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Abstract: Complex structural chromosome abnormalities such as chromoanagenesis have been re-
ported in acute myeloid leukemia (AML). They are usually not well characterized by conventional
genetic methods, and the characterization of chromoanagenesis structural abnormalities from short-
read sequencing still presents challenges. Here, we characterized complex structural abnormalities
involving chromosomes 2, 3, and 7 in an AML patient using an integrated approach including
CRISPR/Cas9-mediated nanopore sequencing, mate pair sequencing (MPseq), and SNP microarray
analysis along with cytogenetic methods. SNP microarray analysis revealed chromoanagenesis
involving chromosomes 3 and 7, and a pseudotricentric chromosome 7 was revealed by cytogenetic
methods. MPseq revealed 138 structural variants (SVs) as putative junctions of complex rearrange-
ments involving chromosomes 2, 3, and 7, which led to 16 novel gene fusions and 33 truncated genes.
Thirty CRISPR RNA (crRNA) sequences were designed to map 29 SVs, of which 27 (93.1%) were
on-target based on CRISPR/Cas9 crRNA nanopore sequencing. In addition to simple SVs, complex
SVs involving over two breakpoints were also revealed. Twenty-one SVs (77.8% of the on-target SVs)
were also revealed by MPseq with shared SV breakpoints. Approximately three-quarters of break-
points were located within genes, especially intronic regions, and one-quarter of breakpoints were
intergenic. Alu and LINE repeat elements were frequent among breakpoints. Amplification of the
chromosome 7 centromere was also detected by nanopore sequencing. Given the high amplification
of the chromosome 7 centromere, extra chromosome 7 centromere sequences (tricentric), and more
gains than losses of genomic material, chromoanasynthesis and chromothripsis may be responsible
for forming this highly complex structural abnormality. We showed this combination approach’s
value in characterizing complex structural abnormalities for clinical and research applications. Char-
acterization of these complex structural chromosome abnormalities not only will help understand
the molecular mechanisms responsible for the process of chromoanagenesis, but also may identify
specific molecular targets and their impact on therapy and overall survival.

Keywords: CRISPR/Cas9; nanopore sequencing; mate pair sequencing; chromoanagenesis; complex
structural abnormalities; acute myeloid leukemia
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1. Introduction

Complex structural chromosome abnormalities have been reported in myeloid ma-
lignancies such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS).
Complex and massive chromosomal and genomic rearrangements can be generated by a
chromoanagenesis event, which is characterized by the simultaneous occurrence of mul-
tiple structural alterations through a single catastrophic cellular event at one or more
loci [1]. Chromoanagenesis comprises three distinct genomic rearrangements: chromothrip-
sis, chromoanasynthesis, and chromoplexy, with each genomic rearrangement having its
mechanism of formation and etiology [2]. In chromothripsis, the driving force behind the
phenomenon is through multiple double-strand breaks (DSBs) with deletions in a single
catastrophic event that subsequently reassembles chromosomal fragments at random to
develop complex derivative chromosomes [3–5]. These chromosomes may include addi-
tional gain or loss of genetic material from multiple or single chromosomes that lead to
alterations in the genomic structure. Analysis of the breakpoint sequences indicates that
the rejoining of DNA fragments is likely through non-homologous end joining (NHEJ) or
alternative end joining (alt-EJ) [6–8]. Random rearrangements in these events often disrupt
tumor suppressors and amplify oncogenes present [1]. In chromoanasynthesis, chaotic and
complex rearrangements lead to an increase in the copy number (CN) of chromosomes
due to interference of stability and stress at the replication forks during DNA replication,
resulting in replication errors [9–12]. Commonly observed replication errors involve serial
fork stalling and template switching (FoSTeS) or microhomology-mediated break-induced
relocation (MMBIR) mechanisms that lead to region-focused duplications or triplications at
the breakpoint junctions [10,13]. In chromoplexy, genomic rearrangement is driven by the
multiple inter- and intrachromosomal translocations and deletions at fusion junctions [14].
Unlike chromoanasynthesis or chromothripsis, this phenomenon shows little to no copy
number alterations. Evidence to date suggests chromothripsis to be the most probable
mechanism underlying most genomic rearrangements in cancers [1].

Chromoanagenesis has been seen across many different forms of cancer with a preva-
lence of 2–3% [3,15–21]. The frequency is elevated, however, when specific tumors are
considered. The frequency of the event has been seen to reach 25% in bone cancers [3] or
18% during the late stages of neuroblastomas [21]. In rare instances, chromoanagenesis has
been responsible for creating one or many cancer-inducing lesions that provide cellular
growth through three key routes. The first is the formation of circular DNA fragments
that lack centromeres or telomeres but harbor oncogenes (double minute chromosomes)
through chromothripsis and NHEJ, facilitating the amplification of oncogenes and cell
proliferation [22]. The second is the loss or disruption of tumor suppressor genes through
chromothripsis and NHEJ rearrangement. The third is the fusion of oncogenes by join-
ing coding portions of two oncogenes in the same orientation [1]. Previous studies have
also indicated a strong relationship between chromoanagenesis and TP53 mutations in
AML. Between chromoanagenesis and TP53 mutations, whole-genome sequencing (WGS)
and microarray analysis revealed germline and somatic inactivation of the TP53 suppres-
sor gene [16]. In patients with newly diagnosed multiple myeloma, those with genomic
rearrangement through chromothripsis revealed an aggressive disease course and poor
prognosis, indicating chromothripsis may defines a rare entity of high-risk patients [20].

Chromosomal abnormalities are important for tumor formation and development.
These chromosomal abnormalities are responsible for changes in the expression of or
function of RNA and proteins, promoting tumor proliferation that affects the immune
system, and amplification or deletion that reshapes the genome and influences tumor
progression. Chromosomal abnormalities are a shared characteristic among cancers and
are categorized as numerical or structural abnormalities [23]. Numerical abnormalities
mainly consist of aneuploidy (loss or gain of a region or chromatid) or chromosome
instability (CIN) caused by segregation errors during mitosis [24]. Aneuploidy can occur
as segmental parts of the genome or as a whole. CIN is one of the leading causes of tumor
evolution, leading to a poor survival rate in various malignancies. CIN resulting in tri-
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or tetraploidy has been known to promote oncogenesis and, in most cases, leads to copy
number alterations resulting in aneuploidy with tetraploidy as a common temporary state
of aneuploidy. Approximately 90% of human solid tumors and approximately 75% of
hematopoietic cancers experienced aneuploidy [25].

