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Abstract: Reducing the burden of pain via greenspace exposure is a rising research topic. However,
insufficient evidence has been found in relation to the environmental effect itself. Residential
greenspace, as a convenient but limited natural environment for urban dwellers, has benefits and
services yet to be discovered. Therefore, the current study recruited 24 young adults to evaluate
the effects of physical visit to, or image viewing of, residential greenspace on pain perception
and related psychophysiological outcomes, via simulated pain. Pain threshold and tolerance were
recorded via the level of pain stimuli, and pain intensity was evaluated using the Visual Analog
Scale (VAS). The state scale of the State–Trait Anxiety Inventory (STAI-S) and two adjective pairs
were employed to measure the state anxiety and subjective stress, respectively. Meanwhile, heart
rate (HR), heart rate variability (HRV), and blood pressure (BP) were measured to investigate
physiological responses. Besides, Scenic Beauty Estimation (SBE) was also employed to assess
participants’ preference regarding the experimental environments. The results revealed that visiting
the greenspace significantly increased the pain threshold and tolerance, while no significant effect was
observed for image viewing. On the other hand, no significant difference was observed in pain-related
psychophysiological indices between the experimental settings, but significantly negative associations
were found between the scores of SBE and subjective stress and state anxiety. In conclusion, the
current study brings experimental evidence of improving pain experience via residential greenspace
exposure, while the related psychophysiological benefits require further investigation.

Keywords: urban greenspace; residential greenspace; nature exposure; pain; experimental pain

1. Introduction

Nature exposure is associated with a range of positive impacts on humans and so-
ciety. Early in 1984, a view of nature was found to accelerate recovery from surgery [1].
Thereafter, the services of nature have been gradually revealed, and visual stimulus was
found to play a key role in human–nature interactions [2], which may effectively improve
psychophysiological states [3–5]. Therefore, considerable efforts have been made to deliver
nature stimuli via video or image [6,7], and some visual images of nature were found to
elicit similar effects as viewing real nature [8,9].
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On the other hand, due to rising urban greening and forestry, urban greenspace such
as parks and gardens offer urban dwellers easy access to natural settings [10,11]. Therefore,
the physical visit is still deemed as the most practical strategy for the general population
to receive the benefits of nature. Additionally, according to previous studies, the state of
immersion in natural environments is found to induce sophisticated psychophysiological
changes. These findings underline the advantage of physical interaction with nature [12,13].
However, the above positive effects were obtained in highly natural environments, such
as forests and lakes, and whether a visit to an urban greenspace can elicit similar health
benefits is still unclear [12,13].

Recently, there has been rising research interest in reducing the burden of pain via
greenspace exposure [14]. However, opportunities were mainly proposed based on indirect
evidence from neuroscience, physiology, microbiology, and psychology, while experimental
evidence is still lacking [14]. As yet, few experiments have investigated the effectiveness
of nature-based therapy in reducing the burden of pain. However, these studies used
comprehensive interventions, thus the environmental effect itself could not be clearly
identified [15,16].

Among various urban greenspaces, residential greenspace is the most accessible for
urban dwellers, especially for people who live in highly urbanized regions. Urban dwellers
only need to go out of their homes to have physical contact with nature. However, unlike
forests or urban parks, residential greenspaces are usually incomplete natural environments
with smaller areas and higher levels of air pollution and noise. According to previous
reports, residential greenspace may buffer the negative effects of urban stressors, but there
still remains controversy about the health benefits of residential greenspace exposure, and
its function of relieving pain is yet to be investigated [17–20]. Therefore, we designed this
research to evaluate whether a physical visit and image viewing of a residential greenspace
can affect pain perception during experimental pain stimulation, and further checked the
differences between them in relieving pain and related psychophysiological responses.

We hypothesize that:
(1) Both the physical visit and image viewing of a residential greenspace can result in a

higher threshold and tolerance of pain, while reducing pain intensity during pain stimulation;
(2) Both the physical visit and image viewing of a residential greenspace can reduce

negative impacts on pain-related psychophysiological outcomes.
(3) The physical visit will be more efficient than image viewing in relieving pain and

related negative outcomes.

