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2 Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
stergios.boussios@nhs.net

3 Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
4 Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London,

Strand, London WC2R 2LS, UK
5 Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
6 AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
7 Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;

s.v.ovsepian@greenwich.ac.uk
8 Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
* Correspondence: marketa.pokorna@lf3.cuni.cz
† In Memory of Professor Valerie Bríd O’Leary.
‡ Deceased author.

Abstract: Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length
that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved
in the regulation of cellular processes and functions. Many human diseases, including cancer, have
been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets
and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in
different cell types, implicated in mechanisms of neurons and glia, with effects on the development
and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules
and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is
an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of
14–16 months. It is considered a brain-specific disease with the highly invasive malignant cells
spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery
recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the
treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection
of neoplastic changes at their initial stages and more effective therapeutic interventions. This review
presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA
fingerprints in patients’ blood.

Keywords: lncRNA; noncoding RNA; glioblastoma multiforme; glioma; plasma; serum; blood;
biomarker; liquid biopsy; AC016405.3; ADAMTs9-AS2; AGAP2-AS1; AHIF; ANRIL; lncRNA-ATB;
CASC2; CASC7; CASC9; CCND2-AS1; CRNDE; DCST1-AS1; DGCR5; DLEU1-AS1; ECONEXIN;
LINC00461; FAM66C; GAS5; H19; HMMR-AS1; HOTAIR; HOTAIRM1; HOXA-AS2; HOXB13-1; HOT-
TIP; HULC; KTN1-AS1; LINC00467; LINC00565; LINC00641; LINC01393; LINC01426; LINC01446;
LINC01494; LINC01503; LINC01711; LINC02283; LINC-ROR; lnc-TALC; MAFG-DT; MALAT1;
MATN1-AS1; MDC1-AS; MEG3; MIAT; MIR210HG; MNX1-AS1; NCK1-AS1; NEAT1; PART1; PARTI-
CLE; PCAT1; PCA1; PVT1; RBPMS-AS1; RPSAP52; RUNX1-IT1; SAMMSON; SOX2-OT; TALNEC2;
TP73-AS1; TSLC1-AS1; TUSC7; TUG1; TUNAR; UCA1; XIST; ZEB1-AS1; ZBED3-AS1

1. Introduction

To date, more than 100,000 transcripts that are not translated and do not encode
proteins have been identified [1] (see Figure 1). These noncoding molecules are highly
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heterogeneous and vary in length, function, location in genome, and distribution in vari-
ous cells or tissue types. Noncoding RNAs (ncRNAs) form a large heterogeneous set of
functional RNA molecules that are transcribed from different locations throughout the
genome. Although ncRNAs are not translated into proteins, they play an important role in
physiological processes and in the regulation of gene expression. The importance of the
noncoding transcriptome is supported by the direct correlation between the proportion
of ncRNAs in the genome of organisms and their developmental complexity [2]. There is
no such correlation in the number of protein-coding genes [3]. Reports also show that the
number of lncRNA types in neural tissue correlates with the complexity of the nervous
system. The human brain has been found to have the highest number of lncRNA types in
all organisms studied to date [4,5].
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Figure 1. Distribution of coding and noncoding genes in the human genome according to ENCODE
Release version 45 [6]. lncRNA—long noncoding RNA; sncRNA—small noncoding RNA.

Transcripts longer than 200 nucleotides belong to a large group of long noncoding
RNAs (lncRNAs) [2,7]. Their total number is increasing due to more sensitive detection
methods and is greater than the sum of all protein-coding genes [5]. lncRNAs are mainly
transcribed by polymerase II and may subsequently undergo post-transcriptional mod-
ifications. Through interaction with proteins and regulatory segments of the genome,
lncRNAs of neurons are involved in the control of many cellular processes including dif-
ferentiation, proliferation, migration, and signalling, as well as in an array of epigenetic
mechanisms [1,7]. lncRNAs have been detected in the nucleus, nucleolus, cytoplasm, and
mitochondria [1]. There is rising evidence suggesting a mechanistic link between many
human diseases, including cancer, and lncRNA dysregulations, making lncRNA molecules
potential therapeutic targets and biomarkers for diseases, which may facilitate the detection
and diagnosis of various disorders and diseases [1].

The exact function of most lncRNAs remains unknown, with substantial evidence
suggesting that their localisation can predict likely role they play in the cell. Indeed, the
transcripts that prevail in the nucleus are involved in the regulation of gene expression,
chromatin modification, and imprinting [8]. lncRNAs prevalent in the cytoplasm, on
the other hand, are involved in mRNA splicing and the regulation of protein translation
and may also be precursors for small noncoding RNAs (sncRNAs), e.g., microRNAs
(miRNAs) [1,8].

Several lncRNA-specific databases have been created that contain information on their
origin, functions, and action mechanisms (e.g., LNCipedia 5.2; lncRNAfunc), along with
their alternative names and various identifiers, e.g., gene ID, Hugo nomenclature, and
Ensembl tags for both genes and transcripts. Most databases do not list all the data and all
the names for a given lncRNA, and some use their specific lncRNA identification system.
This makes it difficult to find information about a particular lncRNA molecule not only in
databases but also in peer-reviewed publications. Hence, there is pressing need for the use
of uniform and standardized lncRNA nomenclature to improve communication and avoid
confusion or the duplication of individual molecules. Due to the constant new discoveries
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related to lncRNAs, in many cases, the same molecule with different functions is identified
as different lncRNAs [9,10]. There is a lack of consensus and a need for standardized
nomenclature to avoid duplications and confusion in the field. Some lncRNAs, for instance,
can appear in search results under two or more names and can be easily taken as multiple
distinct lncRNAs.