Structural abnormalities consist of DNA damage in addition to the gain or loss of
genomic material, forming derivative chromosomes. Commonly observed abnormalities
range from deletions of chromosomal arms and amplification of genomic regions to al-
terations of multiple chromosomes [26,27]. The most frequent changes noted have been
from deletions, followed by amplification and then unbalanced translocations [28]. Am-
plification or deletion along the genome has been observed in 88% of cancer samples [29].
Other common structural abnormalities include the gain of genetic material on the q arm
of chromosome 8 (33% of cancer samples) and the deletion of genetic material on the p
arm of chromosomes 8 and 17 (33% and 35% of cancer samples, respectively). Evidence
to date revealed chromosome 2 as the least altered, with aberrations of the p and q arms
observed in 18% and 16% of cancer samples, respectively [23]. Previous data have also
shown structural abnormalities associated with immune signatures, with 3p, 8p, 13q, and
17p deletions having a positive correlation and 4q, 5q, and 14q deletions having a negative
correlation [23]. Structural abnormalities vary in different types of malignancies, with some
aberrations seen more frequently and consistently in specific cancers, e.g., the relationship
between AML and abnormalities of chromosomes 5 and 7.

For hematological malignancies, recurrent genetic abnormalities are important in
classifying AML, e.g., the French–American–British (FAB) system. Common chromosomal
abnormalities in AML include t(8;21) translocation, t(15;17) translocation, inversion of
chromosome 16, monosomy of chromosome 5/5q deletion, monosomy of chromosome
7/7q deletion, or trisomy of chromosome 8 [30].

Common methods used in identifying chromothripsis are fluorescence in situ hy-
bridization (FISH) analysis, SNP microarray analysis, and recently, next-generation se-
quencing (NGS) assays used to detect multiple CN states at each clustering breakpoint
location [31–33]. Chromothripsis in AML has been detected on chromosomes 3, 5, 6, 7, 8, 10,
11, 12, 15, 17, and 20 with structural changes that include deletions of 4q28—32, 7q31.1–36.3,
12p11.21–13.3, 16q22–24.3, 17p13–13.1, and 5q31.1–33.1 [31,32]. Given the formation of ring
chromosomes has been frequently associated with mutations in TP53 [34], studies have also
noted a strong relationship between chromothripsis and these ring chromosomes carrying
a mutation in TP53 [31]. Reported genes that are often involved in a chromothripsis event
have been amplified by MYC and KMT2A. Approximately 6.6% of de novo AML cases
have been reported with chromothripsis [31].

Despite improvements in NGS-based genomics technology, the detection of complex
structural chromosome abnormalities from short-read sequencing still poses challenges.
The challenge of short-read sequencing is within the read length, as a short read length does
not allow full representation of the human genome. Short read lengths cause the inability
to read certain regions in the human genome, such as centromere regions, telomeres, and
acrocentric genomic regions with tandem repeats [35]. As a result, a higher mutation
rate cannot be read, leaving an incomplete understanding of the human genome [36–39].
Furthermore, short-read sequencing limits our understanding of complex relationships
that occur in chromoanagenesis.

Long-read sequencing approaches, such as Oxford nanopore technology (ONT, Oxford,
UK), are promising for characterizing chromosomal abnormalities. Although long-read
sequencing poses new challenges, many of the shortcomings with short-read sequencing
are resolved. Long-read sequencing allows the proper identification of simple structural
abnormalities along with a better understanding of long-range structural abnormalities that
occur in chromoanagenesis. Long-read sequencing can sequence stretches of DNA of up to
hundreds of kilobases in length [40,41]. Furthermore, clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9-mediated nanopore sequencing is used for amplifying
targeted sequences containing our desired genomic region of interest. CRISPR/Cas9 is
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a novel gene-editing technique that can efficiently induce targeted genetic modifications.
Compared to polymerase chain reaction (PCR), it is more cost-efficient and allows a higher
mapping quality [42]. CRISPR/Cas9 with nanopore sequencing provides greater sensi-
tivity, allowing for real-time sequencing of the DNA, compared to nanopore sequencing
itself, which has high error rates [42]. This detection method allows structural variants
(SVs) to exist within our sequence of interest. For the CRISPR/Cas9 ribonucleoprotein
complexes, the sequence of the guide ribonucleic acid (guideRNA) is custom-designed.
The guideRNA serves to recognize specific sequences of the DNA, where the ends of the
cut site would be ligated to a sequencing adaptor, which then allows the region of interest
to be sequenced [42].

Mate pair sequencing (MPseq) allows better detection of chromosomal abnormalities.
After the genomic DNA is first fragmented, biotin is added to these ends, which then
allows the fragmented DNA to circularize. The circularization method during this process
allows for the detection of its SVs [43,44]. MPseq’s resulting coverage data can also be used
to identify the copy number alterations, where we can identify the gain or loss of a copy
number variant (CNV) within the genome. Through this technique, we can better identify
the relationship among genetic materials even from different chromosomes.

In this study, we used an integrated approach including CRISPR/Cas9-mediated
nanopore sequencing, MPseq, and SNP microarray analysis, along with conventional
cytogenetic methods (chromosome analysis and FISH), to characterize complex structural
chromosome abnormalities (chromoanagenesis involving chromosomes 2, 3, and 7) in AML.
We have demonstrated the value of this combination approach in characterizing complex
structural abnormalities for clinical and research applications.

2. Materials and Methods
2.1. Patient Data and Diagnosis of Acute Myeloid Leukemia/Myelodysplastic Syndrome

A male patient presented with shortness of breath and was found to have pancytopenia
with circulating blasts on a smear. Acute myeloid leukemia/myelodysplastic syndrome
was diagnosed by bone marrow morphology, immunostaining, and flow cytometry. Flow
cytometry of the peripheral blood showed 5% phenotypically abnormal cells and an
unusual myeloid blast population expressing CD13, CD24, and CD117 with dim partial
CD33 and aberrant CD7. A bone marrow biopsy from his right iliac crest showed 20%
atypical cells with unusual myeloid phenotype, expressing CD34, bright CD117, variable
HLADR, CD38, CD13, and dim partial CD33, along with partial aberrant CD7.

