVM model in classifying different fall types is depicted in Figure 7b. The
model exhibits notable challenges in accurately predicting Class 1 (BF), as evidenced by a
precision of 0.66, recall of 0.58, and F1-Score of 0.62. This indicates a substantial proportion
of actual BF instances misclassified or overlooked by the model. Similarly, Class 4 (CCW)
faces difficulties, with a precision of 0.80 and recall of 0.69, suggesting that SVM struggles
to reliably identify CCW instances. In contrast, the SVM model demonstrates robust perfor-
mance for Class 2 (LF), with a precision of 0.94, a recall of 0.81, and an impressive F1-Score
of 0.87. This suggests that SVM excels in accurately classifying LF instances.

The performance metrics of the SVM model reflect a trade-off between precision and
recall, particularly noticeable in Class 6 (NF), where the precision is lower at 0.58 and the
recall is higher at 0.95, resulting in an F1-Score of 0.72. This suggests that while SVM excels
at identifying NF instances, it tends to produce more false positives. In summary, the SVM
model displays strengths in certain classes, notably LF, RF, and CW, but struggles with BF
and CCW, necessitating further exploration and potential model refinement.

4.3.3. Random Forest Outcome

The Random Forest model used in this work is an ensemble of ten trees, with out-of-
box prediction enabled. The model demonstrates robust performance across multiple fall
types, as evidenced by the confusion matrix shown in Figure 7c. It excels in accurately
classifying instances of Backward Fall (BF), achieving a high precision of 0.88 and recall of
0.86. This suggests that the model is correct most of the time when predicting BF and that
it successfully identifies the majority of actual BF instances. Left Fall (LF) is another class
where the RF model performs exceptionally well, with precision and recall both reaching
0.98. This indicates a high level of accuracy in predicting LF instances, with minimal false
positives and false negatives. The Right Fall (RF) class is effectively identified by the model
as well, with precision and recall both at 0.99. This suggests a high degree of precision
in predicting RF instances and an ability to capture the majority of actual RF instances.
The Counterclockwise Pivot (CCW) and Clockwise Pivot (CW) classes demonstrate strong
performance, with precision and recall both around 0.93. The model is reliable in correctly
classifying CCW and CW instances, striking a balance between precision and recall. No
Fall (NF) instances are accurately identified, with precision and recall both reaching 0.96
and 0.98, respectively. This indicates the model’s capability to effectively distinguish
non-fall instances.

Overall, the Random Forest model presents consistent and strong performance metrics
across all fall types. Its ability to capture complex relationships within the fall data leads to
accurate predictions for various classes.
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4.3.4. Decision Tree Outcome

The Decision Tree model demonstrates commendable performance across various fall
types, as reflected in the confusion matrix shown in Figure 7d. It successfully identifies
instances of Backward Fall (BF) with a precision of 0.83 and recall of 0.82, indicating a good
balance between correctly predicting BF instances and avoiding false positives. The Left
Fall (LF) and Right Fall (RF) classes exhibit exceptional precision and recall, both around
0.97. DT excels in accurately classifying LF and RF instances, showcasing high reliability
and minimal misclassifications. The model performs well on the Counterclockwise (CCW)
and Clockwise Pivot (CW) fall classes as well, with precision and recall at 0.90 and 0.91, re-
spectively. This suggests a robust ability to correctly identify CCW and CW instances while
maintaining a balance between precision and recall. No Fall (NF) instances are effectively
identified by the Decision Tree model, achieving precision and recall values of 0.95 and
0.96, respectively. The model excels in distinguishing non-fall instances, demonstrating a
high level of accuracy.

While the Decision Tree model has a lower recall rate than the Random Forest model
in all fall types, it still achieves great results across all fall types and has much better overall
performance than Naïve Bayes and SVM. Other performance indicators will need to be
used to assess the viability of DT, such as the computing costs required to use this model.

