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Abstract: Oriented object detection (OOD) can precisely detect objects with arbitrary direction in
remote sensing images (RSIs). Up to now, the two-stage OOD methods have attracted more attention
because of their high detection accuracy. However, the two-stage methods only rely on the features
of each proposal for object recognition, which leads to the misclassification problem because of the
intra-class diversity, inter-class similarity and clutter backgrounds in RSIs. To address the above
problem, an OOD model combining scene classification is proposed. Considering the fact that each
foreground object has a strong contextual relationship with the scene of the RSI, a scene classification
branch is added to the baseline OOD model, and the scene classification result of input RSI is used
to exclude the impossible categories. To focus on the hard instances and enhance the consistency
between classification and regression, a task-aligned focal loss (TFL) which combines the classification
difficulty with the regression loss is proposed, and TFL assigns lager weights to the hard instances
and optimizes the classification and regression branches simultaneously. The ablation study proves
the effectiveness of scene classification branch, TFL and their combination. The comparisons with 15
and 14 OOD methods on the DOTA and DIOR-R datasets validate the superiority of our method.

Keywords: oriented object detection; remote sensing image; scene classification branch; task-aligned
focal loss

MSC: 68T45

1. Introduction

Oriented object detection (OOD) has a significant role in remote sensing image (RSI)
interpretation, which can localize objects with arbitrary direction more accurately by using
an oriented rectangular box, comparing with horizontal object detection [1–3]. OOD
can be applied in resource exploration, urban planning, modern agriculture, military
reconnaissance and so on [4–10].

The existing OOD methods can be classified into three categories, including anchor-
free methods, one-stage anchor-based methods and two-stage anchor-based methods.
Anchor-free methods directly predict the bounding box and category score for each feature
point through fully convolutional networks, such as the dynamic refinement network
(DRN) [11], oriented representative points (Oriented RepPoints) [12], etc. One-stage meth-
ods predefine a number of anchors for each feature point and then use the fully convo-
lutional network to predict the localization offset and category score of each predefined
anchor, such as the single-shot alignment network (S2A-Net) [13], dynamic anchor learning
(DAL) [14], etc. [15–22]. Two-stage methods add a region proposal network (RPN), which
predicts object proposals from a large number of predefined anchors, and then the local-
ization offset and category score of each proposal are predicted according to its features
obtained through a rotated region of interest alignment (RRoIAlign) operation, such as
Oriented R-CNN [23], anchor-free oriented proposal generator (AOPG) [24], etc. [25–27].

Mathematics 2024, 12, 1343. https://doi.org/10.3390/math12091343 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091343
https://doi.org/10.3390/math12091343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4328-6411
https://orcid.org/0000-0002-8770-3862
https://doi.org/10.3390/math12091343
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091343?type=check_update&version=1


Mathematics 2024, 12, 1343 2 of 18

On the whole, the detection accuracy of two-stage methods is better than the other two
types of method; therefore, most works have focused on the two-stage methods. However,
they suffer from a common problem, i.e., the misclassification caused by solely relying on
the features of each proposal itself. Compared with natural scene images, the intra-class
diversity, inter-class similarity and complexity of the background are more severe in remote
sensing images. In this situation, solely using the features of proposal can easily lead to
the misclassification problem. As shown in Figure 1a, a background region is incorrectly
identified as a harbor.

(a) (b)

Figure 1. Illustration of misclassification problem. (a) Detection result of OOD model without scene
classification. (b) Detection result of our method. The blue and yellow rectangles denote tennis courts
and a harbor, respectively. The red circle denotes the misclassification object.

To address the above problem, in this paper an OOD model that fuses scene classi-
fication is proposed. As shown in Figure 2, a scene classification branch is added to the
baseline OOD model, and the result of scene classification can help the object classification
branch to exclude the impossible classes. As a matter of fact, each foreground object has
a strong contextual relationship with the scene of RSI; consequently, making full use of
scene classification to assist object recognition can effectively alleviate the aforementioned
misclassification problem. As shown in Figure 1b, our method can effectively exclude the
misclassification of the harbor with the help of scene classification.

Furthermore, to focus on the hard instances and enhance the consistency between
classification and regression, in this paper a novel task-aligned focal loss (TFL) is proposed.
Specifically, the classification difficulty of each instance is combined with the regression loss
to obtain the TFL, which can increase the relative weights of hard instances and optimize
the classification and regression of each instance simultaneously.