The surgical pathology results from the bone marrow biopsy classified him as AML.
The marrow cellularity was 80–90% and showed an increased population of immature
cells. There was residual hematopoiesis with prominent developing erythroid forms with
left-shifted granulopoiesis. The ratio of myeloid to erythroid precursors was about 1–2:1.
Megakaryocytes were decreased in number with some small, hypolobate forms identified.
The aspirate contained sheets of blasts with scant to moderate cytoplasm and distinct
nucleoli. There were a few immature myeloid elements with a maturation arrest, and there
was erythropoiesis showing dysplastic maturation of nuclear budding and irregular nuclear
membranes. An iron stain performed on the clot section showed rare ring sideroblasts,
accounting for <5% of cells. CD61 stains identified megakaryocytes and highlighted several
micromegakaryocytes not clearly seen on routine stains. CD34 stained about 20% of the
blasts, although these were more numerous in some areas. Peripheral blood showed
circulating blasts and occasional nucleated erythroid precursors.

All procedures followed were in accordance with the ethical standards of the Institu-
tional Committee on Human Experimentation and with the Helsinki Declaration of 1975.
The study was approved by the Local Ethics Committee from the Johns Hopkins Hospital
(Baltimore, MD), USA.
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2.2. Cytogenetics Data: Conventional Chromosome Analysis, FISH, and SNP Microarray

Conventional G-banded chromosome studies were performed using standard tech-
niques. At least 20 metaphase cells were analyzed from unstimulated bone marrow aspirate.
The abnormal karyotypes were described using the International System for Human Cyto-
genetic Nomenclature (2020).

FISH was performed on interphase nuclei from cultured bone marrow cells using
disease-specific probes, according to the manufacturer’s instructions (Abbott Molecular
Inc., Des Plaines, IL, USA). The specimen was considered abnormal if the results exceeded
the laboratory-established cutoff for each probe set.

Whole-genome single-nucleotide polymorphism (SNP) microarray analysis was per-
formed with DNA extracted from bone marrow specimens by conventional methods
(Qiacube). The DNA concentration was assessed using a Qubit fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA). The high-resolution microarray platform utilized was the
Illumina Infinium CytoSNP-850 K v1.2 BeadChip containing > 850,000 markers (mean
spacing, 3.5 kb; Illumina, Inc., San Diego, CA, USA). BeadChips were processed per man-
ufacturer’s guidelines and imaged with the Illumina iScan system. Data were analyzed
with the CNV Partition 2.4.4.0 algorithm in GenomeStudio version 2010.3 (Illumina) and
KaryoStudio version 1.4.3.0 (Illumina). B allele frequency and logR signal intensities were
used to examine and identify potential pathogenic regions of genomic imbalance. All
analyses were performed using human reference genome assembly hg19 (GRCh37).

2.3. Mate Pair Sequencing

DNA extraction and mate pair library preparation methods were performed as previ-
ously described [45,46]. MPseq data were mapped to the reference genome GRCh38 using
BIMA V3 [47], and SVAtools [46] was used to reveal SVs. Detection of SVs by SVAtools
combines three algorithmic approaches: read-pair, split-read, and read depth/count. Clus-
tering of the discordant and split-read fragments was performed by SVAtools to reveal SVs.
Only a cluster with more than three fragments, passing the mask/filter criteria, and being
called by SVAtools is considered a putative junction.

2.4. CRISPR/Cas9-Mediated Nanopore Sequencing

The crRNAs for these SVs were designed using Integrated DNA Technologies (IDT)’s
design tool and selected for the highest predicted on-target performance with minimal
off-target activity (IDT, Inc., Coralville, IA, USA). GuideRNA was assembled as a du-
plex from synthetic CRISPR RNAs (crRNAs) (Custom designed, IDT, Inc., Coralville,
IA, USA) and tracrRNAs (IDT#1072532). The guideRNA duplex was designed to intro-
duce cuts and to target flanking areas of the region of interest. CRISPR/Cas9-mediated
nanopore sequencing and data analysis have been described previously [42]. Briefly, the
guideRNA sequence recognizes DNA sequences around the region of interest, where
the CAS-9 protein’s endonuclease activity then cuts the 3′ end of the recognized se-
quence. The now free region of interest has its ends ligated to a sequencing adaptor,
which then allows the region of interest to be sequenced. Using this method, thirty cr-
RNAs were designed to detect twenty-nine chromosomal abnormalities in chromosomes
3 and 7 (Supplemental Table S1). crRNA #28 and #29 were targeted for the same ge-
nomic region. crRNAs were designed using Custom Alt-R CRISPR-Cas9 guide RNA
(https://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM, 15 February
2020) and Chopchop (https://chopchop.cbu. uib.no/, 15 February 2020) with CRISPR-Cas9.
All analyses were performed using human reference genome assembly GRCh37/hg19,
and SVs were reviewed independently by multiple genetic analysts via the Integrative
Genomics Viewer (IGV, Broad Institute, Cambridge, MA, USA). Only clusters with more
than ten reads at each potential SV breakpoint, with each read having bidirectionality,
were considered a putative SV junction. SVs found within 20 kilobases (kbs) of a crRNA
sequence were defined as on-target SVs.

https://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://chopchop.cbu


Biomedicines 2024, 12, 598 6 of 20

2.5. Data Comparison among MPseq, Nanopore Sequencing, and SNP Microarray

A comparison of CNV calls from nanopore sequencing and SNP microarray analysis
was performed using VIA software version 7.0 (Bionano company, San Diego, CA, USA).
SV data by MPseq were converted to the reference genome hg19 (GRCh37) before being
compared with SVs detected by nanopore sequencing. All SVs involving chromosomes 2,
3, and 7 by nanopore sequencing were manually reviewed using IGV.

2.6. Gene Mutation Panel by Next-Generation Sequencing (NGS)

DNA was extracted by conventional methods per manufacturer’s instructions (QI-
Acube; Qiagen, Hilden, Germany). The DNA concentration was assessed using a Qubit
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). NGS was performed on ex-
tracted genomic DNA, as outlined previously [48,49]. Briefly, library preparation was
performed using Kapa Roche (Wilmington, MA, USA) reagents, hybrid capture was per-
formed using IDT probes (Coralville, IA, USA), libraries were sequenced using an Illumina
NovaSeq (paired-end technology; Illumina, San Diego, CA, USA), and sequences were
aligned to GRCh37/hg19. The targeted NGS assay used 40,670 IDT probes to cover a
panel of 642 pan-cancer genes [48]. The mean read depth was 765× (range 341–1289), and
99.99% of target regions were captured at a level higher than 150×. Sequencing reads
were visualized using IGV. As previously described [34], oncogenic somatic variants were
considered candidate somatic mutations if (1) variants were present with a minimum
variant allele frequency of ≥1%, in at least two alternate reads in both directions, and had
an alternate allele base with mean Qscore of ≥11; (2) variants are described in COSMIC
and/or ClinVar as being known cancer-associated mutations or mutational hotspots; and
(3) variants were classified as deleterious and/or probably damaging by PolyPhen-2 [50]
and/or SIFT [51] servers.