2. Materials and Methods
2.1. Experimental Design

A randomized and controlled crossover trial was carried out to investigate the differ-
ence in pain perception between the settings. Participants were randomly assigned to three
groups and underwent three experimental settings in different orders, counterbalanced
using a Latin square plan. The three settings were:

(1) Control: participants sitting in an empty room and looking straight forward;
(2) Greenspace: participants sitting in a greenspace and looking straight forward;
(3) Image: participants sitting in a room and seeing a monitor that displays the image

of the greenspace.

2.2. Participants

The sample size was calculated using PASS software (v15). Based on our crossover
design, the minimum number of subjects required was estimated to be 18 for an α-level of
0.05 and a power of 0.8. According to previously published studies, sample sizes of 6 to
24 have been employed for the 3 × 3 Latin Square plan [21–24]. To obtain robust results,
twenty-four (12 male and 12 female) healthy and painless young adults were recruited
from the community, who met the following inclusion criteria:

(1) absence of any contraindications for electrical stimulation;
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(2) not taking any prescription painkiller;
(3) absence of drinking habits;
(4) absence of acute and chronic pain.
All participants were informed that they were participating in a study in which

they would receive electrical pain stimuli in three conditions (environments), but the
experimental design, including site description, visiting order, and study hypothesis, was
concealed. They were also informed that they could stop participating at any moment
during the experiment at their will. The signed consent form for participating was obtained
from each participant before the experiment. The study protocol was approved by the
Institute Research Ethics Committee (IREC) of Southwest University, China. The study
was conducted in accordance with the Helsinki Declaration and supervised by the IREC.
The baseline information of the participants is shown in Table 1.

Table 1. Baseline characteristics of the participants.

Gender n Age (Year) Height (cm) Weight (kg) BMI (kg/m2) Sports Habits (%)

Male 12 21.67 (3.26) 176.67 (7.38) 73.67 (12.23) 23.53 (3.53) 83.33%
Female 12 19.00 (1.04) 162.50 (5.27) 53.50 (7.48) 20.21 (2.18) 66.67%

Note: Data were demonstrated as mean (standard deviation).

2.3. Study Setting

Control: an empty room of 100 m2 in a laboratory building, equipped with a 100-inch
digital monitor (2.26 m × 1.35 m), which was kept off during the experiment (Figure 1a).
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Greenspace: the selected greenspace is in the neighborhood of the participants’ apart-
ment, which covers about 1 hectare, and contains grassland, shrubs, and trees (Figure 1b).

Image: the room for image viewing has the same size and settings as the room for
the control. The digital monitor (2.26 m × 1.35 m) was used to display the image of the
selected greenspace during the experiment (Figure 1c).

The same type of equipment including chairs, monitors, and physiological detectors
were used in the three settings to ensure identical testing conditions. The participants were
seated in the same spots in the three settings throughout the experiment.

2.4. Pain Stimulation

The pain was simulated using a portable electric generator, and the stimuli were
delivered to the inner side of the nondominant forearm via two shock patches (3 × 3 cm) at
a spacing of 5 cm. Electric pulse (20 Hz, 100 µs width) was generated for pain stimulation,
and the current was increased step by step every 3 s, with an increment of 3 mA for each
level. During the pain stimulation, the participants were asked to press a button when they
felt the slightest pain (from painless feeling to pain), then the level was recorded as the
pain threshold. Thereafter, they were also asked to press the button when they could no
longer stand the stimulation, then the stimulation was terminated and the highest level
was recorded to represent the individual’s pain tolerance. During the pain simulation, the
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research staff sat behind the participants and out of the participants’ view. They controlled
the electric generator according to the participants’ responses. The threshold and pain
tolerance of the participants were then recorded by the research staff.

2.5. Procedure

Prior to the experiment, the participants met in the laboratory and signed the informed
consent form. The tests for the three settings took place from 2:00 to 5:00 p.m. The three
groups started the test simultaneously at the different sites. All participants arrived at
the experiment sites on their own (about five minutes’ walk), then took a break (15 min)
by sitting on chairs and were informed of the detailed testing procedure. The order of
questionnaires and measurements for physiological indices is shown in Figure 2. During
the stimulation, the participants were required to look forward to the greenspace or the
monitor (sitting two meters from the monitor). Every participant was given an independent
interview after the test, and was asked if he/she thought there was an environmental effect.
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2.6. Measurements
2.6.1. Ambient Data

The data of temperature and noise were collected at the sitting position before each test,
using an ambient thermometer (SmartSen-sor-AS817, Smart Sensor Co., Ltd, Hongkong,
China) and a smartphone-based noise detection app (Decibel tester v1.2.1, Beijing Buke
Century Technology Co., Ltd, Beijing, China; obtained via Huawei app store; ran on a
Redmi K30 smartphone), respectively. The thermometer and smartphone were placed on
the testing chair and recorded for three minutes, and mean values were eventually adopted.