The major contributions of this paper can be summarized as follows:

1. A novel OOD model fusing scene classification is proposed to address the misclassifi-
cation problem caused by solely relying on the features of each proposal itself. Owing
to intra-class diversity and inter-class similarity, the misclassification of objects easily
occurs if only the features of each proposal itself are used for object classification.
Considering the contextual relationship between the foreground objects and the scene
of an RSI, the scene classification branch is incorporated into the baseline OOD model
help the object classification branch exclude impossible categories that do not exist in
the RSI;
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2. A novel TFL is proposed to focus on the hard instances and enhance the consistency
between classification and regression. The TFL is obtained through combining the
classification difficulty with regression loss, which can increase the relative weights of
hard instances and achieve the simultaneous optimization of the classification and
regression branches;

3. The superiority of the proposed method is demonstrated on two public RSI datasets,
i.e., the DOTA and DIOR-R benchmarks.

Figure 2. Framework of the proposed method.

2. Related Work
2.1. Oriented Object Detection Methods

Due to the development of deep learning [28–42], the OOD of RSI has made rapid
progress in recent years [43–53]. The current OOD methods are generally divided into
three categories, i.e., anchor-free methods, one-stage anchor-based methods and two-
stage anchor-based methods, and their representative approaches are briefly introduced
as follows.

Anchor-free methods: DRN; in [11], the authors proposed a feature selection module
that allows the receptive fields of neurons to dynamically adapt to the shape and orientation
of objects. Moreover, a dynamic refinement head is proposed to model the uniqueness and
specificity of each sample by means of object-awareness to refine the features and thus
make better inferences. Oriented RepPoints; in [12], the authors utilized adaptive point sets
to represent the oriented boxes and designed an adaptive points assessment assignment
strategy to select typical samples for better training.
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One-stage anchor-based methods: S2A-Net; in [13], the authors proposed an aligned
convolution module to produce high-quality proposals that could relieve the inconsistency
problem between classification and regression to some extent. DAL; in [14], the authors
proposed a dynamic anchor learning strategy that combined spatial alignment with feature
alignment capabilities for better label assignment. Refined single-stage detector (R3Det);
in [54], the authors proposed a feature refinement module and a SkewIou loss to address the
detection of objects with large aspect ratios and dense distributions in arbitrary directions.

Two-stage anchor-based methods: RoI Transformer; in [55], the authors converted
horizontal proposals to oriented proposals through the proposed RoI learner for accurate
OOD. Oriented R-CNN; in [23], the authors proposed an oriented RPN that simply gener-
ated high-quality proposals by designing an innovative oriented proposals representation.
AOPG; in [24], the authors proposed a coarse location module to acquire oriented anchors
and refine them to obtain high-quality oriented proposals. Dual-aligned oriented detector
(DoDet); in [56], the authors designed a localization-guided detection head to mitigate the
problem of inconsistency between classification and regression. On improving bounding
box representations (OIBBR); in [57], the authors proposed a quadrant point representation
to handle the boundary discontinuity problem.

2.2. RoI Pooling Methods

For the two-stage detection model, the region of interest (RoI) pooling operation is
imposed on the feature maps of each proposal to obtain a feature representation with
fixed size. For the original RoI pooling method [58], the feature maps of each proposal
are approximately divided into 7 × 7 bins in the spatial dimension, and the max pooing
operation is applied to obtain a 7 × 7 feature map, which is used as a channel of feature
maps of each proposal. However, the original method suffers from quantization errors, i.e.,
the size of each proposal is not always evenly divisible by 7.

To address the above problem, an RoI Alignment (RoIAlign) operation [59] is proposed
to replace original RoI pooling operation, and it is briefly introduced as follows. Firstly, the
feature maps of each proposal are exactly divided into 7 × 7 bins in the spatial dimension,
even if the size of the proposal is not evenly divisible by 7; in other words, the coordinates
of each bin are decimals. Afterwards, each bin is exactly divided into four regions, and the
pixel value of the center point of each region is calculated through the bilinear interpolation
of four adjacent pixels of the center point. Finally, the value of each bin is obtained by
taking the maximum value of the four center points, and the 7 × 7 feature representation of
each proposal in the spatial dimension is obtained without the quantization error.

Note that the RoIAlign operation is designed for horizontal proposals,and cannot be
directly applied to oriented proposals. Therefore, an RRoIAlign operation [55] is proposed
to handle above restriction, which is a rotated version of RoIAlign operation, i.e., the only
difference of them is rotation. So far, the RRoIAlign operation has been widely used in
almost all OOD methods besides our method. To the best of our knowledge, no better RoI
pooling method has been proposed to replace the RRoIAlign operation.

3. Proposed Method
3.1. Overview

The architecture of the proposed method is illustrated in Figure 2. First of all, the
AOPG [24] is used to generate high-quality oriented proposals. Secondly, the classification
and regression results of each proposal are derived from its features, obtained through
the RROI Align operation, and the classification and regression branches are trained by
the proposed TFL. Thirdly, a scene classification branch is added on the basis of shared
backbone features, and it is trained by the image-level labels derived from the instance-level
labels. In the inference stage, the predicted results of the scene classification branch are
binarized by a predefined threshold, and they are then used to exclude the impossible
categories for object classification. Finally, the refined category scores and predicted offsets
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of all proposals are jointly used to determine the final detection results. The proposed scene
classification branch and TFL are introduced in detail as follows.