3. Results
3.1. Cytogenetic Results

Conventional chromosome analysis revealed an abnormal karyotype with a complex
derivative chromosome 7: 44,XY,add(1)(p12),t(1;4)(p13;q31.1),add(2)(p13),−3,−5,add(6)
(q25),der(7)?hsr(7)(q11.2)?hsr(7)(q?22)t(3;7)(p12;q?31),−16,der(16)t(16;17)(q12.1;q11.2),−17,
add(17)(p13),del(17)(p13),add(20)(q11.2),der(?)t(?;1)(?;p22)[cp18]/46,XY [2] (Figure 1A).
FISH revealed amplification of the chromosome 7 centromere resulting in the deriva-
tive chromosome 7 (Figure 1B). FISH also detected monosomy 5 and deletions of 16q22
and 20q12–13.12. FISH results for t(15;17) PML::RARA; t(9;22) BCR::ABL1, and t(8;21)
RUNX1::RUNX1T1 were normal. Metaphase FISH revealed amplification of the chromo-
some 7 centromere on the derivative chromosome 7 (Figure 1C).

Genome-wide SNP microarray analysis revealed nine gains, twenty losses, and three
chromoanagenesis regions at 3q12.2–q13.31, 3q13.32–q21.3, and 7p12.2–q11.2 (Figure 2
and Supplementary Table S2). The patient’s chromoanagenesis regions had multiple gains
and losses.
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Figure 1. Cytogenetic data. (A) Karyogram. Red arrows point to an abnormal derivative chromosome
7, and white arrows point to other numerical and structural abnormalities. (B) Interphase FISH
revealed amplification of chromosome 7 centromeres (in green color, pointed by red arrows) and
deletion of 7q31 (in red color). (C) Metaphase FISH. The derivative chromosome 7 (red arrow)
shows multiple signals and amplification of the green centromere signal. The green arrow points
to a normal chromosome 7. The right-side inserted box shows the make-up of the derivative
chromosome 7 by conventional chromosome analysis and FISH data. The derivative chromosome 7
was pseudotricentric and showed centromere amplification.
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Figure 2. Genome-wide SNP microarray revealed chromoanagenesis regions on chromosomes 3 and
7 (red circles) and loss of 7q (7q21.11−7q26.3). Chromosome 2 is normal except for two small losses
and one gain. Blue dots for genotype (B allele frequency) and red lines for copy number based on
probe intensities.

3.2. Mate Pair Sequencing

MPseq revealed 138 SV breakpoints as putative junctions involving chromosomes
2, 3, and 7, which included 69 regions for chromosome 3, 41 for chromosome 7, and 18
for chromosome 2 (Figure 3, Supplementary Table S3). SVs occurred on the p arm of
chromosome 2, on the q arm of chromosome 3, and on the surrounding regions of the
centromere of chromosome 7. These SVs lead to 16 novel gene fusions and 33 truncated
genes (Supplementary Table S3).



Biomedicines 2024, 12, 598 8 of 20

Biomedicines 2024, 12, x FOR PEER REVIEW 8 of 20 
 

of chromosome 7. These SVs lead to 16 novel gene fusions and 33 truncated genes (Sup-

plementary Table S3). 

Besides these three chromosomes, MPseq also revealed SVs involving chromosomes 

1, 5, 6, 16, 17, 20, and 22 (Supplementary Figure S1). 

 

Figure 3. Mate pair sequencing revealed complex rearrangement involving chromosomes 2, 3, and 

7. Only structural variants involving these three chromosomes are shown by genome plot (black 

lines), and breakpoints are shown by solid light green circles. Red arrows pointed to chromosomes 

2, 3, and 7. 

3.3. SVs by Nanopore Sequencing 

SVs were analyzed based on the CRISPR/Cas9 crRNA sequences (Supplemental Ta-

ble S1) in this study, as well as all SVs involving breakpoints on chromosomes 2, 3, and 7. 

We designed thirty CRISPR/Cas9 crRNA sequences to characterize three chromoanagen-

esis regions detected by SNP microarray including two losses and ten gains of two chro-

moanagenesis regions on chromosome 3 as well as two losses and four gains of chro-

moanagenesis regions on chromosome 7 (Supplementary Table S1). 

3.3.1. SVs Based on CRISPR/Cas9 crRNA Sequences 

For on-target SVs involving chromosomes 3 and 7 based on CRISPR/Cas9 crRNA se-

quences, 27 of 29 SVs (93.1%) were on-target by nanopore sequencing (Table 1, Figure 4, 

supplementary Table S4). Of these 27 SVs, 8 mapped to chromosome 7, and 19 mapped to 

chromosome 3. The two crRNA sequences that failed to detect their respective SVs had 

one targeted for chromosome 3 and one targeted for chromosome 7. 

Table 1. Structural variants by CRISPR/Cas9-mediated nanopore sequencing. 

ID 
Chromo-

some 

Structural Variant 

(SV) Type 
crRNA # Copy Number Variant (CNV) 

Genomic Location (Exon, Intron, Non-

Gene Regions) 

1 3 Simple 1 Gain intron (ABI3BP) 

2 3 Complex 2 Gain, amplification intergenic region 

3 3 Complex 3 Gain, amplification intron (CBLB) 

4 3 Complex 4 Loss, gains exon (USF3), intergenic 

5 3 Simple 5 Gain, loss intron (ATP6V1A) 

6 3 Simple 6 Loss, gain, amplification intron (LSAMP) 

7 3 Complex 7 Gains, loss intron (LSAMP) 

8 3 Complex 8 Normal intergenic region 

9 3 Complex 9 Normal intron (NR_135547.1) 

10 3 Complex 11 Gain intron (CFAP91), intergenic 

11 3 Complex 12 Gains, loss intron (CASR), intergenic 

12 3 Complex 13 Gain 
intron (SLC49A4), exon and intron 

(SEMA5B), intergenic 

13 3 Complex 14 Gain, amplification, normal intron (ALG1L) 

14 3 Complex 15 Gain, amplification intron (ALD1H1) 

15 3 Simple 16 Normal intron (ALD1H1) 

Figure 3. Mate pair sequencing revealed complex rearrangement involving chromosomes 2, 3, and 7.
Only structural variants involving these three chromosomes are shown by genome plot (black lines),
and breakpoints are shown by solid light green circles. Red arrows pointed to chromosomes 2, 3, and 7.

