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Abstract: Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues
when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It
is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to
organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating
inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and
apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive,
prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal
stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also
be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were
mediated in part by their secretome, which appears to be involved in immune regulation and tissue
repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration
upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial
use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing
in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind
these effects.

Keywords: ischemia/reperfusion injury; inflammation; apoptosis; organ transplantation; mesenchymal
stem/stromal cells; secretome; MSC pre-conditioning

1. Introduction

Ischemia/reperfusion injury (IRI) is defined as organ damage due to cellular dysfunc-
tion. It usually occurs after organ surgery, and in particular during organ transplanta-
tion [1–4]. IRI is considered a multistep damage: for example, in transplantation, the first
step is induced by organ resection and the inevitable ischemia, due to the interruption of
blood flow and cold preservation of the organ for its storage before the transplant. During
the ischemic phase, which varies according to the quality of the donor organ, disruption
of blood flow and organ preservation at cold temperatures lead to mitochondrial dys-
function, intracellular adenosine triphosphate (ATP) depletion, and a switch to anaerobic
metabolism [3]. Restoration of the blood flow during reperfusion exacerbates the damage,
causing destruction of the function and viability of the organ. In particular, re-establishment
of blood supplies causes an extensive production of pro-inflammatory cytokines and reac-
tive oxygen species (ROS), which eventually leads to neutrophil infiltration and apoptosis
of parenchymal cells [5,6]. IRI occurs in a wide range of organs, including lung, pancreas,
kidney, gut, heart, brain, and liver, and can also induce systemic damage, potentially lead-
ing to multisystem organ failure [7]. Despite the variety of tissues involved, the biological
processes activated by IRI are relatively common, and include inflammation, ROS produc-
tion, and apoptosis. Currently, different therapeutic strategies have been implemented to
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attenuate IRI, though none have been considered definitive [8–10]. For example, ischemic
pre-conditioning, which consists of brief and repetitive episodes of IRI before the induction
of sustained organ ischemia, has been found to be effective for a number of operative
settings where ischemia can be tightly controlled, such as transplantation, coronary bypass
grafting, and elective major vascular procedures [11,12]. Ischemic post-conditioning is
instead defined as the rapid and sequential intermittent interruption of blood supplies
in the early stages of organ reperfusion. This therapeutic approach is usually applied
when the ischemic damage cannot be predicted [13,14]. Finally, together with what is cited
above, pharmacological treatments, despite their encouraging results in animal models of
IRI, have not provided the expected results in a large number of clinical trials [8,15–18].
Consequently, it seems clear that new potential therapeutic approaches need to be identified
and tested in order to reduce IRI side effects in various clinical settings.

2. Mesenchymal Stem/Stromal Cell (MSC)-Based Therapy as a New Strategy for
Treating IRI

Scientific evidence has revealed that both cellular and acellular therapies based on
the use of mesenchymal stem/stromal cells (MSCs), represent promising approaches to
mitigate IRI-related pathological processes [19–22]. MSCs have been found in different
tissues, including umbilical cord (UC-MSCs) [23], bone marrow (BM-MSCs) [24], adipose
tissue (Ad-MSCs) [25], and placenta (AM-MSCs) [26], where they participate in the mainte-
nance of stem cell niches and tissue homeostasis [27,28]. Several studies have demonstrated
that MSCs possess therapeutic properties arising from their ability to secrete a plethora of
functional factors involved in both immune regulation and tissue repair [29–33]. In partic-
ular, MSCs can secrete growth factors, cytokines, chemokines, and extracellular vesicles
(EVs), such as exosomes (EXOs), which confer on MSCs paracrine therapeutic capabilities
that can lead to, e.g., immune modulation, tissue injury amelioration, and reduction in
fibrosis [32,34–38]. Oxidative stress is strongly correlated with cellular injury, and involved
in the onset of several pathologies, including IRI [39,40]. Growing evidence supports the
hypothesis that MSCs exert antioxidant properties in several pathological processes, which
may explain MSCs’ cytoprotective properties in IRI experimental models [41,42]. These
cells have been extensively tested in different areas of therapeutic application, including
organ transplantation [43,44], where the beneficial strategies are aimed at reducing IRI and
acute inflammatory responses (Table 1). Indeed, in many experimental models, including
organ transplant studies, it has been found that infusion of MSCs promotes regeneration
and prolonged recipient survival by reducing IRI and acute inflammation (Figure 1) [45–51].

In the future, the routine use of allogeneic MSCs may well present some hurdles
to be overcome. In fact, MSCs can be found in the parenchyma of different tissues after
intravascular administration, leading to the risk of tumor formation and/or the possibility
of immune rejection for allogenic cells. Consequently, in order to obtain the therapeutic
effects of MSCs without using the cells, MSC-derived products such as conditioned medium
(CM) and EXOs have been investigated. For example, various in vivo studies of organ
injury have highlighted the efficacy of CM derived from MSC cultures [52,53], supporting
the emerging consensus that MSCs secrete bioactive factors that can mediate beneficial
therapeutic effects through a paracrine mechanism. Indeed, individual components of the
MSC secretome have been involved in a number of essential cellular processes, including
angiogenesis, immunomodulation, wound healing, and tissue repair [32,54]. MSC-derived
CM also contains functional factors that have shown therapeutic efficacy against ischemia
reperfusion injury. In several IRI experimental models, it has been demonstrated that
the whole secretome or EXOs alone were able to alleviate IRI side effects by attenuating
inflammation and apoptosis, and improving tissue regeneration (Table 1).
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Figure 1. Schematic representation of MSC effects on IRI, with the main biological processes involved
in the damage that are attenuated with MSC therapy.

Therefore, the therapeutic potential of both MSCs and MSC-derived products, are
of particular interest as a strategy for modulating injury due to ischemia/reperfusion in
several IRI-related diseases. In this review, we summarize the major studies investigating
the clinical efficacy of MSC-based therapy in different IRI experimental models.
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Table 1. Summary of in vitro and in vivo studies reporting the use of MSCs and/or their products in
preventing ischemia/reperfusion injury (IRI).