4.3.5. KNN Outcome

The K-Nearest Neighbors (KNN) model presents robust performance across various
fall types, as illustrated by the confusion matrix shown in Figure 7e. It demonstrates high
precision, recall, and F1-Score values for all classes, highlighting its effectiveness in fall type
classification. The model excels in identifying instances of Backward Fall (BF), achieving
a precision of 0.90 and a recall of 0.85. This suggests that the KNN algorithm effectively
minimizes false positives while capturing a substantial proportion of actual BF instances.
The Left Fall (LF) and Right Fall (RF) classes exhibit outstanding precision and recall, both
around 0.98. The KNN model showcases remarkable accuracy in distinguishing LF and
RF instances, with a high level of reliability and minimal misclassifications. The model
performs exceptionally well on the Counterclockwise Pivot (CCW) and Clockwise Pivot
(CW) classes, with precision and recall values of 0.92 and 0.95, respectively. This indicates a
strong ability to correctly identify CCW and CW instances while maintaining a balanced
trade-off between precision and recall. No Fall (NF) instances are accurately identified
by the KNN model, achieving precision and recall values of 0.96 and 0.98, respectively.
The model effectively distinguishes non-fall instances, demonstrating high accuracy and
reliability on this class.

Overall, KNN demonstrates similar overall recall rates to the Random Forest model.
These two models are the best-performing models in terms of overall recall rate compared
to the others. As with Decision Tree, other performance indicators, such as computing
costs and robustness against noise, need to be considered for the selection of the most
suitable model.

4.3.6. Ensemble Method Outcome

An ensemble model was used based on the pseudocode presented in Algorithm 3.
The ensemble model showcases strong overall performance, characterized by consistently
high precision, recall, and F1-scores across the majority of fall classes. The mode func-
tion is applied to combine the individual predictions from three different models, namely,
K-Nearest Neighbors (KNN), Decision Tree (Tree), and Naïve Bayes (NB). Notably, the
effectiveness of the combination strategy, merging predictions from distinct models such
as KNN, Decision Tree, and Naive Bayes, contributes to performance metrics that either
surpass or align closely with those of the individual models. In terms of class-wise per-
formance, the ensemble achieves outstanding scores for LF, RF, and NF, with precision,
recall, and F1-scores reaching or exceeding 0.95. While its performance for the BF, CCW,
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and CW classes is slightly lower, the ensemble method still demonstrates strong results,
with F1-scores ranging from 0.85 to 0.92.

Algorithm 3 Ensemble method pseudocode

1: ypred_knn ← predict(knn_model, Xtest)
2: ypred_tree ← predict(tree_model, Xtest)
3: ypred_nb ← predict(nb_model, Xtest)
4: ensemble_predictions← mode([ypred_knn, ypred_tree, ypred_nb], 2)

5: ensemble_accuracy← sum(ensemble_predictions==ytest)
numel(ytest)

6: ensemble_con f _mat← confusionmat(ytest, ensemble_predictions)
7: ensemble_precision← diag(ensemble_con f _mat)/sum(ensemble_con f _mat, 1)′

8: ensemble_recall ← diag(ensemble_con f _mat)/sum(ensemble_con f _mat, 2)
9: ensemble_ f 1_score ← 2× (ensemble_precision× ensemble_recall)/(ensemble_precision +

ensemble_recall)

This ensemble approach leverages the collective abilities of multiple models; by
selecting the mode, it ensures that the final prediction is determined by the class that is
most commonly agreed upon across the models. This step contributes to the robustness
and generalization capability of the ensemble, often yielding more reliable and accurate
predictions compared to individual models. Ensemble methods improve accuracy by
leveraging diverse model strengths, reduce overfitting through prediction averaging, and
enhance robustness by aggregating predictions from various models to mitigate noise
and outliers.