Besides these three chromosomes, MPseq also revealed SVs involving chromosomes 1,
5, 6, 16, 17, 20, and 22 (Supplementary Figure S1).

3.3. SVs by Nanopore Sequencing

SVs were analyzed based on the CRISPR/Cas9 crRNA sequences (Supplemental
Table S1) in this study, as well as all SVs involving breakpoints on chromosomes 2, 3, and 7.
We designed thirty CRISPR/Cas9 crRNA sequences to characterize three chromoanagenesis
regions detected by SNP microarray including two losses and ten gains of two chromoana-
genesis regions on chromosome 3 as well as two losses and four gains of chromoanagenesis
regions on chromosome 7 (Supplementary Table S1).

3.3.1. SVs Based on CRISPR/Cas9 crRNA Sequences

For on-target SVs involving chromosomes 3 and 7 based on CRISPR/Cas9 crRNA
sequences, 27 of 29 SVs (93.1%) were on-target by nanopore sequencing (Table 1, Figure 4,
supplementary Table S4). Of these 27 SVs, 8 mapped to chromosome 7, and 19 mapped to
chromosome 3. The two crRNA sequences that failed to detect their respective SVs had one
targeted for chromosome 3 and one targeted for chromosome 7.

Table 1. Structural variants by CRISPR/Cas9-mediated nanopore sequencing.

ID Chromo-some Structural Variant
(SV) Type crRNA # Copy Number Variant

(CNV)
Genomic Location (Exon, Intron,

Non-Gene Regions)

1 3 Simple 1 Gain intron (ABI3BP)

2 3 Complex 2 Gain, amplification intergenic region

3 3 Complex 3 Gain, amplification intron (CBLB)

4 3 Complex 4 Loss, gains exon (USF3), intergenic

5 3 Simple 5 Gain, loss intron (ATP6V1A)

6 3 Simple 6 Loss, gain, amplification intron (LSAMP)

7 3 Complex 7 Gains, loss intron (LSAMP)

8 3 Complex 8 Normal intergenic region

9 3 Complex 9 Normal intron (NR_135547.1)

10 3 Complex 11 Gain intron (CFAP91), intergenic

11 3 Complex 12 Gains, loss intron (CASR), intergenic

12 3 Complex 13 Gain intron (SLC49A4), exon and intron
(SEMA5B), intergenic

13 3 Complex 14 Gain, amplification,
normal intron (ALG1L)

14 3 Complex 15 Gain, amplification intron (ALD1H1)

15 3 Simple 16 Normal intron (ALD1H1)
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Table 1. Cont.

ID Chromo-some Structural Variant
(SV) Type crRNA # Copy Number Variant

(CNV)
Genomic Location (Exon, Intron,

Non-Gene Regions)

16 3 Simple 17 Normal intron (CHST13)

17 3 Complex 18 Normal exon and intron (CHST13)

18 3 Simple 19 Gain intron (CHCHD6)

19 3 Complex 20 Gain intron (PODXL2), intron (MGLL)

20 7 Complex 21 Gain, amplification,
normal intergenic region

21 7 Complex 23 Loss, gains intergenic region

22 7 Complex 24 Gain intergenic region

23 7 Simple 25 Gain intergenic region

24 7 Complex 26 Gain intron (AUTS2)

25 7 Complex 27 Gain intron (AUTS2)

26 7 Simple 28/29 Gain, loss intron (AUTS2)

27 7 Complex 30 Loss, normal intron (GALNT17)
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revealed three chromoanagenesis regions: two on chromosome 3q and one on 7q (shown by red
circles). Mate pair sequencing data is in a solid red circle, CRISPR/Cas9 nanopore sequencing data
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is in green circles, and overlapped data of MPseq and CRISPR/cas9 are in brown circles. (A,B) Com-
plex SVs in the IGV view. Reads of chromosome 7q11.22 genomic region (69,431,166–69,480,285, A)
and 3q21.3 genomic region (126,248,059–126,263,338, B). (C) Copy number variants by nanopore se-
quencing and SNP microarray. Reads of chromosome 3q21.1 genomic region (121,889,250–122,611,342)
show complex SVs including amplification, gain, and loss detected by nanopore sequencing, which
were consistent with SNP microarray findings. Nanopore reads and SNP microarray data were
analyzed by the VIA software to generate copy number variants. Chr: chromosome, CNVs: copy
number variants, ROIs: regions of interest by CRISPR/cas9 guideRNAs, SVs: structural variants.

3.3.2. SVs Involving Chromosomes 2, 3, and 7

Chromosome-wide SV analysis of chromosomes 2, 3, and 7 revealed an additional
14 SVs besides these on-target SVs, revealing a total of 41 SVs (Supplementary Table S4).
Of the 41 SVs involving chromosomes 2, 3, and 7, 28 SVs (68.3%) were from chromosome
3, 10 SVs (24.4%) were from chromosome 7, and 3 (7.3%) were from chromosome 2. In
addition to simple SVs, complex SVs involving over two breakpoints were also revealed
(Figure 4A,B). Twenty-five SVs (61.0%) involved sequences at introns/exons of genes,
twelve (29.2%) were at intergenic regions, and four SVs (9.8%) involved sequences at
both introns and intergenic regions (Table 1, Supplementary Table S4). Forty-one SVs
involved 121 breakpoints (Supplementary Table S4). Furthermore, amplification of cen-
tromeric/pericentric regions of chromosome 7 was detected.

3.4. Comparison between MPseq and Nanopore Sequencing

For a total of 27 on-target SVs involving chromosomes 3 and 7 detected by CRISPR/Cas9-
mediated nanopore sequencing, 21 SVs (77.8%) were detected by MPseq with shared SV
breakpoints (Table 2, Figure 4, Supplementary Table S4). The remaining 6 on-target SVs
detected by CRISPR/Cas9-mediated nanopore sequencing were located at distal/proximal
locations of MPseq breakpoints or had low coverage reads.