The response of lncRNAs to glioblastoma multiforme (GBM), with emerging recog-
nition of their detection and prognostic relevance, makes their profiling and analysis of
prime relevance to the diagnosis and therapy of this malignant brain condition. GBM
refers to the most common and aggressive malignant brain tumour in adults that resists
conventional therapy, which includes surgical resection followed by radiation therapy and
chemotherapy [10]. GBM is considered a whole brain disease because the neoplastic cells
are highly invasive, infiltrating in surrounding tissue and spreading beyond the lesion area.
This characteristic makes tumour resection highly challenging and leads to frequent post-
surgery recurrences, which are the main cause of mortality [11]. Despite the relatively low
incidence (3–4 cases per 100,000 people), GMB remains one of the greatest challenges and
priorities for research and clinical translation, owing to its severity and very high mortality.
On average, treated patients live 14–16 months from the first diagnosis, with only 5–10% of
patients surviving 5 years from the manifestation of the disease [11]. The effectiveness of
treatment and progress are largely hampered by the high infiltration of malignant tissue
and the heterogeneity of neoplastic cells. In addition to malignant neoplastic cells, the
lesions of GBM typically contain endothelial cells, neurones, astrocytes, oligodendrocytes,
microglia, and non-cellular components such as apocrine and paracrine signalling factors,
exosomes, and other cell types and tissue debris [12]. These components are typically
segregated into several distinct compartments known as tumour niches, which may differ
morphologically and functionally even within a single tumour. Numerous studies confirm
the involvement of lncRNAs in many molecular processes in GBM tissue [13–16]. Revealing
their precise function could aid in the discovery of new therapeutic approaches. These
molecules may also serve well as biomarkers—directly in tumour tissue—for more accurate
diagnosis and the initiation of more effective therapy after tumour resection.

In this article, we provided a systematic review of lncRNAs associated with GBM,
with their response in the disease and diagnostic relevance as biomarkers. Like in several
other cancer types, the classification of brain cancers remains challenging, with the term
glioma often used also for glioblastoma multiforme cell lines and for tissues from patients
with a confirmed diagnosis of GBM. We refer to the commonly used names of lncRNA
deregulated in GMB, describe their response to GBM and other cancer types, and discuss
their localizations as well as identifiers presented by the Ensembl gene (ENSGs) database.

2. Methodology

A systematic review of GBM-associated lncRNAs was generated by searching several
databases. First, the PubMed database of the National Library of Medicine was used, where
the keywords lncRNA, glioblastoma multiforme, and glioma were entered. From these re-
sults, a summary was compiled containing the name of the lncRNA, its role and function in
GBM, expressional changes, and comparison with other cancers. In the case of the keyword
glioma, it was checked whether it was a GBM cell line, grade IV malignancy in the case of
tissues, diagnosis of GBM in patients, or another type of glioma. The given lncRNAs were
searched in the databases lncRNAfunc (https://ccsm.uth.edu/lncRNAfunc/, accessed on
31 January 2024), LNCipedia 5.2, and Ensembl (https://www.ensembl.org/index.html, ac-
cessed on 31 January 2024), from which additional data—alternative names, gene location,
class, and Ensembl gene ID—were added to the list.

3. Genome Localisation and Expression of lncRNA

DNA segments from which lncRNAs are transcribed can occur almost anywhere in
the human genome. LncRNA molecules can be divided into several groups based on their
genome location. Sequences of intron lncRNAs are found in the introns of protein-coding
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genes. Intergenic lncRNAs (lincRNAs), on the other hand, are in the region between the
two coding genes, whereas enhancer lncRNAs (elncRNAs) are localized in the enhancer
regions of protein-coding genes. Sequences for lncRNAs, thus, may overlap with the exon,
intron, or both parts of a gene, or they may overlap the entire sequence of a protein-coding
gene. Importantly, unlike the protein-coding genome, the genome-encoding lncRNA can be
localised on both strands of DNA and be transcribed in both directions. Genomic sequences
within these transcription units can be shared not only with coding regions but also with
each other in both sense and antisense directions [1,17]. In most cases, lncRNA sequences
are transcribed by RNA Polymerase II and rarely by RNA Polymerase I or III [18]. The
resulting transcripts can be post-transcriptionally modified in a manner shared with protein
transcripts, involving the binding of 7-methylguanosine at the 5′ end, polyadenylation
at the 3′ end, or splicing [19,20]. Reverse editing can produce circular RNAs (circRNAs),
which are another subtype of lncRNA. CircRNAs form covalently closed loops, which
makes them resistant to nucleases. Like lncRNA, circRNAs have been detected in biological
fluids such as blood, cerebrospinal fluid, and urine, making them potential biomarkers for
various disease conditions. Some of these molecules have been associated with different
forms of cancers, including gliomas [17].

The expression of lncRNAs is highly specific to various tissue types, with their profiles
responding to disease conditions, as well as developmental stage, circadian rhythms, and
other variations [20,21]. Quantitative studies suggest that the specificity index of lncRNAs
is significantly higher than that of the transcriptome of protein-coding genes. This supports
the notion of lncRNAs as regulators of gene expression in specific cell types [4]. Most types
of lncRNA have been found in the nervous tissue, which is composed of many cell types
that require highly complex regulatory processes. The latter are influenced by lncRNA
molecules, which play an important role in the development, maintenance, and influence
of neural functionality, contributing to brain mechanisms. The set of lncRNAs in human
brain tissue differs from other primate brains by a greater degree than the transcriptome
of encoding genes, with the extent of the differences correlating with the developmental
stage, functionality, and disease state [4].

4. Molecular Mechanisms Underlying lncRNA Functions

To date, studies have implicated lncRNAs in almost all processes of gene expression
regulation, including chromosome inactivation, imprinting, chromatin dynamics, protein
modification, and nucleic acid stability [22,23]. The expression of lncRNAs can be influ-
enced by a variety of factors, including environment, stress, and the pathophysiological
state of the cell. The genes for lncRNAs may be subject to epigenetic modifications, such as
promoter methylation [24].

There are four basic molecular mechanisms by which lncRNAs can interact with
biomolecules and influence their activity [17]:

1. Signalling, where lncRNAs are transcribed at a specific site and time in a cell type-
specific manner, inducing or governing an active signalling event (Figure 2).