Use of Cells or Their
Products Study Model Effects Due to MSC Treatment References

AMSC-derived CM In vitro model of human
lung IRI

Attenuation of IRI effects by improving
the efficacy of in vitro EVLP [20]

AMSC-derived CM In vitro model of hepatic
IRI

Inhibition of activation of inflammatory
macrophages and apoptosis in hepatocytes [22]

UC-MSCs Rat lung IRI Reduction in oxidative stress damage
and inflammation [41]

BM-MSC-derived EVs Mouse intestinal IRI Mitigation of intestinal pathological injury, reduction
in intestinal cell apoptosis and oxidative stress [42]

UC-MSCs Swine lung IRI Attenuation of IRI by improving the efficacy
of EVLP [49]

BM-MSCs Mouse lung IRI Protection against cold IRI in lung transplants [55]
AdMSCs Rat lung IRI Attenuation of inflammation and oxidative stress [56]

BM-MSCs Rat lung IRI
Reduction in both pulmonary edema and
pro-inflammatory factors, and increase in

anti-inflammatory factors
[57]

AdMSCs Rat lung IRI Attenuation of lung damage after IRI [58]
BM-MSCs Rat lung IRI Attenuation of lung pathologic injury [59]

BM-MSCs Human lung IRI
and EVLP Decreased cold ischemic injury [60]

BM-MSCs
EVLP in human lungs

rejected for
transplantation

Improvement in alveolar fluid clearance and
reduction in both acute IRI and fibrotic responses [61]

MSC-derived EVs Rat lung IRI and EVLP Improved tissue integrity and metabolism [62]
UC-MSCs and

UC-MSC-derived EVs Mouse lung IRI Attenuation of lung dysfunction and injury by
improving the efficacy of EVLP [63]

BM-MSC-derived CM Rat lung IRI Protection against lung IRI [64]

BM-MSCs Mouse model of
kidney IRI

Induction of M1 to M2 transition
and tissue regeneration [65]

BM-MSCs
Human renal allograft

model with exsanguinous
metabolic support

Reduction in ischemic damage and
inflammatory cytokines [66]

BM-MSCs
Human renal allograft

model with normothermic
machine perfusion

Reduction in ischemia reperfusion injury [67]

BM-MSCs Rat intestinal IRI Reduction in inflammatory response and intestinal
ischemic damage [68]

BM-MSCs Rat intestinal IRI Reduction in intestinal ischemic damage [69]

BM-MSCs Swine myocardial
infarction model

Attenuation of contractile dysfunction and
pathologic thinning [70]

AMSCs Swine myocardial
infarction model

Reduction in histological and functional impairment
of myocardium [71]

BM-MSC-derived EVs Rat myocardial
infarction model

Improvement of blood flow recovery, reduction in
infarct size and preservation of cardiac systolic and

diastolic performance
[72]

MSC-derived CM
Rat cardiac allograft

model with
hypothermic perfusion

Improvement of cardiac function and reduction in
pro-inflammatory cytokines [73]

BM-MSC-derived CM
and EVs

Hypothermic perfusion of
mouse donor heart

Attenuation of ischemia-induced myocardial
damage in donor heart and

improvement of heart function after transplantation
[74]

BM-MSC-derived CM Rat cardiac
allograft model

Improvement of cardiac post-operatory functions
and reduction in pro-inflammatory cytokines [75]
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Table 1. Cont.

Use of Cells or Their
Products Study Model Effects Due to MSC Treatment References

BM-MSCs
Mouse model of embolic

middle cerebral
artery occlusion

Improvement in functional recovery [76]

BM-MSCs
Rat model of embolic

middle cerebral
artery occlusion

Improvement of function, induction of angiogenesis,
and reduction in apoptosis [77]

BM-MSCs Rat model of hepatic IRI Protection from the progression of the damage and
reduction in neutrophil infiltration [78]

AdMSCs Rat model of hepatic IRI
and hepatectomy

Inhibition of hepatic apoptosis and
improvement of tissue regeneration [79]

AdMSCs Rat model of hepatic IRI Inhibition of inflammasome activation [80]

AdMSC-derived CM Swine model of hepatic
IRI and hepatectomy

Attenuation of hepatic IRI and
hepatectomy-induced liver damage [81]

MSC-derived EVs Mouse model of
hepatic IRI

Attenuation of liver damage and improvement in
liver regeneration after IRI [82]

BM-MSC-derived EVs Mouse model of
hepatic IRI

Attenuation of liver damage and
inflammatory responses [83]

UC-MSC-derived EVs Mouse model of
hepatic IRI

Reduction in liver IRI by reducing
apoptosis and inflammation [84]

UC-MSC Rat model of hepatic IRI Attenuation of injury by inhibiting inflammation,
neutrophil infiltration, and apoptosis [85]

EVLP: ex vivo lung perfusion; EVs: extracellular vesicles; CM: conditioned medium; MSCs: mesenchymal stem
cells; BM-MSCs: bone marrow-derived MSCs; AMSCs: amnion-derived MSCs; UC-MSCs: umbilical cord-derived
MSCs; AdMSCs: adipose-derived MSCs; IRI: ischemia-reperfusion injury.

2.1. MSCs and Ischemia/Reperfusion Injury in the Lung

Ischemia/reperfusion injury is the leading cause of postoperative dysfunction after
lung transplantation (LTx) [86,87]. This pathological condition is characterized by ROS
production (production of toxic molecules), increased inflammation, alveolar damage,
and lung edema, with consequent injury to the lung parenchyma, which can result in
both early primary graft dysfunction (PGD) and/or chronic lung allograft dysfunction
(CLAD) [19,41,88–91]. Lungs are particularly susceptible to IRI which, together with
infections, can contribute to lung rejection and post-transplant mortality [90,92]. Therefore,
a reduction in IRI adverse effects is a crucial step to improving LTx.