Table 2. Comparison of data of SNP microarray, MPseq, and CRISPR/Cas9-mediated nanopore
sequencing.

Chromosome
Bands

Genomic
Regions

SNP
Microarray

Mate Pair
Sequencing

CRISPR/Cas9 Nanopore Sequencing

Structural Variant
(SV)

Copy Number Variant
(CNV)

Chromoanagenesis

3q12.2–q13.31 chr3:100712059-
116712193

2 losses,
3 gains 13 breakpoints 27 breakpoints 6 losses, 9 gains,

3 amplification

3q13.32–q22.1 chr3:118281297-
129837325 7 gains 47 breakpoints 50 breakpoints 2 losses, 13 gains,

6 amplification

7p12.2–q21.11 chr7:62012221-
71918506

2 losses,
4 gains 40 breakpoints 31 breakpoints 7 losses, 11 gains,

2 amplification

Other genomic regions that involved in chromosomes 2, 3, and 7

2p23.3–p16.3 chr2:24066341-
52227175

2 losses,
1 gain 17 breakpoints 4 breakpoints 1 gain, 1 amplification

3q27.2–q29 chr3:185359470-
196944509

1 loss,
1 gain 19 breakpoints none none

Others various genomic
regions none 2 breakpoints 9 breakpoints 1 gain

Total 4 losses,
13 gains

138 breakpoints
(69 SVs)

121 breakpoints
(41 SVs)

62 CNVs (15 losses, 35 gains,
12 amplifications)

Genomic locations are based on the hg19 (GRCh37) genome assembly.
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Among 41 SVs involving chromosomes 2, 3, and 7 determined by nanopore sequenc-
ing, 28 SVs (68.3%) had shared breakpoints as determined by both MPseq and nanopore
(Supplementary Table S4). Of the 28 SVs, 19 SVs (67.9%) were mapped to chromosome 3,
8 SVs (28.6%) were mapped to chromosome 7, and 1 SV (3.6%) was mapped to chromosome
2. Nine SVs detected by MPseq and nanopore involved multiple breakpoints.

3.5. Copy Number Variant Analysis

CNVs for the 41 SVs involving chromosomes 2, 3, and 7 by nanopore sequencing
were analyzed and compared with SNP microarray results using VIA software (Bionano
company, San Diego, CA, USA). These SVs had a total of 62 CNVs including 35 gains, 12 am-
plifications, and 15 losses (Table 2, Supplementary Table S4). Complex CNVs were common
(Figure 4C). Gains/amplifications were more frequent than losses. Chromosome 3 had
more gains/amplifications (31) than losses (8). Chromosome 7 had 13 gains/amplification
and 7 losses. Chromosome 2 had two gains and one amplification. High amplification of
the chromosome 7 centromere was found.

3.6. DNA Sequences Flanking the SV Breakpoints

To understand the genome architecture at SV breakpoints and the role of unusual
DNA sequences such as low-copy repeats or tandem repeats [52,53] in chromoanage-
nesis, we checked for all repeat elements at the SV breakpoints using RepeatMasker
[http://www.repeatmasker.org, 15 August 2023] and Repbase update programs [54]. Of
the 55 SV breakpoints that were detected by MPseq and had sequencing reads by nanopore
sequencing, 19 were intergenic, 35 were at intronic regions, and 1 was at an exon (Supple-
mental Table S5). A variety of repeats were detected in 32 out of 55 breakpoints (58.2%),
including short interspersed nuclear elements (SINEs, a total of 19), long interspersed
nuclear elements (LINEs, a total of 12), and long terminal repeat elements (LTRs, a total of
1) (Figure 5).
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Figure 5. Repeat elements flanking the breakpoints of structural variants in this study. Alu = arthrobac-
tor luteus; CR1 = chicken receptor 1, ERVL = endogenous retrovirus repetitive element, hAT = the
hAT superfamily of DNA transposons; LINE = long interspersed nuclear element, L1 = LINE-1,
L2 = LINE-2, LTR = long terminal repeat element, MIR = mammalian-wide interspersed repeat,
SINE = short interspersed nuclear element.

Of the 19 breakpoints that were intergenic (9 for chromosome 3 and 10 for chromosome
7), 16 had no significant motifs to note. The remaining three off-gene breakpoints had repeat

http://www.repeatmasker.org
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motifs (L3, L1ME1, and L1MEg/Charlie1a, with the former being on chromosome 7 and the
latter two being on chromosome 7). Of the 35 mapped to an intronic region, 6 breakpoints
lie on gene regions that have repeated motifs. Two breakpoints came from chromosome
2 on the intron of the gene ATAD2B and had L1MEa repeat motifs; two breakpoints on
chromosome 3 on the introns of the genes CFAP91 and SEMA5B had repeat motifs of
L1ME4a, and HAL1, respectively. The remaining two breakpoints lie on chromosome 7 on
the intron of the gene POM121 and have L1MEc and L1MB4 repeat motifs. Of the 35 intronic
breakpoints, 17 (14 from chromosome 3 and 3 from chromosome 7) lie on non-repetitive
regions of the genes ATP6V1A (4), LSAMP (4), MGLL (3), CBLB (1), CASR (1), ROPN1B
(1), and AUTS2 (3). Of the 35 intronic breakpoints, 11 (9 from chromosome 3 and 2 from
chromosome 7) lie on gene regions with and without repeat motifs: SLC49A4 (4), ALDH1L1
(2), CHCHD6 (3), and GLANT17 (2). One of three regions on the intron of the gene SLC49A4
had a repeat motif (L2a), one of two regions on the intron of the gene ALDH1L1 had a repeat
motif (L1MB1), two of three regions on the intron of the gene CHCHD6 had a repeat motif
(L1MB7), and one of two regions on the intron of the gene GALNT17 had a repeat motif
(MER5A). Two breakpoints on gene CHST13 lie on an intron and an exon, with neither
having repeat motifs.

3.7. NGS Gene Mutation Panel

The NGS gene mutation panel revealed a homozygous mutation in the TP53 gene
(chr17:7574034 C>T; c.994-1G>A) and a DNMT3A mutation (chr2:25464543 A>C; p.V657G).
The DNMT3A p.V657G mutation is in the protein’s DNA methylase domain. In vitro
studies showed that the p.V657G mutation led to DNMT3A inactivation by reduced methyl-
transferase function and protein stability [55].