3.2. Scene Classification Branch

As mentioned previously, the existing two-stage methods usually suffer from the
misclassification problem caused by solely relying on the features of each proposal itself.
Considering the fact that each foreground object has a strong contextual relationship with
the scene of the RSI, a scene classification branch is added into the OOD model to assist the
object classification.

As shown in Figure 2, the scene classification branch is constructed on the basis
of a shared backbone. First of all, the feature maps output from the shared backbone
are converted into a one-dimensional feature vector by using the global average pooling
operation, which are irrelevant with the features obtained from the RRoI Align operation.
Secondly, the feature vector is convolved by a fully connected layer to obtain the scene
feature vector, denoted as f ∈ RC+1, where C indicates the number of categories. Finally,
the scene classification result of input RSI, denoted as s, can be obtained through the
following equation:

si = Sigmoid( fi), s.t. i ∈ Z , 1 ≤ i ≤ C + 1, (1)

where fi indicates the ith element in f , si indicates the probability that input RSI belongs to
the ith category, the (C + 1)th category denotes background and Sigmoid(·) denotes the
sigmoid activation function. It is worth noting that the softmax classifier is not suitable
for the scene classification branch because a multi-classification task is involved here;
consequently, as shown in Figure 2, the sigmoid function is adopted as a binary classifier
for the classification of each category.

At this point, the training loss of the scene classification branch, denoted as LSCB, is
defined by using the binary cross entropy (BCE) loss:

LSCB=
C+1

∑
i=1

(
li log si + (1 − li) log(1 − si)

)
, (2)

where li indicates the image-level label of the ith category of input RSI; li = 1 if input
RSI contains the objects belonging to ith category, otherwise, li = 0. As mentioned previ-
ously, the classifier of the scene classification branch consists of multiple binary classifiers;
therefore, the BCE loss of each category is accumulated to obtain the LSCB.

3.3. Task-Aligned Focal Loss

The focal loss [60] has demonstrated that paying more attention to the hard instances
can effectively enhance the detection capability; however, it cannot handle the inconsistency
between the classification and regression. To focus on the hard instances and enhance the
consistency between classification and regression simultaneously, a task-aligned focal loss,
denoted as LTFL, is proposed, and its formulation is given as follows:

LTFL = Lcls + αLreg (3)

Lcls =

{
− log(pi), if yi = 1 and 1 ≤ i ≤ C
−(1 − pi) log(1 − pi), if yi = 1 and i = C + 1

(4)

Lreg = e(1−pi)LRIoU , s.t. yi = 1 and 1 ≤ i ≤ C, (5)

where Lcls and Lreg denote the classification and regression loss in LTFL, respectively, α
denotes the relative weight of Lreg and is quantitatively analyzed in Section 4.2, pi ∈ p
indicates the probability that each proposal belongs to the ith category, p ∈ C+1 indicates
the classification result of each proposal, yi denotes the instance-level label of the ith
category of each proposal, α is a predefined hyper-parameter and LRIoU denotes the RIoU
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loss [50], which proposed a new metric named rotated intersection of over union (RIoU)
and optimized the RIoU for better bounding box regression (BBR).

The explanation of LTFL is as follows. Each instance will be used for classification and
regression if it belongs to the assembly of positive samples, i.e., yi = 1 and 1 ≤ i ≤ C. At
this point, the classification difficulty of each instance, indicated by e(1−pi) , is adaptively
adjusted with pi and is used as the weight of the LRIOU . On the one hand, the hard instances
will be assigned larger weights compared with the easy instances in Lreg. On the other
hand, the LRIOU is optimized and the pi is converged to 1 simultaneously, along with the
minimization of Lreg; in other words, the consistency between classification and regression
is enhanced. At this point, the traditional cross entropy, indicated by − log(pi), is used
for the training of classification of positive samples. The proposal will only be used for
classification if it belongs to the assembly of negative samples, i.e., yi = 1 and i = C + 1;
consequently, the original focal loss, indicated by −(1 − pi) log(1 − pi), is used for the
training of the classification of negative samples.

3.4. Overall Training Loss

The overall training loss of our OOD method, denoted as L, is formulated as follows:

L=LRPN + LSCB + LTFL (6)

LRPN = L′
cls + L′

reg, (7)

where LRPN denotes the loss of the RPN, L′
cls denotes the training loss of the classification

branch in RPN and is defined by using cross entropy, L′
reg denotes the training loss of the

BBR branch in RPN and is defined by using the smooth L1 loss [58], and the details of LRPN
can be seen in the baseline OOD model [24].