Over the last decade, a number of reports have shown that MSCs and/or their products
(CM and EVs) are able to stimulate tissue regeneration, inhibit immunological responses,
and block ROS production [32,35,93–98]. They have been shown capable of decreasing
inflammation and IRI in both in vitro and in vivo models, and those effects were mediated,
at least in part, by the paracrine activity of MSCs (Figure 1) [99]. MSC therapeutic action
has also been evaluated both in human lung diseases [19,100–103] and in different lung
experimental models [19,55,97,104,105]. In those cases, MSCs and/or their products were
capable of potentiating anti-microbial action, and mitigating both lung injury and inflam-
mation, as found with IRI of LTx. Lin et al., in a rat model of lung injury, demonstrated
that both xenogeneic and allogeneic MSCs were able to protect the lung against IRI by
downregulating inflammation and oxidative stress [56]. Using the same model, Lu et al.
showed that intravenous injection of BM-MSCs reduced both pulmonary edema and pro-
inflammatory factors, while increasing anti-inflammatory factors [57]. In a rodent model,
Sun et al. found that the autologous transplantation of Ad-MSCs was able to reduce lung
IRI [58]. Moreover, Guillamat-Prats, Chen and colleagues demonstrated that the engraft-
ment of allogenic MSCs reduced acute lung injury [59,106], while Chambers et al. showed
that MSCs, infused via the peripheral vein twice weekly for 2 weeks, also decreased CLAD
in human lung-transplant recipients [107].
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Recently, it has been postulated that the use of normothermic ex vivo lung perfusion
(EVLP) may be helpful in mitigating ischemic injury to the lung [108,109]. During EVLP,
the organ is placed in a device, providing ventilation and perfusion for 4–6 h, and allowing
the evaluation and recovery of compromised donor lungs [110,111]. Interestingly, for the
duration of EVLP, while the estimation of donor lung function can be made, different
treatments can also be used to further reduce IRI [15,18]. In this regard, MSC-based treat-
ments (MSCs or MSC-derived products) have been tested to improve EVLP. The promising
results obtained from those studies have led MSCs to be considered good candidates for
integration with EVLP, aiming at improvement in LTx. Several reports have suggested
that MSC-based treatment administered during EVLP is associated with a decrease in in-
flammation and ischemic injury of human donor lungs [49,60,112]. McAuley et al. showed
that when MSCs were added to the EVLP perfusate, they can exercise the ability to restore
alveolar fluid clearance, and reduce both acute IRI and fibrotic responses in human lungs
rejected for transplantation [61]. Moreover, Pacienza et al., in a rat preservation model of
lung injury, found that MSC treatment during EVLP was able to reduce oxidative damage
and IRI [41]. Promising results have also been found by using CM or EVs obtained from
MSC cultures. It has been shown that MSC-derived EVs were able to reduce inflammation,
and enhance tissue regeneration in acute lung injury models [62,63,113]. In a mouse model
of lung IRI, treatment with EVs derived from UC-MSCs improved the efficacy of EVLP,
and attenuated lung dysfunction by decreasing pro-inflammatory cytokines, neutrophil
infiltration, and edema [63]. Moreover, EVs derived from BM-MSCs, when administered
during EVLP, were able to increase the alveolar fluid clearance in human donor lungs
rejected for transplantation [114]. Similarly to EVs, MSC-derived CM has shown beneficial
effects on different experimental models of lung diseases [20,64,115–117]. For example,
BM-MSC-derived CM, when administered during EVLP, was able to increase alveolar fluid
clearance in human lung injured by the E. coli endotoxin [117]. The use of MSC-derived
products, rather than the direct use of cells, can avoid all risks associated with live-cell
transplants and, therefore, represents an emerging and promising approach to treating IRI
in the field of LTx.

The use of MSCs and/or their products is a promising approach to reducing IRI in
several lung pathological conditions; therefore, the integration of MSC-based treatment
with EVLP in the context of LTx seems to be the best way to improve LTx outcomes.

2.2. MSCs and Ischemia/Reperfusion Injury in the Pancreas

The transplantation of the whole pancreas or pancreatic islets is considered an effective
treatment for restoring glycemia in specific patients with unstable type 1 diabetes mellitus
(T1D). However, in the case of the whole pancreas, similarly to other solid organs, IRI
pathological processes often lead to complications which occur after transplantation, result-
ing in poor transplant success [118]. On the other hand, the clinical outcome also needs
to be improved for islet transplantation because a variable degree and length of insulin
independency have been observed [119]. A number of aspects can affect clinical outcomes
for those transplants and, among these, the quality of donor organ is often considered a key
factor [120–122]. Pancreas or pancreatic islet transplantation techniques are characterized
by different phases, including organ procurement, preservation, and islet isolation, during
which IRI processes occur that affect organ/islet function and survival. In this case, IRI
not only impacts on transplant outcomes, but also reduces the number of pancreas/islets
suitable for transplantation.

To address those issues, a more effective preservation before transplantation represents
a promising strategy for improving the quality of the pancreas/islets, and to achieving
complete and long-term insulin independence [123–126]. For the pancreas, the most
common organ preservation solution used is the University of Wisconsin (UW) solution,
which, however, does not prevent the deleterious effects of IRI [127–129]. Recently, in a
T1D mouse model, Nishime et al. demonstrated that UW solution, supplemented with the
antioxidant and cytoprotective agent AP39, mitigates cold IRI and promotes higher islet
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yields before and after purification. In this study, graft pancreatitis was prevented, and the
outcome of islet transplantation was improved [130].

Across the last decade, it has been shown that the treatment with MSCs was able to
induce islet regeneration, increase islet function, and inhibit immune system reactions in
various animal models of T1D [131]. Kasahara et al. found that AdMSCs-CM administered
through a preservation solution was able to restore rat islets to the condition they were in
before transport, culture, and transplantation [132]. Similar results were found by Teratani
et al., in which the MSC-derived CM added to the UW solution was able to preserve porcine
islets during both transportation and cultures [133].