2. Decoying, where lncRNAs serve as decoys for target proteins. The lncRNA molecules
occupy the binding site, and the proteins cannot interact with DNA (Figure 3a). In this
way, lncRNA can interact with transcription factors, repressors, chromatin modifiers,
and other proteins. Within this regulatory mode, lncRNAs can also interact with
miRNAs (Figure 3b). Specific lncRNAs act as sponges for some miRNAs, i.e., the
lncRNA binds to the miRNA, which then cannot perform its function.

3. Guiding, where lncRNA molecules control the placement of ribonucleoprotein com-
plexes at specific target sites, with precision effects (Figure 4).

4. Scaffolding, where transcripts act as scaffolds for other molecules that can bind to a
given lncRNA to form a ribonucleoprotein complex (Figure 5).
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A large proportion of lncRNAs use more than one of the mechanisms described
above to regulate cellular processes and, thus, can perform multiple functions. Therefore,
lncRNAs cannot be strictly divided into these four groups [17,25].
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5. Functions of lncRNAs in Cancer

lncRNA molecules are involved in almost all cellular processes, including growth,
development, and differentiation. They also participate in many signalling pathways
and mechanisms with p53 signalling, effects of growth hormones, glucose metabolism,
cytokine expression, the V(D)J recombination of immune cells, and inflammation [18]. Mu-
tations or the altered expression of lncRNAs have been shown to lead pathophysiological
changes, contributing to a variety of cancers [18,26], neurological and neurodegenerative
diseases [27,28], and genetic conditions (e.g., phenylketonuria) [29]. Furthermore, guide
lncRNAs form complexes with regulatory or enzymatically active proteins, targeting them
towards specific gene promoters or genomic loci, thus regulating downstream signalling
events and gene expressions [22]. Using genome-wide RNA-Seq analyses, numerous lncR-
NAs have been identified, exhibiting either upregulation or downregulation in various
forms of malignancies, including renal, breast, and brain cancer [30]. Among these lncRNAs,
MALAT1, RCAT1, DUXAP9, TCL6, LINC00342, AGAP2 Antisense1, DLEU2, NNT-AS1,
LINC00460, and Lnc-LSG1 are, for example, specific to renal cancer, while changes in
HOTAIR, ANRIL, ZFAS1, HOTAIRM1, PVT1, MALAT1, and LNP1 are associated with
breast and brain cancer [31].

Determining the exact function of a given lncRNA molecule is difficult, as in most
cases, changes in their expression do not cause phenotypic alterations. Based on previous
studies, some lncRNAs have been assigned as oncogenic (MALAT1, PCA3, HOTAIR, H19,
PARTICLE, etc.) or as tumour suppressors (GAS5, MEG3, TERRA, etc.) [17,18,32]. Some
lncRNAs may exhibit variability in their properties and effects depending on the type of
cancer. For instance, lncRNA AC016405.3 has tumour suppressor function in GBM, while
at a higher concentration, it is considered oncogenic for breast cancer [33,34]. lncRNA
molecules are specifically expressed in certain types of cancer, with the majority changing
also blood or urine. Given the relatively large number of different types of lncRNA and their
high tissue specificity, lncRNAs are explored as potential biomarkers for various diseases.
A good example is the lncRNA PCA3, whose increased expression signals a prostate cancer
and can be detected in urine, together with enhanced MALAT1 and LincRNA-p21 [17]. The
expressional changes of some cancer-specific lncRNAs have been shown to correlate with
the degree of malignancy, stage of the disease, metastasis, or prognosis [35]. They have
also been associated with resistance to therapy and subsequent tumour recurrence [36]. For
instance, lncARSR, which showed high expression levels in sunitinib-resistant renal cancer



Biomedicines 2024, 12, 932 8 of 37

cells, has been found to be essential for the resistant phenotype, through competition with
endogenous RNA for miR-34 and miR-449, leading to the upregulation of AXL/c-MET and
the activation of STAT3, AKT, and ERK pathways. Remarkably, lncARSR was identified as
a predictive marker for poor response in patients with renal cancer, with emerging data
suggesting its exosomal release from therapy-resistant cells, thereby conferring treatment
resistance [30].

6. lncRNAs and GBM

Given the large number of lncRNA types in healthy brains and the extensive het-
erogeneity of GBM tissue, it is necessary to consider these transcripts when looking into
grading the condition, making a prognosis, or exploring their response to experimental
therapies. Studies have shown a link between lncRNAs and many processes implicated
in the formation and growth of GBM. lncRNA transcripts are involved in cell prolifera-
tion (MIAT) [37], cell apoptosis (MALAT1) [38], cell invasion (ATB) [39,40], angiogenesis
(HULC) [41], DNA damage response (PCAT1) [42], cell cycle regulation (CASC7) [43], the
regulation of the tumour microenvironment (FAM66C) [44], hypoxia (MIR210HG) [45], BBB
permeability (TUG1) [46], tumour progression (TUNAR) [47], recurrence (TALC) [48], resis-
tance to temozolomide (TMZ; ADAMTs9-AS2) [49], radiation resistance (HMMR-AS1) [50],
and others (see Table 1). lncRNAs can engage directly, through various molecular processes
and mechanisms, or indirectly, through the regulation of miRNAs using methylation or by
affecting chromatin modification [36]. lncRNAs also may control the microenvironment
of GBM, where they can influence the activity of cytokines and growth factors [51]. Fi-
nally, lncRNA molecules affect cancer stem cells and, thus, participate in tumorigenesis,
recurrence, and resistance to therapy [36]. Accordingly, deregulated levels of lncRNA were
detected in resected GBM tissue, and their analysis can provide more accurate differential
diagnoses. Expression profiles of different lncRNAs can be also used to determine the
grade of glioma and its subtype [13]. Importantly, the dynamics of lncRNAs circulating
in the blood can be also used for determining prognosis and monitoring GBM response
to treatment.