3.5. Inference Stage

First of all, the scene classification result of the input RSI is predicted by the trained
scene classification branch, and it is binarized through the following equation:

tsi =

{
1, if si ≥ T
0, otherwise

, tsi ∈ ts, (8)

where ts ∈ RC+1 denotes the binarized scene classification result of input RSI, tsi denotes
the result of the ith category in ts, T is a predefined threshold and is quantitatively analyzed
in Section 4.2. In other words, tsi = 0 if the input RSI does not contain the objects
belonging to the ith category, otherwise, tsi = 1. Consequently, the ts can be used to
exclude impossible categories for each proposal:

psi = pi × tsi, psi ∈ ps, (9)

where ps ∈ RC+1 denotes the final classification result of each proposal, psi denotes the
result of the ith category in ps. The motivation of Equation (9) is as follows. The possibility
that a proposal belongs to the ith category will be excluded if the predicted result of the
scene classification branch indicates that the input RSI does not contain the scene of the ith
category. Finally, the ps is used for non-maximumsuppression (NMS) [61].

4. Experiments
4.1. Experiment Setup
4.1.1. Datasets

The DOTA dataset [62] includes 2806 images and 188,282 instances with 15 categories,
i.e., plane (PL), baseball (BD), bridge (BR), ground track and field (GTF), small vehicle
(SV), large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage tank
(ST), soccer fields (SBF), rings (RA), harbors (HA), swimming pools (SP) and helicopters
(HC). For single-scale experiments, the raw RSI is cropped into several sub-images with
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1024 × 1024 pixels by using a step with 824 pixels. For multi-scale experiments, the raw
RSI is initially resized with three ratios, i.e., 0.5, 1 and 1.5, and then the resized RSIs are
cut into multiple sub-images with 1024 × 1024 pixels by using a step with 524 pixels. All
experimental results were obtained through the DOTA evaluation server.

The DIOR-R dataset [63] includes 23,463 images with 800 × 800 pixels and 192,518 in-
stances with 20 categories, i.e., aircraft (APL), airport (APO), baseball field (BF), BC, BR,
chimney (CH), highway service area (ESA), expressway toll station (ETS), dam (DAM), golf
field (GF), GTF, HA, overpass (OP), SH, stadium (STA), storage tank (STO), tennis court
(TC), train station (TS), vehicle (VE) and windmill (WM).

Similar to other OOD methods [24,49,50,56,57], vertical and horizontal flipping are
also used to augment the training samples for fair comparison.

4.1.2. Implementation Details

The stochastic gradient descent (SGD) algorithm was used to optimize our model with
a momentum of 0.9 and a weight decay of 0.0001. The initial learning rate, batchsize and
the number of epoch were set to 0.02, 8 and 12, respectively. The learning rate was modified
to the 0.1-time previous stage at the eighth and eleventh epochs. The threshold of NMS is
0.1 (0.5) on the DOTA (DIOR-R) dataset [62,63].

The experiments were conducted on the mmdetection platform [64] within the PyTorch
framework and run on four NVIDIA GeForce RTX 2080Ti (4×11-GB memory).

The mean average precision (mAP) of each category and all categories was used to
assess the performance of the proposed method.

4.2. Parameter Analysis

The α (T) in Equation (3) (Equation (8)) is quantitatively analyzed on the DOTA dataset
to assess its impact on the final result. As shown in Figures 3 and 4, the highest mAP are
obtained at α = 0.5 (T = 0.1); therefore, in this paper the α (T) is set to 0.5 (0.1). As shown
in Equation (3), the α is used to control the relative weight of classification loss and BBR
loss; therefore, a too-large or too-small value is not suitable for α.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
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Figure 3. Parameter analysis of α on DOTA dataset.
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4.3. Ablation Study

Ablation studies were conducted on the DOTA dataset to evaluate the contribution
of the scene classification branch and task-aligned focal loss. The AOPG [24] was applied
as the benchmark methodology. As shown in Table 1, the baseline + SCB (TFL) denotes
the combination of the baseline method and scene classification branch (task-aligned focal
loss), and the baseline +SCB + TFL denotes our method in which the scene classification
branch and task-aligned focal loss are all used.

As shown in Table 1, compared with baseline, the mAP of baseline + SCB, baseline +
TFL and baseline +SCB + TFL are increased by 1.51%, 1.45% and 1.77%, respectively, which
verifies the effectiveness of SCB, TFL and their combination.

Table 1. Ablation study of SCB and TFL on the DOTA dataset.

Baseline SCB TFL mAP

✓ 75.24
✓ ✓ 76.75
✓ ✓ 76.69
✓ ✓ ✓ 76.95

4.4. Comparisons with Other OOD Methods

To fully validate the capability of our method (denoted as SCTFL), it is compared with
several other OOD models on two RSI benchmarks, and the details are as follows.