4.4. RNN-Based Algorithms

Both the LSTM and BiLSTM models used the Adam optimizer. After the sequence
input layer, both models have a single LSTM/BiLSTM layer with 100 hidden units, followed
by a fully connected layer, a softmax layer, and the classification layer which outputs the
predicted class type. The training options for the Adam optimizer were configured as
follows. The maximum number of epochs was set to 40, with an initial learning rate
of 0.005 and a piecewise learning rate schedule. A gradient threshold of 1 was applied
during training. The learning rate was adjusted to decrease exponentially by a factor
(say, 6.25 × 10−7) every 10 steps. This approach, with its initial high learning rate and
subsequent decay, facilitates rapid convergence and mitigates the risk of overfitting.

4.4.1. LSTM Results

Figure 8a shows the results for the LSTM model, revealing robust classification perfor-
mance. The confusion matrix showcases high diagonal values ranging from 86.4% to 98.1%,
indicating accurate classification for most classes. Challenges are identified in distinguish-
ing classes, with notable misclassifications between Backward Fall (BF) and No Fall (NF)
at 5.6%, RF and BF at 12.7%, and CCW and BF at 5.6%. The precision, recall, and F1-score
metrics generally exhibit high values (0.85–0.98) for most classes, although lower precision
is noted for BF (0.82) and lower recall for RF (0.86). The key observation is that the LSTM
model effectively captures temporal patterns in fall data, resulting in generally accurate
classification. However, refinement is required for certain class boundaries, especially in
distinguishing BF, RF, and NF. The training loss is discussed along with the BiLSTM results
in the next subsection. The LSTM models have a median categorical accuracy of 93.53%
with a standard deviation of 0.298. The median recall of each category is between 93.2%
and 98.4%, with the exception of BF which is at 81.8%. The performance of one of the
models is shown in Figure 8a.
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(a) LSTM lassification outcome using simulation data

(b) BiLSTM classification outcome using simulation data

(c) Categorical Accuracy (d) Recall

BF LF RF CCW CW NF BF LF RF CCW CW NF

Figure 8. Confusion matrix, training loss, and training accuracy for a sample of (a) LSTM, (b) BiLSTM,
(c) box-and-whiskers plot of categorical accuracy for all LSTM and BiLSTM models, and (d) precision
for each fall category for all models.

Among the most common miscategorizations for LSTM models are classifying falls as
BF when they are either CCW (2.4% to 3.2%), NF (4.0% to 6.0%), or RF (2.4% to 6.8%); other
common miscategorizations are classifying NF when the falls are BF (2.2% to 6.4%) and
classifying RF when the falls are BF (4.4% to 14.5%). All other miscategorizations are below
2% of the predicted class for all models.

4.4.2. BiLSTM Results

Figure 8b highlights the results for the BiLSTM model, which reveal a high-performing
classifier. The confusion matrix demonstrates notable accuracy, with particularly high
diagonal values ranging from 87.2% to 98.5%, indicating precise classification for most
classes. A few misclassifications, notably between Backward Fall (BF) and No Fall (NF) at
5.2%, suggest potential challenges in distinguishing these classes. The precision, recall, and
F1-score metrics consistently exhibit high values (0.89–0.98) across all classes, affirming the
overall robustness of the model. These metrics demonstrate the model’s effectiveness in
capturing temporal relationships within fall data while identifying areas that may benefit
from further refinement of class boundaries.
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The training trajectories of the LSTM and BiLSTM models reveal promising trends.
Across all epochs, both models consistently demonstrate a reduction in loss, indicating
successful learning and convergence over the training data. Notably, BiLSTM starts with
a slightly lower initial loss compared to LSTM, suggesting its ability to better capture
temporal dependencies from the outset. Moreover, BiLSTM exhibits a steeper initial drop
in loss, implying faster convergence towards a minimum compared to LSTM. The final
loss values further underscore the superior performance of BiLSTM, which achieves a
significantly lower final loss (around 0.15) compared to LSTM (around 0.35), highlighting
its efficacy in minimizing the training error, as indicated in Figure 8b,d.

The BiLSTM models have a median categorical accuracy of 94.1% and a standard
deviation of 0.452, with a median recall between 86.2% and 99.2%. The performance for
one of the BiLSTM model is shown in Figure 8b.