In the early phase after islet transplantation, the lack of vasculature and the hypoxic
environment contribute to islet acute injury, mediated by ischemia [134]. In addition, after
transplantation, graft failure continues to occur because of immunological reactions [135].
MSCs have the ability to both stimulate angiogenesis and attenuate inflammation [32], and
are thus considered a useful therapeutic tool for alleviating IRI and improving islet trans-
plantation outcomes. MSCs can be utilized in the early phase of the transplant to suppress
immune-mediated rejection. Moreover, MSCs can provide a favorable environment for
improving islet engraftment and stimulating their regeneration [136]. In a mouse model
of allogenic islet transplantation, it has been shown that MSCs were able to prevent islet
allograft rejection, leading to long-term normoglycemia. Ding et al. demonstrated that
those effects were due to the MSCs’ suppressive activity on the immune system, which
reduced hypersensitivity responses to allogeneic antigens, and allowed the survival of
allogeneic islet grafts [137]. In a rat model of allogenic islet transplantation, Longoni et al.
observed the ability of both syngeneic and allogeneic MSCs to prevent acute rejection and
prolong graft function. In this study, the efficacy of MSCs was related to a reduction in
inflammation, and this effect was independent of the administration route [138]. Li et al.,
in a diabetic mouse model, investigated the mechanisms by which the co-transplantation
of MSCs and allogenic islets alleviated allograft rejection. They showed that MSCs exerted
immunosuppressive effects through inhibition of both T lymphocytes and the activation of
dendritic cells, resulting in the survival of transplanted pancreatic islets [139]. Promising
results have also been obtained in non-human primates. Berman and colleagues showed
that the intra-portal or intra-venous co-transplantation of MSCs and pancreatic islets signif-
icantly enhanced islet engraftment and function, and further infusions of MSCs were also
able, in some cases, to avoid rejection and maintain islet function [140].

Therefore, thanks to their beneficial properties (anti-oxidant, proangiogenic, and im-
munomodulatory properties), MSC-based therapies can prevent IRI pathological processes
during the transplantation of either the whole pancreas or pancreatic islets. Moreover,
addition of MSCs or their secreted products to preservation solution during organ preser-
vation or isolation of islets could conceivably offer a novel pharmacological approach to
improving the outcome of pancreas/islet transplantation.

2.3. MSCs and Ischemia/Reperfusion Injury in the Kidney

Currently, renal transplantation is the principal treatment option for patients with end-
stage kidney disease (ESKD), and IRI is an inevitable event during renal transplantation,
with a significant impact on the function of transplanted kidneys [141]. IRI is the main cause
of acute kidney injury (AKI) in surgery, and is characterized by endothelial cell activation,
and leukocyte recruitment and infiltration, as well as renal cell necrosis and apoptosis [142].
In one study, it was found that treatment with MSC-derived EVs can ameliorate kidney
fibrosis in a cisplatinum-induced AKI mouse model by reducing the levels of ROS and of
pro-apoptotic molecules, such as 8-hydroxy-2-deoxyguanosine (8-OHdG), malonaldehyde
(MDA), Bax, and caspase-3 [143]. The regenerative and anti-inflammatory properties of
MSCs have been explored in a large number of animal injury models, explicating how
these cells promote endothelial repair [144–148]. In several phase I clinical trials for kidney
disease and transplantation, it has been found that the effects of MSCs on endothelial cells
might lead to an improved kidney transplantation outcome [149–153]. Among the factors
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involved in the AKI pathogenesis, inflammatory response runs through the entire process
of IRI-derived AKI, in which innate immunity, principally through macrophages, has a
pivotal role in both injury and repair processes [154,155]. Macrophages can differentiate
in two different phenotypes: M1, which produces pro-inflammatory molecules, and M2,
which can inhibit inflammation and promote the repair of injured tissue [156]. Hence, the
M1/M2 ratio can regulate the progress of AKI toward chronic kidney disease (CKD) or,
conversely, kidney repair [157]. In the early stage of IRI, M1 macrophages are the prevalent
inflammatory cells in kidney tissue, while M2 macrophages appear in later stages. Thus,
to alleviate kidney injury, it is necessary to eliminate pro-inflammatory M1 macrophages
before IRI [158]. The transition of macrophages from M1 to M2 phenotype induces the
production of growth factors, such as platelet-derived growth factor (PDGF), transforming
growth factor beta 1 (TGF-β1), vascular endothelial growth factor A (VEGF-A), and insulin-
like growth factor I (IGF-1), which promote the regeneration and repair of renal tubular
epithelial cells [157,159,160]. In a recent study using a mouse model of kidney IRI, it was
demonstrated that EXOs from indoleamine 2,3-dioxygenase-(IDO)-overexpressing BM-
MSCs accelerates tissue regeneration upon IRI by inducing the M1/M2 transition [65]. To
date, most of the research and clinical trials have been focused mainly on MSC therapy after
kidney transplantation, but not prior to it [152]. The systemic administration of MSCs to
transplant recipients is safe; however, it has been shown that the cells never reach the kidney,
mostly because intravenously infused MSCs are largely trapped in the lungs [161–163].
By contrast, the administration of MSCs to donor kidneys in an ex vivo isolated organ-
perfusion system will deliver cells directly to the injured organ. With this purpose in
mind, normothermic machine perfusion (NMP) of donor organs has been recognized as
an opportunity to maintain organ viability and allow therapeutic interventions prior to
transplantation [164–166]. Two different studies of MSC renal infusions during NMP on
discarded human kidneys reported beneficial effects of MSCs. In one case, the potentiation
of renal regeneration by the increased synthesis of adenosine triphosphate (ATP), reduction
in inflammatory response, increased synthesis of growth factor, and the normalization of
the cytoskeleton and mitosis was found [66]. In the other case, a significant reduction in
IRI through the improvement of clinically relevant parameters, such as urine output and
micro-vascular perfusion, and injury biomarkers, such as the downregulation of interleukin
(IL)-1β, upregulation of IL-10 and IDO, as well as decreased neutrophil recruitment were
reported [67]. In conclusion, the use of MSCs or their derivatives represents a promising
approach to treating kidney IRI and/or improving kidney transplantation outcomes.