4.4.1. Results on the DOTA Dataset

As shown in Table 2, we compare our model with 15 other OOD methods on the
DOTA dataset: RetinaNet-O [60]; Faster RCNN [31]; DRN [11], CenterMap-Net [65];
multi-category rotation detector for small, cluttered and rotated objects (SCRDet) [66];
S2A-Net [13]; dynamic prior along with the coarse-to-fine assigner (DCFL) [67]; ROI Trans-
former [55]; task-collaborated detector (TCD) [68]; AOPG [24]; DODet [56]; Oriented
R-CNN [23]; Oriented RepPoints [12]; OIBBR [57] and rotation proposal generation and
optimization detector (RPGAOD) [69], and the mAP of our method is boosted by 8.52%,
7.90%, 6.25%, 5.21%, 4.34%, 2.83%, 2.69%, 2.34%, 1.77%, 1.71%, 1.46%, 1.08%, 0.98%, 0.70%
and 0.48%, respectively, which shows our best performance on the DOTA dataset.
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Table 2. Comparisons with 15 OOD methods on the DOTA dataset under the condition of single-scale
training and testing. The AP of each category and the mAP of 15 categories are listed here. The
best, sub-optimal and third best results are denoted in red, green and blue colors, respectively (the
same below).

Methods Backbone Epoch PL BD BR GTF SV LV SH TC

Retina-O [60] ResNet50 12 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29
Faster-RCNN [31] ResNet50 12 88.34 73.06 44.86 59.09 73.25 71.49 77.11 90.84
DRN [11] H-104 120 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14
CenterMap-Net [65] ResNet50 12 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83
SCRDet [66] ResNet50 12 89.34 80.65 52.09 68.36 60.32 72.41 90.85 87.94
S2A-Net [13] ResNet50 12 89.11 82.84 48.37 71.11 78.11 79.39 87.25 90.83
DCFL [67] ResNet50 12 - - - - - - - -
ROI Transformer [55] ResNet50 12 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71
TCD [68] ResNet50 12 89.27 83.79 56.91 72.13 65.75 76.76 70.67 90.88
AOPG [24] ResNet50 12 89.27 83.49 52.50 69.97 73.51 82.31 87.95 80.89
DODet [56] ResNet50 12 83.94 84.31 51.39 71.04 79.04 82.86 88.15 90.90
Oriented R-CNN [23] ResNet50 12 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90
Oriented RepPoints [12] ResNet50 40 87.02 83.17 54.13 71.16 80.18 78.40 87.28 90.90
OIBBR [57] ResNet50 12 89.55 83.66 54.06 73.93 78.93 83.08 88.29 80.89
RPGAOD [69] ResNet50 12 89.34 83.53 54.39 76.59 78.09 81.44 87.64 90.83

SCTFL (Ours) ResNet50 12 89.85 83.49 55.61 74.61 78.71 83.47 88.05 90.90

Methods Backbone Epoch BC ST SBF RA HA SP HC mAP

Retina-O [60] ResNet50 12 82.18 74.32 54.75 60.60 62.57 69.57 60.64 68.43
Faster-RCNN [31] ResNet50 12 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05
DRN [11] H-104 120 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
CenterMap-Net [65] ResNet50 12 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
SCRDet [66] ResNet50 12 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
S2A-Net [13] ResNet50 12 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
DCFL [67] ResNet50 12 - - - - - - - 74.26
ROI Transformer [55] ResNet50 12 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61
TCD [68] ResNet50 12 86.95 83.81 60.16 71.21 76.54 71.95 70.89 75.18
AOPG [24] ResNet50 12 87.64 84.71 60.01 66.12 74.19 68.30 57.80 75.24
DODet [56] ResNet50 12 86.88 84.91 62.69 67.63 75.47 72.22 45.54 75.49
Oriented R-CNN [23] ResNet50 12 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
Oriented RepPoints [12] ResNet50 40 85.97 86.25 59.90 70.49 73.53 72.27 58.97 75.97
OIBBR [57] ResNet50 12 86.60 84.80 62.03 65.55 74.16 70.09 58.16 76.25
RPGAOD [69] ResNet50 12 58.89 85.33 65.44 64.96 73.73 70.31 59.50 76.47

SCTFL (Ours) ResNet50 12 86.87 84.35 66.31 67.10 74.55 68.21 62.20 76.95

4.4.2. Results on the DIOR-R Dataset

As shown in Table 3, we compare our method with 14 other OOD methods on the
DIOR-R dataset: fully convolutional one-stage object detection (FCOS-O) [70], RetinaNet-
O [60], Double-heads [71], Faster RCNN-O [31], Gliding Vertex [65], S2A-Net [13], ROI
Transformer [55], OIBBR [57], AOPG [24], Oriented R-CNN [23], TCD [68], DODet [56],
Oriented RepPoints [12] and DCFL [67], and the mAP of our method is boosted by 15.89%,
9.73%, 7.83%, 7.74%, 7.22%, 4.38%, 3.41%, 3.08%, 2.87%, 2.65%, 2.24%, 2.18%, 0.57% and
0.48%, respectively, which shows our best performance on the DIOR-R dataset.
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Table 3. Comparisons with 14 OOD methods on the DIOR-R dataset. The AP of each category and
the mAP of 20 categories are listed here.