4. Discussion

Although complex structural chromosome abnormalities (chromoanagenesis) have
been reported in AML/MDS, this is the first study using CRISPR/Cas9-mediated nanopore
sequencing, MPseq, and SNP microarray analysis along with classic cytogenetic methods
(conventional chromosome analysis and FISH) to characterize chromoanagenesis events
involving chromosomes 2, 3, and 7. The complex chromoanagenesis events in this study
not only have multiple gains and a few losses involving chromosomes 2, 3, and 7, but also
have amplification of the chromosome 7 centromere and a pseudotricentric chromosome 7.
A pseudotricentric chromosome is a tricentric structure in which only one centromere is
active. Chromoanagenesis events along with amplification of the chromosome 7 centromere
and a pseudotricentric chromosome 7 have not been reported previously. Furthermore,
the presence of centromeric repetitive sequences among chromoanagenesis events adds an
extra challenge in characterizing and mapping these SV breakpoints.

Unlike NGS and WGS, CRISPR/Cas9-mediated nanopore sequencing allows the
enrichment of genomic regions of interest without PCR amplification, which eliminates
potential strand biases due to PCR amplification [42]. Furthermore, when short-read NGS
and WGS are used, it is usually hard to have good coverage of repeat sequences, especially
centromeric regions [35]. In this study, the amplification of chromosome 7 centromeric
regions was detected by long-read nanopore sequencing. Centromeres are vital for genetic
stability and inheritance [56]. Research on centromeres is limited, as they are not typically
studied [57–59]. Although complex involvement of chromosome 7 centromeric regions in
chromoanagenesis has not been reported in AML/MDS, studies in the Cryptococcus species
demonstrated that multiple DNA double-strand breaks (DSBs) at centromere-specific
retrotransposons can lead to the formation of multiple interchromosomal rearrangements
(chromothripsis-like events) [60].

Our CRISPR/Cas9 crRNAs were designed for the detection of chromoanagenesis
events as revealed by SNP microarray analysis. The sequence of the guideRNA recognizes
the adjacent sequence of our genomic region of interest, where endonuclease activity
occurs on the recognized sequence. The resulting genomic regions of interest are then
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examined using nanopore sequencing. Besides the high percentage of on-target SVs (93.3%),
additional SVs involving chromosomes 2, 3, and 7 were detected, some of which are
consistent with MPseq data. As a whole-genome approach, it is not surprising that MPseq
revealed more SVs compared to a targeted approach by CRISPR/Cas9-mediated nanopore
sequencing.

Although multiple mechanisms were previously proposed for rearrangements of the
complex genomic structure (chromoanagenesis), chromothripsis followed by NHEJ repair
may have implications in this study. The chromoanagenesis event in our patient involves
chromosome 3 as revealed by SNP microarray analysis. MPseq and targeted nanopore se-
quencing using a CRISPR/Cas9 approach further characterize this chromoanagenesis event
involving multiple SVs and CNVs of chromosomes 2, 3, and 7, which leads us to speculate
that our patient’s chromoanagenesis event involves rearrangement of the genomic structure
driven by chromothripsis and repaired through NHEJ following extensive DSBs. During
NHEJ, small amounts of DNA are removed during the processing phase before being lig-
ated together randomly through DNA ligase. Several DSBs rejoined randomly would result
in improper DNA repair and cause translocation of genetic material or rearrangement of
the genomic structure that could lead to disruptions of tumor suppressors or amplification
of oncogenes. This could explain the patient’s observed translocations/rearrangements
among chromosomes 2, 3, and 7, and the loss of 7q genetic material forming a derivative
chromosome 7.

Chromothripsis is not very rare in AML and is commonly associated with derivative,
marker, and ring chromosomes. Chromothripsis in AML has been reported to influence
patient prognosis and disease biology. It has been detected on various chromosomes
such as 3, 5, 6, 7, 8, 10, 11, 12, 15, 17, and 20, with the most affected chromosomes being
12, 17, and 5 [31]. Besides gene fusions [61], segmental deletions are common, which
include deletions of regions/genes 4q28–4q32 (SFRP2), 7q31.1–7q36.3 (CAV1, EPHA1, and
NRF1), 12p11.21–12p13.3 (EPS8, RECQL, and GUCY2C), 16q22–16q24.3 (CBFA2T3, FOXF1,
CDT1, and FANCA), and 17p13–17p13.1 (ALOX12 and CLDN7), with the 5q31.1–5q33.1
deletion noted to be the most frequent [31]. The reported genes most often involved in a
chromothripsis event are the amplification of MYC on 8q24 and KMT2A on 11q23 (most
common) [31]. AML with deleted 5q or loss of TP53/mutations or deletions of 17q are
frequent with chromothripsis [62]. The presence of a 7q deletion including 7q31.1–36.3
and homozygous TP53/mutations in our AML patient suggests the involvement of a
chromothripsis event forming a highly complex derivative chromosome 7.

Given the high amplification of the chromosome 7 centromere, the gain of extra
chromosome 7 centromere sequences (tricentric), and multiple gains of genomic material
(mainly involving chromosomes 3 and 7), as found in this case, chromoanasynthesis via
FoSTes/MMBIR joining [1,2,63] could be another potential mechanism responsible for the
formation of the complex derivative chromosome 7. Chromoanasynthesis occurs through
DNA replication error, and template switching through FoSTes or MMBIR occurs at a
replication fork, forcing replication to use a template of a nearby sequence or chromosome
in the nucleus [2]. Frequent template switches result in complex rearrangements and
re-start replication forks.

Recurrent genetic abnormalities including SVs, especially gene fusions, gene rear-
rangements, and CNVs are important in aiding AML diagnosis and classification, as well
as providing information about the prognosis [30]. In general, current clinical genetic
diagnostic methods (such as karyotype, FISH, SNP microarray, and short-read-based NGS
assays) are incapable of providing high-resolution characterization of SVs and CNVs. Chro-
moanagenesis contributes to the formation and development of cancer via massive SVs
and CNVs, which may disrupt the activity of tumor suppressor genes, activate oncogenes,
and/or generate fusion proteins with oncogenic potential. Oncogenic SVs and CNVs along
with mutations (such as TP53) promote the survival of cancer cells with massive genetic
abnormalities. The identification of SVs and CNVs of chromoanagenesis may be useful
for further classifying distinct subtypes in myeloid malignancies. We postulate that these
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subtypes in the future may be defined by the genomic composition of chromoanagenesis,
SVs, CNVs, and mutational status. Comprehensive characterization of SVs and CNVs not
only provides insights into the underlying molecular mechanisms of cancer development
and may advance further classification of AML subtypes, but also may contribute to the
identification of new therapeutic targets and the development of innovative treatment
approaches. Frequently, targeted therapies designed to inhibit the activity of specific genes
or fusion proteins can be more specific and less toxic than traditional chemotherapy.