2.4. MSCs and Ischemia/Reperfusion Injury in the Gut

Intestinal IRI is a pathological process characterized by local vasoconstriction, thrombosis,
mitochondrial damage, inflammatory response, cellular damage, and cell death [167], resulting
in an impaired intestinal mucosal barrier function [168], associated with severe clinical con-
ditions such as extracorporeal circulation, mesenteric artery thrombosis, strangulated ileus,
trauma, abdominal aortic aneurysm surgery, and intestinal transplantation [169,170].

The visceral inflammation caused by intestinal IRI can alter the epithelial barrier
morphology and function, allowing bacterial translocation [171], and their products as
pathogen-associated molecular patterns (PAMPs), from the lumen into the lamina pro-
pria [172], thus driving inflammation [173]. This process eventually results in endotoxemia,
the release of multiple pro-inflammatory cytokines [174], systemic inflammatory response
syndrome (SIRS) [50], and even multi-organ failure and death [175–178]. Therefore, in
patients with critical illness, the development of effective therapies and discovery of novel
agents capable of ameliorating intestinal IRI are crucial for reducing mortality.

The potential of MSC therapy has been widely discussed for the treatment of end-
stage organ ischemia. Even in intestinal IRI, these cells boost functional recovery and
limit inflammation, while the exact mechanisms have not yet been defined (Figure 1). It
has been postulated that MSCs may play a protective role against intestinal IRI via ex-
ogenous migration into the damaged intestinal tissue, and differentiation into intestinal
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epithelial cells (IECs), to enhance the integrity of the gut barrier or through the exogenous
release of paracrine and/or endocrine cytokines with anti-inflammatory, anti-apoptotic,
and pro-angiogenetic characteristics [50], principally mediated by EXOs [179]. As for the
first mechanism of action, there are few studies demonstrating the cellular differentiation
of MSCs within the damaged bowel as the primary mechanism by which MSCs attenuate
intestinal IRI [180,181]. Most evidence supports the hypothesis that paracrine mechanisms
drive the therapeutic efficacy of MSCs within damaged tissue [182,183]. One of the most
promising molecular targets downregulated by MSC therapy is NF-kB, known to activate
the expression of several genes expressed during intestinal IRI, and involved in the inflam-
matory response process [184], including TNF-α [185], IL-1β [186], IL-6, and ICAM [187].
These molecules drive complementary activation and subsequent production of inflamma-
tory mediators, including IL-8, IL-17, and IL-18 [188]. The role of MSC immunomodulation
in intestinal IRI acts on one side by decreasing production of inflammatory mediators, such
as TNF-α [68], IL-1β [189], and IFN-γ [190], and by increasing anti-inflammatory cytokine
production, via monocytes’ stimulation, such as IL-10 [191]. As an alternative mechanism
of action, it has been demonstrated that BM-MSCs are able to attenuate intestinal IRI by re-
ducing tight junction disruption and ZO-1 downregulation, thereby restoring the intestinal
mucosal barrier, likely by regulating the levels of TNF-α [69,192].

Several studies have found that MSCs upregulate expression of numerous growth
factors, such as VEGF, FGF2, and TGF-β by a p38 MAPK-dependent mechanism, resulting
in enhanced tissue restoration [193,194]. Among the multiple roles played by MSCs, there
is increasing evidence that the efficacy of MSCs resides in the EXOs released, carriers of a
discrete set of proteins, and coding and non-coding RNA. In vivo experiments have shown
that MSC-derived exosomal miR-34a/c-5p, and miR-29b-3p improved the intestinal barrier,
thus alleviating intestinal IRI via the Snail/claudin pathway [195]. Recently, it was reported
that BM-MSC EXOs can alleviate intestinal IRI through the PTEN/Akt/Nrf2 pathway by
targeting miR-144-3p [42].

2.5. MSCs and Ischemia/Reperfusion Injury in the Heart

Ischemic heart diseases are the leading cause of mortality worldwide, with more than
2 million deaths in 2019, 16% of the world’s total (https://www.who.int/, accessed on
11 December 2022). Transplantation is a vital option for patients with challenging heart
failure, despite the limitations imposed by organ availability. The shortage in organ sup-
ply obviously depends on the number of potential and actual donors, but also in large
part on organ preservation. In fact, organ deterioration after donor explant is a key issue
in this life-saving procedure. Perfusion has been adopted for prolonging organ storage,
providing oxygen and nutrients, and maintaining the conditions for organ preservation.
Though perfusion techniques have improved since the first heart transplant, in 1967 [196],
organ transport for location and matching constitutes a very demanding problem in the
prevention of damage caused by ischemia and hypoxia. Temperature lowering can re-
duce the cell death process with the release of autolytic enzymes, without altering cell
metabolism; however, prolonged ischemia and hypothermia can induce oxidative pro-
cesses [197], swelling [198], and acidosis [199]. In order to reduce these effects, several
protective formulations have been developed [200]. Currently, another pioneering strategy
has been considered together with cold and chemical preparations, and based on the pro-
tective action of MSCs on various organs and, in particular, heart injuries [201]. Though
not less than two decades ago MSCs were viewed as playing a directly plastic role in heart
remodeling after injury [70,202], further experiments have demonstrated that MSCs act
mostly via paracrine effects (Figure 1). The first experiments revealed MSCs’ effects in
in vivo animal models after MI, identifying cardiomyocyte transdifferentiation, and the
integration into cardiac tissues [71,203]. However, further experiments have highlighted a
limited amount of transdifferentiated MSC-derived cardiomyocytes [203,204]. This opened
an important debate on the integration of MSCs into cardiac tissues after injection, and
subsequent cardiomyocyte transdifferentiation [205]. Further evidence has demonstrated