Methods Backbone Epoch APL APO BF BC BR CH DAM ETS ESA GF

FCOS-O [70] ResNet50 12 48.70 24.88 63.57 80.97 18.41 68.99 23.26 42.37 60.25 64.83
RetinaNet-O [60] ResNet50 12 61.49 28.52 73.57 81.17 23.98 72.54 19.94 72.39 58.20 69.25
Double-heads [71] ResNet50 12 62.13 19.53 71.50 87.09 28.01 72.17 20.35 61.19 64.56 73.37
Faster RCNN-O [31] ResNet50 12 62.79 26.80 71.72 80.91 34.20 72.57 18.95 66.45 65.75 66.63
Gliding Vertex [65] ResNet50 12 65.35 28.87 74.96 81.33 33.88 74.31 19.58 70.72 64.70 72.30
S2A-Net [13] ResNet50 12 65.40 42.04 75.15 83.91 36.01 72.61 28.01 65.09 75.11 75.56
ROI Transformer [55] ResNet50 12 63.34 37.88 71.78 87.53 40.68 72.60 26.86 78.71 68.09 68.96
OIBBR [57] ResNet50 12 63.22 41.39 71.97 88.55 41.23 72.63 28.82 78.90 69.00 70.07
AOPG [24] ResNet50 12 62.39 37.79 71.62 87.63 40.90 72.47 31.08 65.42 77.99 73.20
Oriented R-CNN [23] ResNet50 12 62.00 44.92 71.78 87.93 43.84 72.64 35.46 66.39 81.35 74.10
TCD [68] ResNet50 12 67.95 45.30 73.48 83.55 40.38 74.74 33.60 70.54 79.33 78.03
DODet [56] ResNet50 12 63.40 43.35 72.11 81.32 43.12 72.59 33.32 78.77 70.84 74.15
Oriented RepPoints [12] ResNet50 12 - - - - - - - - - -
DCFL [69] ResNet50 12 - - - - - - - - - -

SCTFL (Ours) ResNet50 12 69.45 43.78 77.42 88.26 46.67 72.54 35.17 79.43 63.95 72.79

Methods Backbone Epoch GTF HA OP SH STA STO TC TS VE VM mAP

FCOS-O [70] ResNet50 12 50.66 31.84 40.80 73.09 66.32 56.61 77.55 38.10 30.69 55.87 51.39
RetinaNet-O [60] ResNet50 12 79.54 32.14 44.87 77.71 65.57 61.09 81.46 47.33 38.01 60.24 57.55
Double-heads [71] ResNet50 12 81.97 40.68 42.40 80.36 73.12 62.37 87.09 54.94 41.32 64.86 59.45
Faster RCNN-O [31] ResNet50 12 79.24 34.95 48.79 81.14 64.34 71.21 81.44 47.31 50.46 65.21 59.54
Gliding Vertex [65] ResNet50 12 78.68 37.22 49.64 80.22 69.26 61.13 81.49 44.76 47.71 65.04 60.06
S2A-Net [13] ResNet50 12 80.47 35.91 52.10 82.33 65.89 66.08 84.61 54.13 48.00 69.67 62.90
ROI Transformer [55] ResNet50 12 82.74 47.71 55.61 81.21 78.23 70.26 81.61 54.86 43.27 65.52 63.87
OIBBR [57] ResNet50 12 83.01 47.83 55.54 81.23 72.15 62.66 89.05 58.09 43.38 65.36 64.20
AOPG [24] ResNet50 12 81.94 42.32 54.45 81.17 72.69 71.31 81.49 60.04 52.38 69.99 64.41
Oriented R-CNN [23] ResNet50 12 80.95 43.52 58.42 81.25 68.01 65.52 88.62 59.31 43.27 66.31 64.63
TCD [68] ResNet50 12 78.22 48.46 56.00 85.89 65.07 68.99 81.61 57.22 48.72 63.79 65.04
DODet [56] ResNet50 12 75.47 48.00 59.31 85.41 74.04 71.56 81.52 55.47 51.86 66.40 65.10
Oriented RepPoints [12] ResNet50 12 - - - - - - - - - - 66.71
DCFL [69] ResNet50 12 - - - - - - - - - - 66.80

SCTFL (Ours) ResNet50 12 81.17 47.50 53.34 89.23 78.99 77.99 88.54 60.02 53.19 71.22 67.28

4.5. Evaluation of Generalizability
4.5.1. Evaluation under the Condition of Multi-Scale Training and Testing

To evaluate the generalizability of our method through varying spatial resolutions and
object scales, seven OOD methods are compared with our method under the condition of
multi-scale training and testing: DRN [11], S2A-Net [13], TCD [68], AOPG [24], DODet [56],
Oriented R-CNN [23] and OIBBR [57]. These provide multi-scale experiment results. For
multi-scale training and testing, the raw RSI is initially resized with three ratios, i.e., 0.5, 1
and 1.5, and then the resized RSIs are cut into multiple sub-images with 1024 × 1024 pixels
by using a step with 524 pixels. As shown in Table 4, our method achieves the best results
among the eight OOD methods, which validates the generalizability of our method under
the condition of multi-scale training and testing.