Table 1. Systematic list of long noncoding RNAs (lncRNAs) associated with glioblastoma multiforme
(GBM). This list includes lncRNAs whose expression is deregulated in association with GBM in vitro,
in vivo, and ex vivo—in GBM cell lines, in GBM primary tissue, in xenografts, in GBM tissue from
resected tumours, and in blood from GBM patients. In addition to their common names, lncRNAs
are also identified by an Ensembl tag and by specifying their position on chromosomes. Abbre-
viations: lncRNA—long noncoding RNA, GBM—glioblastoma multiforme, TMZ—temozolomide,
CSC—cancer stem cells, GSC—glioblastoma stem cells, TCGA—The Cancer Genome Atlas Program.

lncRNA Name
/Alternative

Transcript Name/

Gene Location
Class

Ensembl Gene ID

Role in
GBM Expression Function in GBM Data Ref.

AC016405.3
/RP11-44N11.2/
/lnc-DERL1-3/

8q24.13
bidirectional

ENSG00000272384
suppressor ↓

suppressing
proliferation
and invasion

clinical association;
GBM primary

tissue;
GBM cell line

[33]

ADAMTs9-AS2
/NONHSAT090261/

03p14.1
antisense

ENSG00000241684
oncogenic ↑ TMZ resistance clinical association;

GBM cell line [49]

AGAP2-AS1
/HSALNG0091650/

02q14.1
antisense

ENSG00000255737
oncogenic ↑ proliferation,

viability

GBM primary
tissue;

GBM cell line
[52]
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Table 1. Cont.

lncRNA Name
/Alternative

Transcript Name/

Gene Location
Class

Ensembl Gene ID

Role in
GBM Expression Function in GBM Data Ref.

AHIF
/lnc-TMEM30B-9/

/HIFiA-AS2/

14q23.2
antisense

ENSG00000258777
protumour ↑

invasion,
viability, GSC,

radiation resistance

GBM cell line;
GSC mesenchymal

line
[53]

ANRIL
/CDKN2B-AS1/

09p21.3
antisense

ENSG00000240498
oncogenic ↑ cell proliferation

GBM cell line;
GBM tissue;

GBM patient serum
[13,54]

lncRNA-ATB
14q11.2
intronic

-
protumour ↑ invasion of cell GBM cell line [40]

CASC2
10q26.11
antisense

ENSG00000177640
suppressor ↓ inhibitor of

proliferation

GBM cell line;
GBM tissue;
xenograft

[55]

CASC7
/lnc-AGO2-1/

8q24.3
intronic

ENSG00000259758
suppressor ↓

inhibitor
proliferation,

regulation of cell
cycle

GBM primary
tissue;

GBM cell line
[43]

CASC9
/LINC00981/

/RP11-697M17.1-
003/

8q21.13
intronic

ENSG00000249395
oncogenic ↑ tumourigenesis GBM cell line [56]

CCND2-AS1
12p13.32
antisense

ENSG00000255920
protumour ↑ proliferation and

growth
GBM cell line;

GBM patient tissue [57]

CRNDE
/lnc-IRX3-80/

16q12.2
antisense

ENSG00000245694
oncogenic ↑

proliferation,
invasion,

migration,
inhibition of

apoptosis

GBM cell line;
GBM patient tissue [58]

DCST1-AS1
01q21.3

antisense
ENSG00000232093

protumour ↑ proliferation

clinical related;
GBM primary

tissue;
primary cultivation

[59]

DGCR5
22q11.21
antisense

ENSG00000237517
suppressor ↓

proliferation,
migration,

invasion, apoptosis

GBM cell line;
GBM tissue [60]

DLEU1-AS1
13q14.3
intronic

ENSG00000186047
biomarker ↑

proliferation, cell
cycle,

autophagy;
correlation with

prognosis

GBM cell line;
GBM tissue [61]

ECONEXIN
/LINC00461/

05q14.3
intronic

ENSG00000245526
protumour ↑ proliferation

GBM cell line;
GBM tissue;
TCGA data

[62]

FAM66C
12p13.31
antisense

ENSG00000226711
- ↑↓ tumour

microenvironment

GBM cell line;
GBM tissue;
TCGA data

[44]

GAS5
01q25.1

antisense
ENSG00000234741

suppressor ↓

inhibition of
proliferation,
invasion and

viability

GBM cell line;
GBM tissue;

GBM patient serum
[63]
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Table 1. Cont.

lncRNA Name
/Alternative

Transcript Name/

Gene Location
Class

Ensembl Gene ID

Role in
GBM Expression Function in GBM Data Ref.

H19
/D11S813E/

/ASM1/

11p15.5
intronic

ENSG00000130600
protumour ↑

proliferation,
invasion,

angiogenesis
GBM cell line [64]

HMMR-AS1
05q34

antisense
ENSG00000251018

protumour ↑

tumourigenesis,
proliferation,

invasion,
radiation resistance

GBM cell line [50]

HOTAIR
12q13.13
antisense

ENSG00000228630
protumour ↑

proliferation,
invasion,

therapy resistance,
chromatin

remodelling

clinical association;
GBM patient
tissue/serum;

cell line;
xenoimplants

[65,66]

HOTAIRM1
/HOXA-AS1/

07p15.2
antisense

ENSG00000233429
oncogenic ↑

proliferation,
invasion,
viability

clinical association
TCGA;

GBM primary
tissue;

GBM cell line

[67]

HOXA-AS2
07p15.2

antisense
ENSG00000253552

protumour ↑
migration,
invasion,
viability

GBM tissue;
GBM cell line [68]

HOXB13-AS1
/lncHOXB13-1/

17q21.2
intronic

ENSG00000159184
protumour ↑ proliferation,

progress
GBM tissue;

GBM cell line [69]

HOTTIP
/HOXA-AS6/

07p15.2
antisense

ENSG00000243766
antitumour ↓

inhibition of cell
cycle,

induction of
apoptosis

GBM tissue;
GBM cell line [70]

HULC
/lnc-BMP6-106/

06p24.3
intronic

ENSG00000285219
protumour ↑

proliferation,
angiogenesis,

activity of MGMT

GBM cell line;
GBM patient tissue [29]

KTN1-AS1
14q22.3

antisense
ENSG00000186615

tumour
suppressor ↑

viability
and invasion of cell;

correlation with
prognosis

GBM tissue;
GBM cell line;

TCGA data
[71]