https://www.who.int/
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that the therapeutic effects of MSCs on the heart are based mostly on factors released, since
their action is exerted in a paracrine mode by the secretome [206]. For example, it has
been shown that MSC-derived EVs promote angiogenesis, an effect that can be ascribed
principally to the miRNA content in EVs [207]. MiRNAs have been involved at various
levels in cardiac repair or cardiomyocyte proliferation/aging [208,209] by modulating
pathways implicated in the inhibition of fibrosis after MI in repair processes. MSC-derived
EVs can promote cardiac protection, given that this treatment shows a positive effect in rat
models on the MI heart by reducing scar-size formation, and stimulating angiogenesis [72].
Proteomic analysis of MSC EVs has revealed the presence of growth factor receptors such
as PDGFR, cytokines, signaling, and adhesion molecules [210], which account for the in-
duction of angiogenesis. The effect of MSCs in improving hypothermic perfusion in ex vivo
organ preservation was recently tested in allograft in vivo models [73–75]. The authors
here found that the MSC secretome considerably improved post-operatory heart functions
in rat allograft experiments [75]. Moreover, they showed that hypoxic MSC-CM have
cardioprotective effects by significantly reducing apoptotic indexes (e.g., TUNNEL, DNA
breaks). At the same time, pro-inflammatory cytokines have been reduced by MSC-CM
treatment, with a stronger lowering of IL-6 and TNF-α in the hypoxic MSC-CM compared
to normoxic MSC-CM. Similarly, another group evaluated MSC-CM in heart transplanta-
tion after extended organ storage in 15-month-old rats, which is approximately comparable
to a 40-year-old human [73]. Myocardial evaluation of 120 genes involved in apoptosis,
oxidative stress, and inflammatory response showed a significant modification in gene
expression signature by MSC-CM treatment. This was associated with an improvement in
the cardiac functions, such as a reduced re-beating time after transplant, and an enhance-
ment of the LV systolic and diastolic functions, with an increase in the pressure rate [73].
Likewise, comparable results have been obtained in mouse models, where the MSC secre-
tome determined cardiac protection against IRI after prolonged organ preservation [74].
MSC-CM substantially reduced the presence of pro-inflammatory cytokines (TNF-α, IL-1β,
and IL-6) in allotransplanted hearts. Moreover, the authors found the presence of miR-
199a-3p in MSC EVs, which showed a cardioprotective effect in IRI [211]. miR-199a-3p
expression in donor hearts is strongly reduced after prolonged cold preservation. Thus,
MSC EXOs containing miR-199a-3p can restore myocardial levels in experimental allograft
models. The opportunity to modulate the release of miRNAs by engineering EXOs is
an additional option, together with a MSC-based therapeutic approach [212]. The MSC
secretome may turn out to be an efficient cell-free therapeutic option for reducing organ
damage, and mitigating the problems experienced by long and slow-moving waiting lists
for this life-saving approach.

2.6. MSCs and Ischemia/Reperfusion Injury in the Brain

Cerebral IRI is a common event in ischemic stroke, induced by the impaired blood
supply to the brain for a short period of time, followed by its restoration [213]. The
impaired blood supply is usually caused by a blood pressure perturbation, and induced by
the presence of a thrombus or embolus in vessels. Depending on the site, size, and duration
of cerebral ischemia, it can cause permanent and irreversible brain tissue damage, including,
in the worst-case scenario, neuronal cell death and cerebral infarctions [214]. In recent
years, the literature has extensively described the main mechanisms involved in IRI. Among
the most studied are oxidative stress, leukocyte infiltration, mitochondrial mechanisms,
activation and aggregation of platelets, and the prompting of protein complement. Notably,
a substantial number of studies supports the hypothesis that inflammation is a key factor
in initiating the process at the base of the pathogenesis of cerebral IRI, which culminates in
severe neurological dysfunction, such as blood–brain barrier (BBB) disruption, and edema
or hemorrhagic transformation [213,215]. The disease is characterized by a robust activation
and release of cytokines, chemokines, adhesion molecules, and proteolytic enzymes, which
exacerbate tissue damage [216]. The current novel therapeutic approaches aim to modulate
the neuroinflammatory response in order to reduce the inflammatory mediators involved in
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tissue damage [214,216]. Recent studies have demonstrated the strong immunomodulatory
capacity of MSCs in the field of tissue regeneration. It has been found that they are able to
inhibit tissue inflammation by directly or indirectly targeting the immune response, and
promote tissue repair by the stimulation of endogenous cell function and revascularization
of the damaged tissue [32,217]. MSCs can also inhibit the pro-inflammatory T-cell response,
leading to a reduction in IFNγ, thus promoting an anti-inflammatory environment, which
leads, in turn, to an increase in IL-10 production that induces the protective activity of
Tregs [202,218,219]. The current data in the literature indicate that the administration
of MSCs intracranially (intrastriatal or intracerebroventricular) or intravascularly (intra-
arterial or intravenous) improves the restoration of tissue damage after ischemia both in
mouse and rat models. The authors confirm that during cerebral stroke, the transplanted
MSCs migrate to the damaged brain tissue site, inhibiting apoptosis and stimulating
the expression of a series of growth factors, including brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), basic fibroblast growth factor (bFGF), IGF, HGF,
VEGF, and angiogenic and stem cell factors, which synergistically prompt the recovery
of the neuronal functions [76,220,221]. The recovery function carried out by MSCs also
occurs through the induction of angiogenesis, the reduction in apoptosis, the restoration of
synapses and dendrites, and the promotion of axonal regeneration and differentiation of
autologous neuronal stem cells [77]. Recently, in vitro studies on astrocytes and neurons
undergoing ischemic damage nicely demonstrated that MSC-EVs strongly protect the
cells from intracellular Ca2+ accumulation, a biological effect of ischemia, and cell death,
thus promoting tissue regeneration. In particular, the authors showed that the MSC-EVs
acted by suppressing PI3K-Akt pathway. Furthermore, proteomic analysis on MSC-EVs
revealed that the protective effect might be related to the EV-protein content, including
factors such as HGF, CXCL1, VEGF-A, and MIF, all associated with brain regeneration [222].
Despite the fact that at present the MSC-evoked neurorestorative effects on IRI are not
clear, recent clinical reports carried out on humans have highlighted a series of beneficial
effects obtained in the treatment of ischemic stroke. Qiao et al. demonstrated the safety
and feasibility of the co-transplantation of neural stem/progenitor cells (NSPCs) and
UC-MSCs in patients with ischemic stroke, observing an improvement in neurological
function and daily life activities [223]. Consonant with this study, Jing et al., in a small pilot
study, demonstrated the safety and efficacy of allogeneic stem cells in treating strokes in
the middle cerebral artery territory [224]. More recently, a series of clinical trials (phase
1/2) have confirmed that autologous MSCs, if delivered intravenously, are able to reduce
post-stroke IRI damage, inducing a reduction in infarct size and an improvement in the
functional outcome of the patients [225,226].