2.6.2. Physiological Measurements

Blood pressure is closely related to pain experience, which is regulated by multiple
factors such as intensity and duration of pain stimulation [25]. We measured the partici-
pants’ systolic blood pressure (SBP) and diastolic blood pressure (DBP) in a relaxing seated
position using portable electronic sphygmomanometers (OMRON HEM-7211), and the
mean arterial pressure (MAP) was later calculated as ((DBP × 2) + SBP)/3. The blood
pressure was measured both before and after the pain stimulation (Figure 2).

The heart rate variability (HRV), a known indicator for challenge and threat states [26],
is useful to detect pain responses in inconvenient testing conditions [27]. We ran the
HRV4trainingTM to detect variations in HRV. The application is designed based on pho-
toplethysmography (PPG) and has been validated and applied in studies to investigate
physiological response [28–30]. The output data include the stand deviation of normal-to-
normal intervals (SDNN) and the root mean square of successive R-R intervals (RMSSD)
calculated based on a 60 s time frame. The measurement of HRV was performed immedi-
ately after the stimulation, and the heart rate (HR) was also recorded while measuring the
HRV (Figure 2).
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2.6.3. Psychological Measurements

In the present study, several questionnaires were employed to measure the psycholog-
ical indices (Figure 2), including:

(1) The Scenic Beauty Estimation (SBE), which assesses the subjective preference
for environments using a seven-point Likert scale (ranged from −3 to 3 points) and has
been widely used in the assessment of scenic beauty for both natural and urban envi-
ronments [31,32]. In the present study, the SBE was performed in the pre-test, where the
participants were asked to sit in the testing position and evaluate the view according to
their subjective feeling.

(2) The subjective stress was measured using two adjective pairs, which are obtained
from the Short Adjective Check List [33], a widely adopted methodology [34,35]. The
adjective pairs are tense–relaxed and nervous–calm. According to Aslaksen and Lyby [36],
an 11-point Likert scale (0 to10 points) was used to measure the adjective pairs, and the total
stress score was calculated as the mean of the two adjective pairs’ scores. The subjective
stress was measured before and after the pain stimulation.

(3) The Visual Analog Scale (VAS), an effective tool to measure the intensity of acute
pain, was used to represent from no pain (0 cm) to the imaginably worst pain (10 cm) on a
10 cm line [37]. Participants were asked to mark on the line to represent the most intensive
pain that they felt during the stimulation. The measurement was performed immediately
after the termination of stimulation.

(4) A short-form of the state scale of the Spielberger State–Trait Anxiety Inventory
(STAI-S), which contains six items to measure state anxiety, was employed to measure
the participants’ state anxiety [38]. The shortened form has been used in a number of
studies [39,40].

2.7. Statistical Analysis

All the data was processed via SPSS 25.0 (SPSS Inc., Chicago, IL, USA). Given the
small sample size, the Shapiro-Wilk test was employed to determine the distribution of
the variables, and most of the variables turned out to be non-normally distributed. For
some data that were difficult to normalize, the Wilcoxon test was employed to check the
differences between pre- and post-tests, and the Friedman test was used to check the
difference in ambient data between the three settings. The Fisher’s exact test was employed
to compare the proportion of the participants who gave responses in the interview in each
setting. A two-sided p-value < 0.05 was considered statistically significant in the present
study, and the post-hoc comparison used a p-value adjusted with Bonferroni correction.
The generalized liner mixed model (GLMM) was employed to check the environmental
effects on pain experience and variations of psychophysiological indices during the pain
stimulation, the experimental setting (three levels: control, image viewing and greenspace)
was entered as the fixed factor, and the participants were entered as random factor.