LINC00467
/NR_026761/

01q32.3
intronic

ENSG00000153363
protumour ↑ proliferation and

invasion GBM cell line [72]

LINC00565
13q34

intronic
ENSG00000260910

unknown;
biomarker ↑ correlation with

prognosis GBM patient serum [73]

LINC00641
14q11.2
intronic

ENSG00000258441

unknown;
biomarker ↑ correlation with

prognosis GBM patient serum [73]

LINC01393
07q31.2
intronic

ENSG00000225535

unknown;
biomarker ↑

tumour progress;
correlation with

prognosis

GBM tissue;
GBM cell line;

TCGA data
[74]

LINC01426
21q22.12
intronic

ENSG00000234380
oncogenic ↑

proliferation,
invasion,
viability

clinical association
TCGA;

GBM primary
tissue;

GBM cell line

[75]
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Table 1. Cont.

lncRNA Name
/Alternative

Transcript Name/

Gene Location
Class

Ensembl Gene ID

Role in
GBM Expression Function in GBM Data Ref.

LINC01446
07p12.1
intronic

ENSG00000205628
protumour ↑ tumourigenesis,

progress

clinical association;
GBM cell line;

xenografts
[76]

LINC01494
02q35

intronic
ENSG00000228135

oncogenic ↑ proliferation,
invasion

clinical association;
GBM tissue;

GBM cell line
[77]

LINC01503
9q34.11
intronic

ENSG00000233901

oncogenic;
biomarker ↑

migration, invasion,
apoptosis;

correlation with
malignancy grade

and prognosis

GBM tissue;
GBM cell line;

TCGA data
[78]

LINC01711
20q13.32
intronic

ENSG00000268941
protumour ↑

proliferation,
migration, invasion

correlation with
prognosis

GBM tissue;
GBM cell line [79]

LINC02283
04q12

intronic
ENSG00000248184

oncogenic ↑

correlation with
expression

of PDGFRA,
malignancy

patient GSC lines;
xenoimplants;

GBM tissue
[80]

LINC-ROR
/ROR/

18q21.31
intronic

ENSG00000258609
unknown ↑↓ GSC GBM tissue;

GBM cell line [81]

lnc-TALC
/LNCARSR/

/linc-GNAQ-7/

09q21.31
intronic

ENSG00000233086
protumour ↑ TMZ resistance,

tumour relapse
TMZ-selected GBM

cell lines [48]

MAFG-DT
/MAFG-AS1-001/

17q25.3
intronic

ENSG00000265688
protumour ↑ proliferation GBM tissue;

GBM cell lines [82]

MALAT1
11q13.1
intronic

ENSG00000251562
unknown ↑↓

invasion,
proliferation,

migration,
apoptosis,

permeability
of BBB,

chemosensitivity

clinical association;
GBM patient

tissue and serum;
GBM cell lines;

xenografts

[38]

MATN1-AS1
01p35.2
intronic

ENSG00000186056
suppressor ↓

inhibition of
proliferation
and invasion

GBM primary
tissue lines;

GBM cell lines
[38]

MDC1-AS
06p21.33
antisense

ENSG00000224328
suppressor ↓ inhibition of

proliferation GBM cell lines [83]

MEG3
/lnc-DLK1-3/

14q32.2
intronic

ENSG00000214548
suppressor ↓ inhibition of

proliferation
GBM tissue;

GBM cell lines [84]

MIAT
22q12.1
intronic

ENSG00000225783
oncogenic ↑

proliferation,
migration,
metastasis

GBM tissue;
GBM cell lines [37]

MIR210HG
11p15.5
intronic

ENSG00000247095

unknown;
biomarker ↑

hypoxia, invasion,
TMZ resistance,
correlation with

prognosis

GBM cell line;
xenografts;
TCGA data;
GBM patient

plasma

[45]
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Table 1. Cont.

lncRNA Name
/Alternative

Transcript Name/

Gene Location
Class

Ensembl Gene ID

Role in
GBM Expression Function in GBM Data Ref.

MNX1-AS1
/CCAT5/

/LOC645249/

07q36.3
intronic

ENSG00000243479
oncogenic ↑ proliferation,

migration, invasion
GBM tissue;

GBM cell lines [85]

NCK1-AS1
/SLC35G2-AS1/

/NCK1-DT/

03q22.3
antisense

ENSG00000239213
protumour ↑ TMZ resistance primary tissue;

GBM cell lines [86]

NEAT1
/LINC00084/

11q13.1
intronic

ENSG00000245532
protumour ↑ proliferation,

glycolysis

GBM primary
tissue;

cell lines;
xenografts

[87]

PART1
05q12.1

antisense
ENSG00000152931

tumour
suppressor ↓

inhibition of
progression

and tumour growth

clinical association
TCGA;

GBM tissue;
GBM cell lines

[88]

PARTICL
/PARTICLE/

2p11.2
circulating

ENSG00000286532

regulation
of tumour

suppressors
-

tumour
microenvironment,

chromatin
dynamics

GBM cell lines;
GBM tissue [32,89]

PCAT1
/PCA1/

08q24.21
intronic

ENSG00000253438
unknown ↑↓ viability,

DNA repair GBM cell lines [42]

PVT1
/lncRNA1331/

08q24.2
intronic

ENSG00000249859
oncogenic ↑ tumourigenesis,

progress

GBM tissue;
GBM cell lines;
xenoimplants

[90]

RBPMS-AS1
08p12

antisense
ENSG00000254109

antitumour ↓ radiosensitivity,
apoptosis

GBM tissue;
GBM cell line;
xenoimplants

[91]

RPSAP52
12q14.3

antisense
ENSG00000241749

unknown;
biomarker ↑ correlation with

prognosis

clinical association;
GBM primary

tissue;
GBM cell line

[92]

RUNX1-IT1
21q22.12
intronic

ENSG00000159216
protumour ↑ cell cycles,

proliferation
GBM tissue;

GBM cell line [93]

SAMMSON
/LINC01212/

03p13
intronic

ENSG00000240405

oncogenic;
potential

biomarker
↑

proliferation,
viability,

invasion, apoptosis

GBM tissue;
GBM cell line;