Table 4. Comparisons with 7 OOD methods on the DOTA dataset under the condition of multi-scale
training and testing. The AP of each category and the mAP of 15 categories are listed here. The bold
font denotes the best results (the same below).

Methods Backbone Epoch PL BD BR GTF SV LV SH TC

DRN [11] H-104 120 89.45 83.16 48.98 62.24 70.63 74.25 83.99 90.73
S2A-Net [13] ResNet50 12 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78
TCD [68] ResNet50 12 71.77 80.56 58.18 89.78 88.31 77.84 83.88 68.04

AOPG [24] ResNet50 12 89.88 85.57 60.90 81.51 78.70 85.29 88.85 90.89
DODet [56] ResNet50 12 89.96 85.52 58.01 81.22 78.71 85.46 88.59 90.89
Oriented R-CNN [23] ResNet50 12 89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88
OIBBR [57] ResNet50 12 90.14 85.31 60.98 79.92 80.21 85.04 88.80 90.87

SCTFL (Ours) ResNet50 12 89.79 84.67 60.97 79.39 79.31 85.46 88.36 90.88

Methods Backbone Epoch BC ST SBF RA HA SP HC mAP

DRN [11] H-104 120 84.60 85.35 55.76 60.79 71.56 68.82 63.92 72.95
S2A-Net [13] ResNet50 12 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.41
TCD [68] ResNet50 12 86.29 78.92 90.84 78.97 72.50 88.01 86.85 80.05

AOPG [24] ResNet50 12 87.60 87.65 71.66 68.69 82.31 77.32 73.10 80.66
DODet [56] ResNet50 12 87.12 87.80 70.50 71.54 82.06 77.43 45.54 74.47
Oriented R-CNN [23] ResNet50 12 86.68 87.73 72.21 70.80 82.42 78.18 74.11 80.87
OIBBR [57] ResNet50 12 86.45 88.04 70.88 71.72 82.99 80.55 73.19 81.00

SCTFL (Ours) ResNet50 12 87.28 87.39 71.25 72.04 83.35 81.98 74.20 81.09
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4.5.2. Evaluation in Densely Populated Scenes

To evaluate the generalizability of our method in densely populated scenes, it is
compared with popular OOD methods in the four densely populated scenes of two RSI
datasets, respectively. The four densely populated scenes of the DOTA dataset include SV,
LV, SH and TC, and scenes of the DIOR-R dataset include APL, SH, TC and VE. As shown
in Tables 5 and 6, our method has the highest mAP in the four densely populated scenes of
the two RSI datasets, which indicates that our method has better generalizability in densely
populated scenes.

Table 5. Comparisons with 14 OOD methods in the densely populated scenes of the DOTA dataset.
The AP of each scene and the mAP of 4 scenes are listed here.

Methods SV LV SH TC mAP

SCRDet [66] 68.36 60.32 72.41 90.85 72.98
TCD [68] 65.75 76.76 70.67 90.88 76.01
CenterMap-Net [65] 78.62 66.55 78.10 88.83 78.02
Faster RCNN [31] 73.25 71.49 77.11 90.84 78.17
Retina-O [60] 74.58 71.64 79.11 90.29 78.90
DRN [11] 73.48 70.69 84.94 90.14 79.81
ROI Transformer [55] 77.93 76.67 86.87 90.71 83.04
S2A-Net [13] 78.11 78.39 87.25 90.83 83.64
AOPG [24] 73.51 82.31 87.95 90.89 83.66
Oriented RepPoints [12] 80.18 78.40 87.28 90.90 84.19
RPGAOD [69] 78.09 81.44 87.64 90.83 84.50
DODet [56] 79.04 82.86 88.15 90.90 85.23
Oriented R-CNN [23] 78.93 83.00 88.20 90.90 85.25
OIBBR [57] 78.93 83.08 88.29 90.89 85.29

SCTFL (Ours) 78.61 83.66 88.27 90.90 85.36

Table 6. Comparisons with 12 OOD methods in the densely populated scenes of the DIOR-R dataset.
The AP of each scene and the mAP of 4 scenes are listed here.