2.7. MSCs and Ischemia/Reperfusion Injury in the Liver

IRI in the liver occurs frequently during surgery for intrahepatic lesions, and is con-
sidered an inevitable injury during organ transplantation [227–229]. This is due mainly to
the increasing number of potential recipients and the subsequent necessity of extending
the criteria of liver eligibility for transplantation [230]. Thus, clinical needs require the
identification of therapies that can attenuate the damage upon organ resection. Stem-cell
therapy is currently considered an important approach, and has garnered attention in bench
to bedside for the treatment of different diseases [32,231]. In particular, MSCs, because of
their immunomodulatory effects and their tissue regeneration potential, have been used
in liver surgery, including IRI [78,232,233]. Over the last decade, several studies from
different research groups have used MSCs or their cellular products to detect protection
from IRI, as well as to identify the molecular mechanisms underlining this biological effect
(Figure 1). In vivo infusion of MSCs in mouse and rat models of liver IRI have shown an
important protection against the injury. Pan et al., in 2012, found that BM-MSC infusion in
IRI-injured rat livers protected the animals from the progression of the damage by reducing
serum biomarkers of injury (AST and ALT), and by inhibiting neutrophil infiltration [234].
Furthermore, other studies have arrived at similar results in rat models, in which adminis-
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tration of Ad-MSCs inhibited hepatic apoptosis and increased tissue regeneration [79,235].
Reduced neutrophil infiltration upon BM-MSC infusion was confirmed a few years later
by Li et al., who found that BM-MSCs stimulate MAPK phosphorylation and CXCR2
downregulation, both at transcriptional and protein levels. Taken together, these findings
were associated with a significant reduction in the number of CD11+/CD18+ cells [80].
Along with the latter, MSC infusion in vivo inhibits pro-inflammatory phenotype during
early organ reperfusion by modulating the transcription and the protein release of several
pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6. More importantly, two
different groups assessed the important role of MSCs (from bone marrow or adipose tissue)
in regulating NLRP3 inflammasome activation, leading to reduced IL-1β and IL-18 protein
release [236,237]. Interestingly, by using different mouse models, Li et al. discovered that
BM-MSCs reduced NLRP3 activation via the Hippo/Wnt signaling axis [237]. MSCs either
from bone marrow or adipose tissue have been employed in liver IRI attenuation because
of their capacity to activate autophagy and mitophagy [81,238]. Wang et al. recently found
that a BM-MSC infusion activates autophagy, as shown by increased levels of LC3b, a
typical marker of terminal autophagy [239]. Moreover, they demonstrated that activation
of BM-MSC-mediated autophagy depends on heme-oxygenase-1 (HO-1) upregulation.
Furthermore, a recent paper by Zheng’s group showed that UC-MSCs activate mitophagy,
a mitochondrial-related type of autophagy, thus promoting mitochondrial stability and cell
survival [240]. Along the same line, the authors further confirmed mitochondrial protection
by increased superoxide dismutase 1 (SOD1) activation and mitochondrial ROS (mtROS)
inhibition after in vivo injection of UC-MSCs [240]. Endoplasmic reticulum stress (ERS),
responsible for protein misfolding and subsequent cellular apoptosis, has recently been
shown to be involved in liver IRI progression. Interestingly, it was recently found that
Ad-MSCs attenuate ERS by downregulating ERS-related genes (ATF6 and XBP1), and by
inhibiting hepatic apoptosis [241]. Viewed together, these findings clearly demonstrate that
in vivo infusion of MSCs ameliorates liver IRI by tackling different biological processes that
are usually responsible for the progression of the damage. However, in the last few years,
mounting evidence suggests that the biological function exerted by MSCs might depend on
their biological products, including the whole secretome or, more specifically, the EVs. As
important cell–cell communicators, they have been indicated as a new therapeutic approach
that could eventually replace infusion of MSCs, thus avoiding the risk of tumorigenicity,
pulmonary embolism, and alloimmune response [82,242]. Independent of the source, MSC
secretome and EVs have been shown to significantly reduce IRI damage by reducing ALT
and AST blood levels, and by accelerating tissue regeneration upon injury [83,243]. In
particular, Anger et al. demonstrated that treatment with UC-MSC-derived EVs was able to
induce a drastic reduction in pro-inflammatory proteins, including HMGB1 and IL-1β, and
a strong reduction in the expression of ICAM-1, a well-known adhesion molecule expressed
in endothelial sinusoidal cells, and involved in neutrophil recruitment and infiltration.
These data are in line with the results from Yao’s group [244]. In this study, the authors
further characterized EV content, thus proposing Mn-SOD as a target protein involved in
reduced IRI-mediated oxidative stress [244]. Moreover, UC-MSC EVs have been shown
to inhibit CD4+ T cell activation in liver IRI. In particular, through unbiased proteomic
approaches, the authors demonstrated that UC-MSC EVs contain CCT2, a Ca2+ modulator
protein, which in turn downregulates NFAT1, thus reducing CD154 and the subsequent
pro-inflammatory role of CD4+ T cells [245]. MSC EVs are enriched in miRNA, which
are responsible for post-transcriptional changes in the target cells. Interestingly, only a
few studies have identified potential miRNAs within MSC EVs that can attenuate liver
IRI damage. For example, mir-1246 contained in UC-MSC EVs seems to alleviate liver
IRI by reducing apoptosis and inflammation of parenchymal cells, and by modulating
T helper/Treg balance [84,85]. Here, the authors showed that miR-1246 activates Wnt
signaling in the target cells during IRI by inhibiting GSK3β, thus sustaining proliferation
and inhibiting inflammation and apoptosis [85]. The same group in back-to-back studies
demonstrated that miR-1246 modulates the T helper/Treg ratio by inhibiting the IL6ST-
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gp130-STAT3 signaling axis in an in vitro model of hepatic IRI [84]. Across recent years,
mounting evidence suggests that MSC pre-conditioning might be useful to specify secre-
tome content [32]. However, very few studies have focused on this type of approach in the
context of liver IRI. In 2018, Sun et al. demonstrated in vivo that the 3D culture of UC-MSCs
generates spheroids that, when implanted in an IRI-damaged liver in rats, attenuates the
injury by inhibiting inflammation, neutrophil infiltration, and parenchymal apoptosis [246].
Finally, our group recently showed that 3D and IFN-γ priming of human amnion-derived
MSCs (AMSCs) are able to modulate IRI damage in an in vitro model of IRI carried out on
primary macrophages and hepatocytes. We found that several bioactive factors, including
HGF, IL-10, IL-1RA, and BDNF, selectively inhibit inflammation of primary macrophages
and apoptosis of IRI hepatocytes in vitro [22].