GBM patient serum
[94]

SOX2-OT
3q26.3

overlapping
ENSG00000242808

unknown;
biomarker ↑

migration and
invasion;

correlation with
prognosis

GBM tissue;
GBM cell lines [87]

TALNEC2
/LINC01116/

02q31.1
intronic

ENSG00000163364
protumour ↑ tumourigenesis,

radiation resistance

clinical association
TCGA;

GBM primary
tissue;

GBM cell lines

[95]

TP73-AS1
/lnc-LRRC47-78/

/KIAA0495/

01p36.32
antisense

ENSG00000227372

unknown;
biomarker ↑

correlation with
prognosis;

resistance and
metabolism,
TMZ in GSC

clinical association
TCGA;

GSC lines
[96]
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lncRNA Name
/Alternative

Transcript Name/

Gene Location
Class

Ensembl Gene ID

Role in
GBM Expression Function in GBM Data Ref.

TSLC1-AS1
/lnc-NXPE2-1/
/RP11-713B9/

11q23.2
antisense

ENST00000546273

tumour
suppressor ↓

inhibition of cell
proliferation,

migration and
invasion

GBM tissue;
GBM cell lines [97]

TUSC7
/LINC00902/

03q13.31
antisense

ENSG00000243197

tumour
suppressor ↓

inhibition,
resistance to TMZ,

tumour malignancy

GBM cell line;
GBM patients

resistant
to TMZ tissue

[98]

TUG1
22q12.2

antisense
ENSG00000253352

unknown ↑↓ permeability
of BBB

GBM tissue;
GBM cell line [46]

TUNAR
14q32.2
intronic

ENSG00000250366
unknown ↑

regulation
of tumour progress,

cell cycles
GBM cell lines [99]

UCA1
/UCAT1/

/oncolncRNA-36/

19p13.12
intronic

ENSG00000214049
protumour ↑

proliferation,
invasion, migration;

glycolysis

GBM tissue;
GBM cell lines

[100,
101]

XIST
Xq13.2
intronic

ENSG00000229807
protumour ↑

permeability
of BBB,

angiogenesis,
proliferation

of CSC,
migration, invasion

GBM tissue;
GBM cell line [102]

ZEB1-AS1
10p11.22
antisense

ENSG00000237036
protumour ↑ cell proliferation,

migration, invasion GBM cell line [103]

ZBED3-AS1
05q13.3

antisense
ENSG00000250802

unknown;
biomarker ↓ TMZ resistance

TMZ-resistant
GBM

cell line a tissue
[104]

7. lncRNA Biomarker in Diagnostic and Clinical Use

lncRNAs can regulate gene expression by binding to transcription factors and compet-
ing for binding sequences for miRNAs, thus inhibiting their action. They can also bind to
regulatory proteins and participate in the formation of ribonucleoprotein complexes and
induce the modification of chromatin. Finally, lncRNAs can regulate mRNAs at several
levels, from translational inhibition and splicing to degradation, thus effecting protein
synthesis and function [105]. Changes in the expression of various lncRNAs have been
detected in association with many diseases, including cancer [17], depression [28], cardio-
vascular disease, and others [28,106]. These properties of lncRNAs render them as potential
therapeutic targets and instructive biomarkers for difficult-to-diagnose diseases [1,21]. A
good example is the clinical application of the lncRNA deregulation of prostate cancer
antigen 3 (PCA3). In 2012, the FDA approved a diagnostic test for prostate cancer based on
the detection of the elevated expression of lncRNA PCA3 in urine [17].

Reports suggest that some lncRNAs have better diagnostic and prognostic proper-
ties than more mainstream and standardised biomarkers [105]. lncRNA molecules meet
all major requirements for biomarkers used in clinical diagnostics. They are produced
continuously in cells, respond to homeostatic and environmental challenges, are secreted
into biological fluids, and can be readily detected via analytical methods. Changes in
the levels of these molecules in cells and in biological fluids, therefore, provide valuable
information about the alterations to health and disease states [107]. The fact that most
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lncRNAs are relatively stable, can be released in body fluids including plasma, serum,
urine, and cerebrospinal fluid, and can be readily detectable makes them highly suitable
as biomarkers [26]. lncRNAs have also been detected in the exosomes of biological fluids,
including blood (see Table 2), which makes them better protected from ribonucleases and
more stable over time. In this form, lncRNA molecules are also protected from the effects
of repeated thawing, assisting in their detection and research [108,109]. Expression levels
of lncRNA can be quantified using highly advanced and sensitive laboratory methods such
as real-time PCR, NGS, RNA microarrays, and RNA-Seq, which are becoming increasingly
available. Importantly, changes in lncRNA levels in tissues and bodily fluids may also
reflect alterations in the response of the body to therapeutic intervention [106,110].

Table 2. Systematic list of potential GBM lncRNA biomarkers and their deregulation in blood in other
diseases. Putative lncRNA biomarkers of GBM (Table 1) are also deregulated in the blood of patients
with other diseases.

lncRNA Expression Disease Expression Level Correlates Fluids Ref.

ADAMTs9-AS2 ↓ ischemic stroke severity of disability plasma [111]
↓ non-small cell lung cancer aggressive tumour behaviour serum [112]

ANRIL ↑ breast cancer metastasis serum [113]

↑ coronary artery disease prognosis, degree of inflammation,
severity of disability plasma [114]

↑ COVID-19 severity of disability blood [115]
↑ Crohn’s disease diagnosis serum [116]
↑ diabetes mellitus diagnosis serum [117]
↑ glioma tumour grade and prognosis serum [54]

↑
intraductal papillary

mucinous neoplasms of
the pancreas

malignant prediction plasma [118]

↑ ischemic stroke severity of disability serum [119,120]
↑ multiple myeloma prognosis plasma [121]
↑ neonatal sepsis higher risk of mortality plasma [122]
↑ non-small cell lung cancer prognosis serum, plasma [123,124]
↑ pituitary adenomas prognosis plasma [125]
↑ sepsis severity of disability and prognosis plasma [126]
↑ stable angina level of troponin 1 plasma [127]
↑ ulcerative colitis diagnosis serum [116]