Methods APL SH TC VE mAP

FCOS-O [70] 48.70 73.09 77.55 30.69 57.50
RetinaNet-O [60] 61.49 77.71 81.46 38.01 64.66
ROI Transformer [55] 63.34 81.21 81.61 43.27 67.35
Double-heads [71] 62.13 80.36 87.09 41.32 67.72
Gliding Vertex [65] 65.35 80.22 81.49 47.71 68.69
Oriented R-CNN [23] 62.00 81.25 88.62 43.27 68.78
Faster RCNN-O [31] 62.79 81.14 81.44 50.46 68.95
OIBBR [57] 63.22 81.23 89.05 43.38 69.22
AOPG [24] 62.39 81.17 81.49 52.38 69.35
S2A-Net [13] 65.40 82.33 84.61 48.00 70.08
DODet [56] 63.40 85.41 81.52 51.86 70.54
TCD [68] 67.95 85.89 81.61 48.72 71.04

SCTFL (Ours) 69.45 89.23 88.54 53.19 75.10

In addition, as shown in Tables 2–4, the overall performance of our method is the best
in 29 object categories of the DOTA and DIOR-R datasets (a total of 35 categories eliminate
6 duplicated categories), which demonstrates that our method has excellent generalizability
in different object categories, and it can validate certain matters to some extent, i.e., our
method can provide good performance when novel object categories are introduced.

4.6. Subjective Evaluation

To intuitively evaluate the effectiveness of our method, some its detection results on
the two benchmarks are visualized in Figures 5 and 6, respectively.
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SP TC RA ST BR PL SH SBFHCHA BC GTF SV BDLV

Figure 5. Visualizations of detection results on the DOTA dataset.
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APL

GTF

APO BF BC ESA ETS DAM GFCHBR

HA OP SH TC TS VE WMSTOSTA

Figure 6. Visualization of detection results on the DIOR-R dataset.

5. Discussion
5.1. Analysis of Experiment Results

As shown in Table 2 (Table 3), our method achieved the best performances in 4 (9)
categories, sub-optimal performances in 2 (3) categories and the third best performances
in 1 (2) categories on the DOTA (DIOR-R) datasets, respectively. This is attributed to the
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effectiveness of the proposed scene classification branch and task-aligned focal loss. For
example, as shown in Table 3, our method gives the best performance in the ship category.
A possible reason for this is that our method can exclude the misclassification of ships with
the help of the scene classification branch since ships are closely related to a certain scene,
e.g., sea. For another example, most of the OOD methods give poor performance in bridge
and vehicle categories; however, our method shows the best performance in the above
two categories. A possible reason for this is that the proposed task-aligned focal loss can
assign larger weights to hard instances and enhance the consistency of classification and
regression tasks. Furthermore, as shown in Tables 2 and 3, the mAP of all categories of our
method is the highest among all OOD methods, which also demonstrates the effectiveness
of the scene classification branch and task-aligned focal loss.

5.2. Analysis of Failure Results

Although the proposed method provides better performance compared with other
OOD methods, it still obtains failure results on some occasions, and the reasons are sum-
marized below.

1. Caused by inter-class similarity. It is difficult for OOD methods to distinguish objects
with similar characteristics but are of different categories because of the inter-class
similarity of RSI, and our method also cannot handle it if similar objects exist in one
RSI simultaneously. As a matter of fact, the scene classification branch introduced
by our method can only exclude the impossible categories that do not exist in the
input RSI. As shown in Figure 7a, the large vehicles are mistakenly detected as small
vehicles because of their similar characteristics.

2. Caused by shadows. The shadows of foreground objects have similar shapes to the
foreground objects themselves; therefore, on some occasions they are mistakenly
detected as a part of the foreground objects. As shown in Figure 7b, the shadows of a
chimney and a windmill are mistakenly recognized as a part of the targets.

(a) (b)

Figure 7. Illustration of some failure results of our method. (a) failure results caused by inter-class
similarity on the DOTA dataset. (b) failure results caused by shadows on the DIOR-R dataset. The
meaning of colors of bounding boxes in (a) and (b) refers to Figure 5 and Figure 6, respectively.
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6. Conclusions

This paper proposes an OOD model combining scene classification to handle the
misclassification problem caused by only relying on the features of each proposal itself.
The scene classification branch is added into the baseline OOD model, and the scene classi-
fication results are employed to help the object classification branch to exclude impossible
categories in the RSI. In addition, a task-aligned focal loss is proposed to focus on hard
instances and enhance the consistency between classification and regression, which com-
bines the instance difficulty with regression loss to increase the relative weight of hard
instance and optimize the classification and regression branches simultaneously. Ablation
experiments show the effectiveness of the scene classification branch, task-aligned focal loss
and their fusion. Comparisons with 15 and 14 OOD methods on the DOTA and DIOR-R
datasets demonstrate the excellent performance of our method.
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