4.4.3. Comparison and Discussion

A visualization comparing the differences between the performance of the LSTM
and BiLSTM models is provided in Figure 8c,d. In terms of overall performance, BiLSTM
exhibits better categorical accuracy, yet has a larger standard deviation in its results. BiLSTM
demonstrates better accuracy in most classes of falls, with the exception of RF. BiLSTM
demonstrates the most improvement over LSTM in terms of predicting BF, which both
types of models fare the worst on. This makes BiLSTM more robust overall and more
reliable in terms of fall prediction.

Both models show a tendency to confuse BF with either NF or RF, given that the
BF–RF and BF–NF are some of the most common miscategorizations in either direction.
There are no significant amounts of miscategorizations between NF and RF, suggesting
that the overlap is solely between BF–NF and BF–RF. Interestingly, there is no significant
miscategorization between BF and LF, even though LF is simply RF mirrored in terms of
force application and the robot is symmetrical. While BF–CCW miscategorizations are
common, the reverse is not true, which may be a result of the high precision for the CCW
category, which indicates low overall false positives in the first place.

Both CCW and CW show stronger recall rates than LF or RF, which is the opposite
of the ML models, suggesting that the difference in models is the cause of this result. The
relatively weaker recall rates for BF may be due to noise in the dataset for BF, as BF has the
lowest recall for all ML models as well.

4.5. Forecasting

The LSTM and BiLSTM networks were used for forecasting subsequent values. At
each time step of the input sequence, the BiLSTM neural network learns to predict the
value of the next time step.

Algorithm 4 was used to forecast the value after 20 time steps. The time was selected
such that the type of fall can be predicted in advance, with the objective of providing an
advantage in control or design interventions. The forecast will be able to predict the fall
behavior of the robot after data cutoff.

Figure 9a highlights the normalized quaternion feature. It can be observed that the
fit closely matches the quaternion data. The probable reason is due to the smooth plot of
the fall from the simulation environment. Moreover, the normalized angular velocity plots
show a close match for the given backward fall behavior plotted in Figure 9b. However,
the linear acceleration plot from the IMU during the backward fall has a higher mismatch
between the actual value and the forecast value. The reason for this is the sudden sharp
changes due to the acceleration also being the double derivative of the position, which
changes sharply during the fall.
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Algorithm 4 Time series forecasting for openloop and closedloop scenarios

1: Load IMU Data, Prepare Data for Training
2: Normalize predictors and targets:
3: Define BiLSTM Neural Network Architecture
4: Open Loop Forecasting: Forecast Time Steps
5: [network] = predictAndUpdateState(net, X(:, 1 : o f f set));
6: numTimeSteps = size(inputdata);
7: numPredictionTimeSteps = numTimeSteps− o f f set;
8: Y = zeros(numChannels, numPredictionTimeSteps);
9: for t = 1 : numPredictionTimeSteps do

Xt = X(:, o f f set + t); [net, Y(:, t)] = predictAndUpdateState(net, Xt);
10: end for
11: Compare the Prediction and Target Value using RMSE for each channel
12: Close Loop Forecasting
13: {net, X, numPredictionTimeSteps}
14: net← resetState(net), o f f set← size(X, 2) ▷ Reset the RNN state, Make initial

prediction using input data
15: [net, Z]← predictAndUpdateState(net, X) ▷ Make initial prediction using input data
16: To forecast further predictions:
17: numPredictionTimeSteps← 20
18: Xt← Z(:, end)
19: Y ← zeros(numChannels, numPredictionTimeSteps)
20: for t ← 1 to numPredictionTimeSteps do [net, Y(:, t)] ←

predictAndUpdateState(net, Xt) ▷ Update RNN state and make predictions
21: Xt← Y(:, t) ▷ Pass previous predicted value to RNN for the next prediction
22: end for
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Figure 9. Openloop time series forecasting using the BiLSTM network.

Table 6 summarizes the performance of two different machine learning models, Long
Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), in predicting robot motion.
The performance is measured using the Root Mean Squared Error (RMSE) for various
aspects of the motion, including position, rotational velocity, and linear acceleration.