↓
acute exacerbation of
chronic obstructive
pulmonary disease

levels of inflammatory cytokines plasma [128]

↓ acute ischemic stroke clinico-pathological symptoms plasma [129]
↓ glaucoma clinico-pathological symptoms serum [130]
↓ multiple sclerosis diagnosis blood [131]

↓ paediatric inflammatory
bowel disease diagnosis serum [132]

↓ preeclampsia diagnosis serum [133]

CASC2 ↑ osteoarthritis level of IL-17 plasma [134]
↑ aphthous stomatitis level of IL-6 and IL-18plasma plasma [135]
↓ diabetic nephropathy diagnosis serum [136]
↓ hepatocellular carcinoma tumour grade serum [137]
↓ childhood asthma diagnosis serum [138]
↓ chronic renal failure diagnosis serum [139]
↓ oral squamous prognosis plasma [140]
↓ rheumatoid arthritis diagnosis serum, plasma [141,142]
↓ sepsis clinico-pathological symptoms serum, blood [143,144]
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Table 2. Cont.

lncRNA Expression Disease Expression Level Correlates Fluids Ref.

CRNDE ↑ acute myeloid leukaemia clinico-pathological symptoms blood [145]

↑ colorectal carcinoma aggressive tumour and liver
metastasis serum, plasma [146,147]

↑ hepatocellular carcinoma tumour size and differentiation serum [148]

↑ nasopharyngeal
carcinoma lymph node metastasis serum [149]

↑ non-small cell lung cancer diagnosis plasma [150]
↑ sepsis severity of disability serum [151]
↑ severe pneumonia prognosis serum [152]

↓ chronic lymphocytic
leukaemia prognosis serum [153]

↓ sepsis increasing levels after treatment plasma [154]

DGCR5 ↓ gastric cancer clinico-pathological symptoms,
metastasis plasma [155]

↓ hepatocellular carcinoma diagnosis serum [156]

DLEU-AS1 ↑ diabetic foot ulcer diagnosis serum [157]
↑ endometrial cancer clinico-pathological symptoms serum [158]

GAS5 ↑ atherosclerosis diagnosis serum [159]
↑ malignant mesothelioma diagnosis plasma [160]
↑ multiple sclerosis clinico-pathological symptoms serum [161]
↑ myelofibrosis clinico-pathological symptoms plasma [162]
↑ osteoporosis diagnosis plasma [163]

↑ osteoporosis with
fractures

upregulated in the presence of a
fracture serum [164]

↑ polycystic ovary
syndrome diagnosis plasma [165]

↓ glioblastoma multiforme prognosis serum [166]
↓ breast cancer diagnosis serum [167]
↓ cerebrovascular stroke diagnosis serum [168]
↓ coronary artery disease diagnosis plasma [169]
↓ COVID-19 severity of disability serum [170]
↓ diabetes mellitus 2 diagnosis serum [171]
↓ hepatocellular carcinoma diagnosis plasma [172]

↓ chronic hepatitis B virus
infection liver fibrosis serum [173]

↓ mycobacterium
tuberculosis diagnosis serum [174]

↓ non-small cell lung cancer tumour size and metastasis serum, plasma [175,176]
↓ osteoporosis diagnosis serum [177]

↓ polycystic ovary
syndrome biomarker of insulin resistance serum [178]

↓ rheumatoid arthritis diagnosis serum, plasma [179,180]
↓ sepsis diagnosis serum [181]

↓ systemic lupus
erythematosus diagnosis plasma [182]

HOTAIR ↑ Alzheimer’s disease
clinico-pathological symptoms,

decreasing levels after treatment
(exercises)

serum [183]

↑ breast cancer lymph node metastasis plasma, serum [184,185]
↑ colorectal carcinoma diagnosis plasma [186]
↑ congenital heart diseases diagnosis plasma [187]
↑ coronary artery disease diagnosis blood [188]
↑ diabetes mellitus 2 complications of diabetes serum [189]

↑ oesophageal squamous
cell carcinoma

tumour grade, decreasing levels
after treatment serum [190]

↑ gastric cancer tumour grade and metastasis plasma, serum [191,192]

↑ gestational diabetes body mass index, fasting plasma
glucose plasma [193]
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Table 2. Cont.

lncRNA Expression Disease Expression Level Correlates Fluids Ref.

↑ glioblastoma multiforme level of tissue expression,
progression serum [66,166,

194]
↑ hepatocellular carcinoma diagnosis serum [195]

↑ laryngeal squamous cell
carcinoma lymph node metastasis serum [196]

↑ multiple myeloma disease stage plasma [197]

↑ non-small cell lung cancer histology subtype and
tumour-node-metastasis stage plasma [198]

↑ osteoarthritis diagnosis plasma [199]

↑ papillary thyroid
carcinoma tumour grade serum [200]

↑ rheumatoid arthritis decreasing levels after treatment serum [201]

↑ systemic lupus
erythematosus level of IL-6 serum [202]

↓ acute myocardial
infarction diagnosis plasma [203]

↓ atherosclerosis diagnosis plasma [203]

LINC00467 ↓ acute myeloid leukaemia increasing levels after treatment serum [101]

LINC00565 ↑ glioblastoma multiforme survival pattern patients serum [73]

LINC00641 ↑ Crohn’s disease diagnosis serum [204]
↑ glioblastoma multiforme survival pattern patients serum [73]
↑ ulcerative colitis diagnosis serum [204]

MALAT1 ↑ acute kidney injury diagnosis serum [205]
↑ acute pancreatitis diagnosis serum [206]
↑ angina pectoris severity of disability serum [207]
↑ breast cancer diagnosis serum [208]
↑ gastric cancer metastasis plasma [209]
↑ gestational diabetes diagnosis serum [210]
↑ glioblastoma multiforme TMZ chemoresistance serum [38]
↑ hypertension diagnosis plasma [211]
↑ multiple sclerosis diagnosis serum [212]