In this case, complex chromosomal rearrangements lead to gene fusions, gene rear-
rangements, truncated genes, gain/amplification of genes, and loss of genes. The genes
involving SVs in this study are commonly associated with the nervous system [such as
AUTS2 (OMIM*607270), DPYSL5 (OMIM*608383), LSAMP (OMIM*603241), STXBP5L
(OMIM*609381)], immune system [such as CD86 (OMIM*601020)], and various cellular
functions, along with novel genes. A few cancers or cancer-related genes [such as EPHA1
(OMIM*179610), MGLL (OMIM*609699), DLG1 (OMIM*601014), SLC49A4 (OMIM *602773)]
have also been observed. EPHA1 (OMIM*179610) is a receptor tyrosine kinase gene, and
overexpression of oncogene EPHA1 was found in hepatoma and lung cancer [64,65].
Elevated MGLL has been described in aggressive human cancer cells [66]. Although
PPP1R2::DLG1 and truncated DLG1 found in this case have not been reported in AML,
DLG1 has been suggested to play a role in cell proliferation control, like tumor suppressor
genes [67,68]. A translocation breakpoint involving SLC49A4 has been associated with a
familial renal cell carcinoma [69].

Breakpoints of complex chromosomal rearrangements in this study are more frequent
in genes compared to intergenic regions. Breakpoints at intronic gene regions seem to be
more frequent than breakpoints at exons. Over half of these breakpoints are associated
with known repeat elements. It is well known that points of genomic instability can be
generated by these repetitive sequences, and these repeat elements may serve as substrates
for complex structural rearrangements [70,71]. Both LINE sequences and Alu repeats
at SV breakpoints are frequent in this case. LINE-1 (L1) is a well-known endogenous
mutagen with both DNA endonuclease [72] and reverse transcriptase activities [73]. L1
can mobilize not only itself [74,75], but also other retrotransposons such as Alu [76,77].
Somatic (tissue-specific) non-allelic recombination between homologous repetitive elements
contributes to human diseases. Centromeres and cancer-associated genes are enriched for
retroelements that may act as recombination hotspots [78]. Retroelement recombination
may lead to genomic instability, structural variants, and segmental duplications [35,78–82].
Widespread somatic recombination of L1 and Alu elements may serve as potential mutagens
in the genome [78,83]. The abundance of L1 and Alu elements at SV breakpoints in our
patient may suggest active and inactive retrotransposons involving a chromoanagenesis
event. Non-allelic recombination between homologous repetitive elements involving the
chromosome 7 centromere and cancer-associated genes may play a role in the formation of
this complex derivative chromosome 7. Further studies of SV breakpoint junctions involved
in AML chromoanagenesis cases will be necessary to elucidate the role of these endogenous
mutagens in chromoanagenesis formation.

Our combination approach serves to characterize the mechanism of this chromoanage-
nesis event. While this approach is beneficial, there are still some drawbacks, one of which is
the accuracy of long-read sequencing. While long reads provide the benefit of better human
genome understanding and the ability to access unreadable regions from NGS, their accu-
racy, cost, and efficiency provide limitations with their usage. Compared to short-read NGS,
the accuracy of long reads is low and variable in certain situations [84–87]. This inconsis-
tency in accuracy produces challenges in gene annotations and the complete understanding
of a genome [88]. However, with polishing tools, the accuracy is improved, although most
polishing tools require a reference and, in some cases, are dependent on the short-read
sequences of the individual [89,90]. This leads to another challenge that long reads pose,
their cost and efficiency. Compared to WGS through short-read sequencing, WGS through
long-read sequencing is overall expensive and time-consuming, where in some cases, it
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could take weeks to obtain results [84,85,91]. Therefore, further advanced analysis software
of long-read sequencing is needed to provide fast personalized oncogenomics in a single
sequencing assay (such as nanopore sequencing of native DNA without PCR amplification)
to detect large, complex SVs, CNVs, and potential epigenetic modifications via genomic
phasing using haplotype-specific methylation calls [92].

In this proof-of-principle study, we demonstrated the feasibility of this integrated
approach in an AML patient carrying three chromoanagenesis events. Given the rarity
of chromoanagenesis in hematological malignancies and the lack of well-characterized
chromoanagenesis events in commonly available cell lines or accessible specimens of cancer
patients, the major limitation of this study is a single AML case. While this study identified
SVs and CNVs of chromoanagenesis that may be useful for further classifying distinct
subtypes in myeloid malignancies, comprehensive studies of the different myeloid sub-
types’ chromoanagenesis, SVs, CNVs, and molecular profiles and their impact on disease
outcomes are needed to inform clinical decision making. Future studies that accumulate
more well-characterized chromoanagenesis from multiple centers, obtain comprehensive
clinical data, and follow various treatment strategies in patients with myeloid malignan-
cies will shed light on treatment response rates, survival rates, and overall prognosis of
these patients.

5. Conclusions

To our knowledge, our case is the first case with complex chromoanagenesis involving
chromosomes 2, 3, and 7 along with a pseudotricentric chromosome 7 centromere and
amplification of the chromosome 7 centromere. This report emphasizes the value of per-
forming an integrated approach including long-read nanopore sequencing, MPseq, and
cytogenomic methods to characterize complex structural rearrangements in AML. The long
reads from the nanopore not only determined simple structural abnormalities but also en-
abled us to resolve the long-range structure of the complex chromoanagenesis. Sequencing
the cancer genome of our patient using CRISPR/Cas9-mediated targeted sequencing on
nanopore results detected breakpoints of complex structural chromosome abnormalities
that are highly sensitive. The characterization of these complex structural chromosome
abnormalities not only will help understand the molecular mechanisms responsible for the
formation and development of chromoanagenesis, but also may identify specific molecular
targets and their impact on therapy and overall survival. This combination approach in the
characterization of chromoanagenesis and other structural abnormalities may be useful for
both clinical and research applications.
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