3. Results
3.1. Environmental Characteristics

The ambient temperature and noise were measured during the experiment, and no
statistically significant difference was found between the three settings. In terms of the SBE
outcomes, the view in the greenspace scored (mean = 1.96, standard deviation (SD) = 0.88)
significantly higher than those in the control (mean = −0.33, SD = 0.98, p < 0.001) and image
viewing (mean = −0.46, SD = 1.13, p < 0.001), while no statistically significant change was
found between the latter two settings (Table 2).

3.2. Pain Experience in Different Settings

There was no statistically significant difference observed in the baseline psychophys-
iological outcomes between the three settings. The GLMM demonstrated a statistically
significant effect of experimental setting on pain threshold (F = 5.017, p = 0.009) and tol-
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erance (F = 11.703, p < 0.001). However, no statistically significant effect was observed in
pain intensity (VAS score) and any other psychophysiological variations (Table 3).

Table 2. Environmental parameters and scenic beauty assessment.

Setting Temperature (◦C) Noise (dB) SBE (Point)

Control 13.52 (0.45) 40.56 (0.68) −0.33 (0.98) a

Image 13.53 (0.45) 40.78 (0.78) −0.46 (1.13) a

Greenspace 13.01 (0.41) 41.00 (1.05) 1.96 (0.88) b

Note: the data were demonstrated as mean (standard error). The different lowercase letters (a or b) indicate
statistically significant difference between the settings (p < 0.001). Temperature and noise were analyzed via
Kruskal-Wallis test; the SBE was analyzed via Friedman test.

Table 3. Fixed effects of setting on the measured indices.

Measurements F df 1 df 2 p

Pain threshold 5.017 2 69 0.009
Pain tolerance 11.703 2 69 <0.001

VAS 2.529 2 69 0.087
Variation of Subjective stress 0.050 2 69 0.951

Variation of STAI-S 0.817 2 69 0.446
Variation of HR 0.128 2 69 0.880

Variation of SDNN 1.304 2 69 0.278
Variation of RMSSD 1.174 2 69 0.315

Variation of DBP 0.162 2 69 0.851
Variation of SBP 2.035 2 69 0.139

Variation of MAP 0.589 2 69 0.558

The post hoc pairwise comparisons with Bonferroni correction revealed a higher level
of pain threshold in greenspace (mean = 5.56, SD = 2.62) than in control (mean = 4.54,
SD = 2.27, p = 0.018) and image viewing (mean = 4.63, SD = 2.19, p = 0.021), while no
statistically significant difference was observed between the letter two settings (p > 0.05)
(Figure 3a). On the other hand, a higher pain tolerance was recorded in greenspace
(mean = 11.42, SD = 3.48) than in control (mean = 9.08, SD = 4.02, p = 0.001) and image
viewing (mean = 8.67, SD = 3.46, p < 0.001) (Figure 3b).
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Figure 3. The differences in pain threshold (a) and tolerance (b) between settings. *, p < 0.05;
**, p < 0.01, adjusted by Bonferroni correction.

According to the interview results, 17% of the participants reported that the control
setting was associated with aggravating pain. Meanwhile, 21% reported that image viewing
was associated with pain relief, and 50% reported that the greenspace was associated with
pain relief (Table 4). The Fisher’s exact test revealed a statistically significant difference
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in the proportion of participants with personal opinions to pain (p = 0.015, Table 4), and
the post hoc comparison further revealed a statistically significant difference between the
greenspace and control settings (p < 0.05).

Table 4. Differences in proportions of participant with subjective responses.

Effect Control Image Greenspace

Aggravate pain 17% a 0% a 0% a

No effect 83% b 79% a,b 50% a

Relieve pain 0% a 21% a,b 50% b

Note: analyzed via Fisher’s exact test. The different lowercase letters (a or b) indicate significant difference in
proportions of each effect (aggravate pain, no effect, or relieve pain) between the control, image, and greenspace
settings (p < 0.05), using a p-value adjusted by Bonferroni correction.

After removing the data that were associated with personal opinions, the analysis
was re-conducted to check the effects in participants who did not expect the potential
environmental effects (non-responders). The GLMM demonstrated that the effects on pain
threshold became non-significant (F = 1.010, p = 0.372), while the effects on pain tolerance
remained statistically significant (F = 4.718, p = 0.013) (Table 5).

Table 5. Fixed effects of setting on pain threshold and tolerance in non-responders.