Table 6. Root mean squared error (RMSE) between the predicted and target readings using openloop
forecasting with LSTM and BiLSTM models.

RMSE w x y z ωx ωy ωz ax ay ay

BF Test 39 (LSTM) 0.0113 0.0110 0.0137 0.0088 0.0472 0.0440 0.1013 0.0694 0.1179 0.0286
All test Data (LSTM) 0.0190 0.0202 0.0239 0.0164 0.0782 0.1029 0.0977 0.2053 0.2121 0.0899
BF Test 39 (BiLSTM) 0.0070 0.0056 0.0090 0.0058 0.0170 0.0097 0.0122 0.0597 0.0486 0.0278
All test Data (BiLSTM) 0.0102 0.0106 0.0128 0.0088 0.0257 0.0279 0.0269 0.0492 0.0432 0.0498
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Based on the data, the BiLSTM models seem to outperform the LSTM models in
terms of accuracy. For all test data, the BiLSTM RMSE values are consistently lower than
the corresponding LSTM values across all motion metrics. This suggests that BiLSTM is
better at capturing the complex temporal dependencies within the data, leading to more
accurate predictions.

Looking deeper into the specific metrics, it can be observed that the models generally
have lower RMSE values for quaternion data (w, x, y, z) compared to other aspects such as
the rotational velocity (ωx, ωy, ωz) and linear acceleration (ax, ay, az). This indicates that
both models perform better at predicting the robot’s position compared to its rotational
and acceleration characteristics. The higher RMSE values for the latter metrics suggest that
these aspects of motion might be more challenging to predict accurately, potentially due to
the more dynamic nature of the data.

Lower RMSE values are indicative of superior predictive performance, underscor-
ing the model’s commendable accuracy. Consequently, leveraging quaternion data from
real-time IMU feedback for fall forecasting appears to be a promising way of enabling
preemptive control measures or design adjustments. A valuable next step would involve
comparing these results against benchmarks or alternative models, if available, while
considering real-world implications and application-specific requirements to determine the
practical adequacy of the model’s predictive capabilities

Figure 10 illustrates the closedloop forecast for the next 20 time steps. Closedloop
forecasting using time series forecasting with a BiLSTM model offers several advantages,
primarily stemming from its ability to leverage previously predicted values to refine future
predictions. BiLSTM models are well-suited for capturing long-term dependencies in
sequential data. In a closedloop setting, the model can effectively utilize its memory cells
to retain information from earlier predictions, facilitating the understanding of complex
patterns and trends in the time series. The closedloop approach allows for immediate
responses to changes in the time series.
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Figure 10. Closedloop time series forecasting using BiLSTM network for the next 10 time stamps.

The evident advantages of BiLSTM for fall forecasting can aid in taking action in
advance of the given time band of the free fall. While processing data with complex
temporal patterns, BiLSTM’s bidirectional processing excels at capturing both short-term
and long-term dependencies in sensor data, which is essential for accurate fall forecasting.
This potential for early detection, i.e., identifying fall risk indicators earlier, can provide
more time for effective interventions, potentially reducing fall incidence and severity.
Moreover, BiLSTM models can be potentially personalized to individual robots as well as
for specific operating scenarios and fall risk factors, allowing for more tailored predictions.
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5. Experimental Results and Discussion

Figure 11a shows the setup for fall detection using the sTetro robot. The robot is
equipped with an IMU sensor (model WT901BLE68 from Wit Motion) that transmits data to
a processing unit via Bluetooth. The rate to log the data was maintained at 200 data/second.
A model of the sTetro robot, designed to have nearly identical geometry and mass, was
build for fall testing. Figure 11b depicts the robot falling backward from a step on the
staircase. The robot was made to fall under various initial conditions, such as forced falls
or situations where the center of gravity (CoG) was shifted outside the robot’s footprint.
The actual fall time observed in the experiments deviated from this theoretical value due
to a number of factors. (a) Variations in applied force: the magnitude and direction of the
applied force can significantly impact the initial acceleration, and consequently the fall
time, with a stronger force resulting in a faster fall compared to a gentler push. (b) Staircase
geometry: the height of riser of the stairs plays a role, with a deeper step height leading to
a longer fall duration compared to a shallower step.