3. Discussion

The main biological processes activated during IRI are shared among the different
types of organs where the damage occurs. As described above, inflammation, ROS produc-
tion, and apoptosis of the parenchymal cells are responsible for the start and progress of the
injury, leading eventually to organ rejection. Thus, it does not seem unusual that proteins
and factors released during the injury are common in all the damaged tissues. For these
reasons, using MSCs for the treatment of multi-organ IRI is currently considered a valid
approach to reducing the injury (Figure 1) [21]. The scientific literature is replete with inter-
esting studies that report the resolution of IRI after MSC treatment [50,56,67,75,80,226,247].
Because of their properties, MSCs can modulate the damage at different levels. For example,
they strongly reduce inflammation, thus inhibiting the release of several pro-inflammatory
cytokines, which in turn regulate neutrophil infiltration in the damaged tissue [192,248,249].
In addition, MSCs have been shown to block ROS production, thus improving mitochon-
drial damage [192]. Altogether, the inhibition of such biological mechanisms eventually
leads to the reduction in parenchymal cell death by preventing organ rejection. Currently,
there are seven clinical trials registered on clinicaltrials.gov, aimed at investigating MSC
therapeutic efficacy for the treatment of IRI for both heart and kidney. Moreover, MSCs
have demonstrated significant therapeutic effects in numerous preclinical IRI models (Ta-
ble 1) and in the context of human solid-organ transplantation. In particular, in different
preclinical human studies in which organs from deceased donors were not suitable for
transplantation, it has been shown that MSCs were able to reduce IRI side effects in both
lung and kidney in the setting of mechanical organ perfusion [60,61,66,67]. However, de-
spite the safety of MSC treatment having been widely demonstrated for different diseases
in numerous patients [250], several studies have also reported adverse events and side
effects associated with MSC therapy [251]. For instance, the long-term cell culture of MSCs
can lead to genetic abnormalities with consequent tumorigenic effects. Moreover, different
clinical trials reported fibrosis and thromboembolism as the most common adverse events
of MSCs therapy [251]. All these problems may be avoided by exploiting the paracrine
properties of MSCs. Interestingly, in the recent past it has been demonstrated that the
MSC secretome accounts for most of the positive effects of MSC therapy for IRI. The MSC
secretome, containing biological factors that include EVs enriched in proteins and miR-
NAs, has been shown to be strongly involved in the modulation of the IRI phenotype for
several reasons. First, it contains immunomodulatory factors, as well as pro-angiogenic
and tissue repair properties, which by themselves seem to account for the majority of the
therapeutic effects [20,22,252–254]. Second, because of the MSC secretome requirement
for resolution of IRI, its use has recently been proposed instead of MSC transplantation.
This has prompted reflection, as several studies have demonstrated that MSCs, when
intravenously transplanted, die before tissue homing, becoming trapped in the lungs,
or because they do not survive the highly hypoxic environments generated by ischemic
tissues [162,255–257]. MSC paracrine effects seem to be more efficient, thus suggesting that
MSC secretome-based therapy might be beneficial for IRI treatment. In the last few years,
mounting evidence has suggested that MSC priming may be the future of MSC-based
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therapies. Many recent studies, mostly in vitro, have shown that MSC pre-conditioning
might specify the secretome content, thus allowing the selection of the type of factors
within the CM according to the disease to be tackled. For instance, it has been shown
that IFNγ or IL-17 MSC priming generates a secretome enriched in anti-inflammatory
factors, setting the stage for its use in inflammatory diseases, including IRI [22,258]. In
addition, if the resolution of the injury requires tissue regeneration or angiogenesis, 3D
culture priming, and hypoxia pre-conditioning stimulate the generation of MSC secretomes
enriched in molecules, growth factors, and EVs required for tissue repair or formation of
new vessels [259–261]. Very few clinical studies have described strategies to attenuate IRI
damage, though the in vitro results obtained in the recent past have paved the way for
further development of this novel approach in preclinical studies.

4. Conclusions

IRI damage currently represents an important impairment in organ surgery, given
the variety of biological processes involved, and the multiple cell types targeted during
the injury. Inflammation, ROS production, and apoptosis are the main consequences of
the damage, thus therapeutic interventions are required and new strategies are under
investigation. MSC-based cell therapy seems to be one of the most promising, considering
the immuno-modulating and tissue regeneration properties provided by this cell type.
However, several issues need to be addressed, as MSCs’ injection still has adverse effects in
the short term, while no data are yet available in the long term. New alternatives are in
place, which implies MSC-cell-free therapies; however, the studies are still in their infancy
and further research needs to be performed before validation in pre-clinical human subjects.
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