Measurements F df 1 df 2 p

Pain threshold 1.010 2 48 0.372
Pain tolerance 4.718 2 48 0.013

The post hoc pairwise comparisons with Bonferroni correction showed that the pain
tolerance was statistically significant higher in greenspace (mean = 10.83, SD = 3.69) than
in image viewing (mean = 8.63, SD = 3.48, p = 0.014) and control (mean = 8.65, SD = 3.93,
p = 0.031) (Figure 4).
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3.3. Relationships between the Measured Indices

Significant correlations were observed among multiple variables (Figure 5). Specially,
the SBE score was significantly correlated with those of subjective stress (Pearson’s cor-
relation coefficient r = −0.308, p = 0.008) and state anxiety recorded after the stimulation
(r = −0.410, p < 0.001, Figure 5).
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4. Discussion

In the presented study, we investigated and compared the effects of physical visit
and image viewing of a residential greenspace on experimental pain. The overall results
demonstrate that the greenspace environment might induce higher pain threshold and
tolerance. However, no statistically significant difference was found in the pain-related
psychological and physiological outcomes between the experimental settings.

4.1. Pain Experience

In the current study, we found that the residential greenspace exposure significantly
increased pain threshold and tolerance during the experimental pain, indicating that
greenspace exposure may exert positive impacts on pain perception, which partly supports
our first hypothesis. According to Stanhope, et al. [14], though current evidence indicates
that nature exposure may improve painful conditions, the existing studies have not been
designed with appropriate controls to ascertain whether greenspace exposure itself led
to the benefits or whether these benefits could be due to involved physical exercise and
other activities. Therefore, our study provides evidence of greenspace exposure alone
in improving pain experience. Besides, different from studies with nature exposure in
total natural forest [41,42], the present study investigated the effects of a small residential
greenspace with fewer plants, which partially supported previous research that limited
urban greenspace could exert psychological benefits [41].

In the theory of pain, the placebo effect can be triggered by verbal instructions, con-
ditioning, social observation, and interactions [43], which can reduce sensitivity to pain,
and thus has been widely applied to cope with pain issues [44,45]. Due to the character-
istics of environmental interventions, blinding is hard to carry out for participants [46].
Besides, owing to environmental education and propaganda, the role of nature in health
boosting is underlined in public awareness, which may result in a placebo effect in painful
conditions [47,48]. Therefore, we interviewed those with personal opinions, and found that
up to 50% of participants thought that the greenspace relieved their pain, which implies a
potential placebo effect. Although the placebo effect is deemed as a part of nature-based
interventions [49], we still checked the results of participants who were not aware of pain
relief provided by nature and tried to identify additional effects. As a result, we found that,
though the difference in pain intensity became non-significant, the level of pain tolerance
was still significantly higher in greenspace, which indicates that greenspace exposure may
be more than a placebo. According to Kline [50], the pain relief of greenspace exposure
could result from the fact that the natural stimulus may distract the attention from pain
perception. In addition, Stanhope, et al. [14] proposed other potential reasons for pain relief
in a short-term greenspace exposure. For instance, phytoncides may influence the human
immune system, enhance natural killer cells’ activity and treat some types of pain [51,52].



Healthcare 2021, 9, 918 9 of 13

Besides, negative air ions generated by plants may alter pain outcomes through a range of
psychophysiological processes [53]. Nevertheless, these mechanisms were proposed based
on indirect evidence, and more research is still needed.

In terms of image viewing, no statistically significant difference was found in the
level of pain threshold, tolerance, or pain intensity between image viewing and control
settings, indicating weak effects of viewing a greenspace image, which does not support
our first hypothesis. This null result was similar to those by Lee, et al. [54], who found
that a natural visual stimulus did not decrease the dose of sedative medication required
for colonoscopy. These results imply the ineffectiveness of nature-based stimuli in some
extreme cases. Though distraction effects of nature images have been proved effective to
promote attentional resources [55,56], such a level of distraction may not be sufficient to
alter intense psychological responses.

4.2. Pain Related Psychophysiological Response

In the present study, HRV, HR, and blood pressure were measured to compare the
physiological difference between conditions, whilst state anxiety and subjective stress
were measured for the comparison of psychological outcomes. However, no statistically
significant difference was found in any of the comparisons, which does not support our
second hypothesis. According to our experimental design, self-regulated stimulation was
applied to the participants, which means that participants encountered extreme painful
stimuli in each of the testing scenarios. Therefore, the similar physiological responses
might be due to the similar painful conditions in the three experimental settings. These
results indicate that greenspace exposure may not alter psychophysiological responses
when suffering pain that is close to an individual’s limit of tolerance.