(a) Setup along with its dummy model

(b) Forward falling phases of the robot from a step on stairs

IMU

sTetro robot

(c) Pre-processing of the raw data 
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Figure 11. Experimental setup and preprocessing of the raw data to ensure the same length or dimen-
sionality, which is necessary in order for machine learning algorithms to process the data effectively.

Data Preprocessing: The raw data collected from the IMU sensor were preprocessed to
ensure uniform dimensions suitable for machine learning algorithms. Specifically, trimmed
data segments of approximately a seconds were extracted (Figure 11c) starting from the
moment the fall event started. The trimming process ensures consistent data lengths for
training the models, and was used in this paper instead of the padding method. Padding
adds elements to sequences to make them uniform in length, while trimming removes
elements to achieve the same data lengths. Trimming was used here because the falling
events under studied included no significant contextual information before or after the
event that would be useful in classification or forecasting of the fall. Figure 11d highlights
the t-SNE plot for the 50 events for each class of fall taken during the experiments. The
separation between clusters suggests a significant difference in these shared characteristics.
There is very little data mixing or overlapping in a cluster, which can be caused by incorrect
classifications during the experiments or other factors such as the numerical value assigned
to the perplexity, which controls the “local neighborhood” considered for each data point.

5.1. Classification Using Machine Learning

The confusion matrix in Figure 12 highlights the superior performance of the ensemble
method over the KNN (K-Nearest Neighbors) approach in fall classification. Notably,
when examining the diagonal cells, which represent correct classifications, the ensemble
method consistently exhibits higher percentages across all fall types. For instance, the
ensemble method accurately classifies 93.7% of BF instances, whereas KNN achieves
92.7%. This trend suggests that the ensemble method excels in identifying each fall type
with greater precision. Conversely, in the off-diagonal cells, which denote instances of
misclassification, the ensemble method demonstrates lower values than KNN. For example,
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KNN misclassified 2.2% of BF instances as low-level LP instances, while the ensemble
method commits this error in only 1.4% of cases. This disparity indicates that the ensemble
method exhibits a reduced trend toward misclassification, enhancing the overall accuracy
of fall classification.

(a) KNN  approach (b) Ensemble approach 
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Figure 12. Row-normalized confusion matrices for fall recognition using the KNN and Ensemble
classifiers on the experimental dataset.

5.2. RNN-Based Classification

The performance of the LSTM and BiLSTM models was evaluated for classification
tasks and is shown in Figure 13. The LSTM model achieved a test accuracy of 86.67%.
Class-wise precision, recall, and F1-scores varied across different classes, with some classes
showing higher performance than others. On the other hand, the BiLSTM model outper-
formed LSTM, with a test accuracy of approximately 90.02%. It demonstrated improved
precision, recall, and F1-scores across most classes compared to the LSTM model. Overall,
BiLSTM exhibited superior performance in classification tasks, achieving higher accuracy
and better class-wise metrics.

Figure 13. Confusion matrix, training loss, and training accuracy for a sample of (a) LSTM and
(b) BiLSTM method using limited set of experimental data. Here, 80% of the dataset was used for
training the model and the remaining 20% was reserved for testing the model’s performance.

5.3. Time Series Forecasting

Figure 14 shows the results of time series forecasting performed on fall data using the
BiLSTM model. The BiLSTM model was used because it showcased higher performance in
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the simulations. The blue line in each plot in Figure 14a–c represents the input data. This
is the actual sequence of sensor readings (normalized angular data, normalized angular
velocity, and normalized linear acceleration) captured by the IMU. Moreover, the red dotted
line represents the forecast data. The BiLSTM model was used to predict future values in
the time series data, i.e., from IMU sensor readings during a fall. By analyzing the predicted
changes in angular data, angular velocity, and linear acceleration, the model can potentially
identify patterns that lead to falls in advance.
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Figure 14. Openloop time series forecasting using BiLSTM network on the experimental data. The
blue line plot is for the input sensor data, and the red line plot is for the forecasted value.

The analysis of the forecasting data reveals that the BiLSTM model seems to perform
better at predicting changes in angular data along the X- and Y-axes compared to the
Z-axis. This is because in most fall scenarios the robot primarily tilts or rotates around the
X-axis or Y-axis (forward/backward or sideways) before falling as per the axis assigned
during experiment. The Z-axis rotation, i.e., the yaw, typically corresponds to the axis
along the robot’s height, and falls are less likely to involve significant rotations around
this axis. Moreover as mentioned earlier, the angular velocity and linear acceleration,
highlighted in Figure 14b,c, are more prone to noise in the sensor readings; incorporating
these features with proper noise reduction techniques could potentially improve overall
fall detection accuracy.

Table 7 summarizes the performance of the BiLSTM model in forecasting sensor
readings from the IMU during robot falls using the experimental data. The table utilizes the
Root Mean Square Error (RMSE) metric to measure the difference between the predicted
values and the actual sensor readings. Based on the Backward Fall (BF) test data (numbering
10), the BiLSTM model demonstrates promising performance, with RMSE values ranging
from 0.0662 to 0.1240. In particular, it can be observed that the RMSE values for the roll and
pitch are low. The RMSE values for all test data (including various fall types) are higher
compared to just BF Test-10. This is likely because the model needs to handle a wider range
of fall dynamics, leading to slightly higher forecasting errors.

Table 7. Root Mean Square Error (RMSE) for BiLSTM model with experimental data.

Dataset Roll Pitch Yaw ωx ωy ωz ax ay az

BF Test-10 0.0662 0.1140 0.1657 0.0738 0.0928 0.1420 0.1204 0.0618 0.0803
All Test Data 0.0896 0.1030 0.1058 0.0809 0.0833 0.1059 0.1463 0.1013 0.1034

The proposed work offers several advantages, primarily centered around classification
and forecasting. The BiLSTM architecture excels at classifying various fall types (backward
falls, forward falls, etc.) thanks to its ability to learn complex temporal patterns in sensor
data. Early fall prediction with both open- and closedloop forecasting is a strength that
allows the model to predict fall events before they happen, providing valuable time for
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intervention. This proactive capability is crucial for preventing falls and mitigating potential
injuries. By forecasting falls in advance, the system can facilitate the design of early decision-
making mechanisms. The early prediction capability results in the ability to implement
preventive measures based on the predicted fall type. This could involve adjusting robot
movements, activating safety features, or sending alerts to operators. These proactive
measures can significantly reduce the severity of falls and potential injuries, and are an aim
of our future work.

6. Limitations

This study, while promising, has a number of limitations; for one, the simulated falls
may not accurately represent the speed and force of real falls, potentially impacting the
applicability of the model for real-world usage. The models still need to be evaluated
with real-world data to ascertain their usefulness. ML techniques such as transfer learning
which utilize models pretrained on real-world fall data can be used to fine-tune the models
for simulated data, allowing for further improvement. In addressing the limitations of the
specific sTetro robotic system and the configuration employed in our study, it is important
to acknowledge that while our approach demonstrated its effectiveness in navigating stairs,
it may not fully capture the intricacies of every real-world scenario. The sTetro model
and its configuration were tailored to the simulations, and may not perfectly represent
all service robots used in various environments. However, the underlying principles and
algorithms employed in our study can be extrapolated to a broader range of service robots
with staircase access. In addition, this study did not consider near-miss incidents.