4.3. Physical Visit vs. Image Viewing

The results demonstrated that residential greenspace exposure induced a significantly
higher level of pain tolerance than viewing an image of greenspace, which partly supported
our third hypothesis. According to the relevant studies, the subtle effects of image viewing
may be related to the following factors. First, conventional two-dimensional static media
may not be able to duplicate a visual experience of real nature, thus may fail to deliver envi-
ronmental effects. Second, the benefits of displayed nature may be regulated by the media
adopted, and dynamic videos may be better than static pictures in pain relief [6]. Third,
the environmental effects are likely to be affected by subjective preference [55,57]. Mei-
denbauer, et al. [58] argued that the emotional benefits of nature exposure were regulated
by subjective preference, which was associated with aesthetic experience. In the current
study, the negative association between scenic beauty and negative emotions (stress and
anxiety) somewhat supported the above theory. However, due to the display equipment
and photography, the image of greenspace was poorly evaluated by the participants, which
may be a reason for the subtle effects. In general, our findings suggest that, in addition to
the known positive roles of urban parks in nature exposure, residential greenspace may also
provide beneficial health resources for urban dwellers, and physical visits are encouraged
to maximize these benefits [10,59]. Hence, more stay-in facilities are recommended in the
urban greening of neighborhood areas. On the other hand, though the image of greenspace
was not effective in the current study, future studies may consider more attractive images
of nature, and resort to advanced media technologies to explore solutions using simulated
nature exposure for healthcare.

4.4. Limitations

The current study aimed to provide evidence that encourages community residents to
go outdoors and visit their neighborhood greenspace. Therefore, only the conditions of in-
door and greenspace exposure were compared. However, though studies have proved that
gray building areas do not contribute to psychophysiological improvements when com-
pared to natural environments, cases for painful conditions were uninvestigated [60–63].
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Future studies may need to use other outdoor controls and find out whether simply get-
ting downstairs can benefit the pain experience. On the other hand, due to our research
conditions and the exploratory purpose, we recruited young adults only, which does not
allow us to generalize our findings to different populations. Besides, we used portable
equipment to carry out the experiment due to the inconvenience of outdoor tests. Though
the validity of equipment has been confirmed in previous study, further study may need
more sophisticated instruments to obtain more accurate data for quantitative analysis.

5. Conclusions

This study investigated the effects of physical visits and image viewing of a residential
greenspace on pain perception and related psychophysiological outcomes. Our findings
suggest that residential greenspace exposure can enhance pain threshold and tolerance.
However, image viewing showed poor effects on pain relief. These findings provide
experimental evidence for the positive role of urban greenspace in nature exposure. Based
on the findings and limitations of the current study, in future work we will consider
other media such as virtual reality (VR) to duplicate the sense of immersion in a natural
environment. Furthermore, from the perspective of practical application in healthcare
and medical services, future experiments will recruit patients with pain symptoms to
re-examine the pain relief effect of residential greenspace exposure.

Author Contributions: Conceptualization, H.L.; investigation, H.L. and X.Z.; data curation, H.L. and
Y.C.; writing—original draft preparation, H.L.; writing—review and editing, H.L., Y.C., S.B. and X.Z.;
supervision, G.Z.; project administration, G.Z. and Y.C.; funding acquisition, G.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
(SWU1909025).

Institutional Review Board Statement: The study protocol was approved by the Institute Research
Ethics Committee (IREC) of Southwest University, China (code number: 2020307007).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data is available on request for corresponding authors.

Acknowledgments: We are grateful to Xiaoling Li from Sichuan Agricultural University who helped
us recruit participants (permission is received from the acknowledged people).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Full Name
VAS Visual Analog Scale
STAI-S State scale of the State-Trait Anxiety Inventory
HR Heart rate
HRV Heart rate variability
SDNN Stand deviation of normal-to-normal intervals
RMSSD Root mean square of successive R-R intervals
BP Blood pressure
SBP Systolic blood pressure
DBP Diastolic blood pressure
MAP Mean arterial pressure
SBE Scenic Beauty Estimation
GLMM Generalized liner mixed model
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