Alternatively, the models were trained on real-world data obtained through limited
experiments by using a physical robot with an IMU to collect fall data. Due to the limited
data, the BiLSTM model might not have been exposed to a wide enough range of fall
patterns. This could limit its ability to accurately predict falls based on unseen data,
especially falls with unique characteristics. In the real world, falls can be more diverse
and unpredictable, and the model might struggle to identify falls outside of the types
that it was trained on. Moreover, deep learning models rely on supervised learning, in
which training samples are labeled to guide the model training process towards learning
discriminative features. The level of supervision and amount of information or data
available greatly impacts the model’s learning capacity. It has been observed that while
BiLSTMs are powerful tools, their predictions can be challenging to interpret. Difficulty in
understanding how the model arrives at its predictions makes it hard to pinpoint potential
weaknesses or areas for improvement.

Finally, the models used in this study are limited in terms of their activity classification.
The models currently only distinguish between common types of falls for the given scenario
and regular operation. Certain types of falls were not considered, as they are less likely to
occur, and near-fall scenarios due to outside interference were not considered. The limited
experimental data and supervision used in this study makes it less comprehensive.

7. Conclusions

This paper addresses the critical issue of fall detection in the context of service robots
navigating staircases. Understanding and predicting falls in such scenarios are of impor-
tance for the safety of the robot and have broader implications for real-world environments.
The objectives and methodologies set forth in this work aim to propose a framework for
fall study by modeling fall behavior using reconfigurable robot design, acquiring essential
sensor data through simulation, and demonstrating the effectiveness of machine learning
approaches for fall classification and forecasting.

The system overview provides a holistic framework, focusing on the sTetro robot’s
design space and task space. The incident and sensor space setup emphasized capturing
fall behaviors due to various factors, and essential data were logged from the simulated
environment using IMU sensors. The methodology section details the use of machine
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learning algorithms and recurrent neural networks (RNNs), specifically LSTM and BiLSTM,
and time series forecasting for fall classification and prediction.

The results obtained from the RNN-based algorithms, particularly LSTM and BiLSTM,
showcase their potential for fall classification. The detailed breakdown of their architectures,
training configurations, and performance metrics can provide valuable insights. This study
reveals that the BiLSTM model, with its bidirectional processing capturing both short-
term and long-term dependencies, demonstrates superior capabilities in accurate fall
classification. Additionally, the forecasting results using the BiLSTM model highlight its
potential for predicting subsequent values in a time series. The RMSE analysis showcases
the model’s effectiveness in forecasting, particularly in capturing quaternion and angular
velocity data. Our experiments provide evidence that the BiLSTM model has the potential
to be a valuable tool for fall detection and prediction. It can accurately classify fall types
and forecast sensor readings during falls. Our experimental and simulation data, along
with the simulation steps, are available in the shared repository for reference and analysis.
This information can be obtained by scanning the QR code in Figure 15 or through the
provided link.

Figure 15. Please scan above to access the simulation and experimental data, or can be accessed at the
given link: https://drive.google.com/drive/u/2/folders/1Z4Irfuh8CiQ2davPHGxAkcPCTvubOgwJ
(accessed on 22 April 2024).

This work contributes to the understanding of fall detection in the context of service
robots navigating staircases. The proposed framework, methodologies, and insights from
machine learning and RNN-based approaches provide a foundation for developing effective
fall detection systems. While this work is solely based on sTetro, the techniques used
are applicable to other stair-accessing robots. Our findings underscore the potential of
BiLSTM models in capturing complex temporal dependencies for accurate fall prediction.
Future research considerations include the use of reconfiguration to prevent or reduce
the risk of falling of a reconfigurable robot, i.e., by changing its center of gravity, as well
as comprehensive comparisons with other deep learning architectures, hyperparameter
optimization, and real-world implementation for further refinement and testing in diverse
environments. Overall, this work lays the groundwork for advancements in fall detection
technology, with implications for enhancing the safety and performance of service robots.
While forecasting provides valuable insights, it might not be readily interpretable in terms of
the underlying physical principles governing the fall. Exploring explainable AI techniques
or incorporating physics-based knowledge into the model could enhance interpretability
and potentially improve both forecasting and overall fall detection performance.
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