↑ nasopharyngeal
carcinoma

tumour stage, decreasing levels
after treatment serum [213]

↑ non-Hodgkin lymphoma tumour stage plasma [214]
↑ non-small cell lung cancer tumour grade and metastasis serum [215]
↑ osteosarcoma survival pattern patients serum [216]
↑ ovarian cancer metastasis serum [217]
↑ Parkinson’s disease degree of inflammation serum [218]
↑ prostate cancer diagnosis serum [219]
↑ rheumatoid arthritis diagnosis plasma [220]
↑ sepsis clinico-pathological symptoms plasma [221]
↑ severe pneumonia prediction of survival of patients serum [222]

↑ tongue squamous cell
carcinoma diagnosis serum, plasma [223]

↑ ulcerative colitis diagnosis plasma [224]
↓ diabetes mellitus 2 diagnosis serum [225]
↓ retinoblastoma diagnosis serum [226]

MIR210HG ↑ glioma diagnosis serum [227]

RPSAP52 ↑ renal failure diagnosis plasma [228]
↓ diabetic retinopathy diagnosis plasma [229]

SAMMSON ↑ glioblastoma multiforme diagnosis plasma [230]

↑ oral squamous cell
carcinoma

levels of tissue expression,
decreasing levels after treatment serum [231]

↑ papillary thyroid
carcinoma diagnosis plasma [232]
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Table 2. Cont.

lncRNA Expression Disease Expression Level Correlates Fluids Ref.

SOX2-OT ↑ head and neck squamous
cell carcinoma diagnosis plasma [233]

↑ lung squamous cell
carcinoma

tumour size and lymph node
metastasis, decreasing levels after

treatment
plasma [234]

↑ ovarian cancer diagnosis plasma [235]

↑ pulmonary arterial
hypertension diagnosis serum [236]

TP73-AS1 ↑ non-small cell lung cancer prognosis serum [150]
↑ NK/T-cell lymphoma diagnosis blood [96]

ZEB1-AS1 ↑ oesophageal carcinoma diagnosis serum [237]
↑ prostate cancer diagnosis serum [238]

↓ amyotrophic lateral
sclerosis diagnosis blood [239]

↓ diabetes mellitus complications of diabetes (diabetic
lung) plasma [240]

For some diseases, it appears that the detection of changes in a single lncRNA is
not specific enough to qualify lncRNAs as biomarkers. Indeed, a large percentage of
lncRNAs are abnormally expressed in multiple diseases (see Table 2). Rising data show
that stress and pathological changes in anatomically related structures, types of tissue,
or embryologically interrelated organs are characterised by the abnormal expression of
a similar set of lncRNAs [109]. Thus, it is necessary to identify a set of lncRNAs, called
a signature or fingerprints, that corresponds to a given disease [109] (see Table 3). An
example is the combination of three lncRNAs SPRY4-IT1, ANRIL, and NEAT1. These
lncRNAs are abnormally regulated in the blood plasma of patients with non-small cell
lung cancer. More than 90% specificity and 80% sensitivity have been achieved in the
diagnosis of this disease using the detection of this set of lncRNAs [124]. The analysis
of lncRNAs in blood plasma can also be used to determine the prognosis. Changes in
the regulation of lncRNAs XLOC_014172 and LOC149086, for example, can distinguish
metastatic hepatocellular carcinoma from nonmetastatic carcinoma, with a specificity and
sensitivity of more than 90% and an AUC of 0.934 [109].

Table 3. Suggested lncRNA signatures for the selected diseases according to Table 2.

Disease Deregulated Levels of lncRNA Biomarkers in Peripheral Blood

breast cancer ANRIL (↑), HOTAIR (↑), MALAT1 (↑), GAS5 (↓)
coronary artery disease ANRIL (↑), HOTAIR (↑), GAS5 (↓)

diabetes mellitus 2 ANRIL (↑), HOTAIR (↑), GAS5 (↓), MALAT1 (↓), ZEB1-AS1 (↓)
gastric cancer HOTAIR (↑), MALAT1 (↑), DGCR5 (↓),

glioblastoma multiforme ANRIL (↑), HOTAIR (↑), LINC00641 (↑), LINC00565 (↑), MALAT1 (↑), SAMMSON (↑), GAS5 (↓)
hepatocellular carcinoma CRNDE (↑), HOTAIR (↑), CASC2 (↓), DGCR5 (↓), GAS5 (↓)

multiple sclerosis GAS5 (↑), MALAT1 (↑), ANRIL (↓)
non-small cell lung cancer ANRIL (↑), CRNDE (↑), GAS5 (↑), HOTAIR (↑), MALAT1 (↑), TP73-AS1 (↑), ADAMTs9-AS2 (↓)

rheumatoid arthritis HOTAIR (↑), MALAT1 (↑), CASC2 (↓), GAS5 (↓)
sepsis ANRIL (↑), CRNDE (↑↓), CASC2 (↓), GAS5 (↓)

ulcerative colitis ANRIL (↑), LINC00641 (↑), MALAT (↑)

The detection of changes in the expression of one or more lncRNAs (also as part of
liquid biopsy), thus, might be an effective approach for the early diagnosis of various
diseases (Figure 6), to ensure more targeted and personalized interventions with better
therapeutic outcomes. With the use of biological fluids as a source of lncRNA biomarkers,
sample collection ranges from non-invasive (urine, saliva) to minimally invasive (plasma,
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serum) and invasive (organ biopsy). Due to the properties of lncRNAs, there is pressing
need for the standardization of sample collection and the stringent preparation of bioma-
terials for analysis across different settings, to ensure the specificity and reproducibility
of the data [107]. More research on the correlation between various lncRNAs in the same
condition and cross-correlation in different diseases is warranted, using extensive data
collection and analysis with advanced computational methods and artificial intelligence
(AI) approaches.

Biomedicines 2024, 12, x FOR PEER REVIEW 17 of 37 
 

 

Figure 6. Suggested lncRNA signatures for glioblastoma multiforme and clinical application. Cre-

ated with BioRender.com (accessed on 21 March 2024). 

8. Emerging lncRNA Biomarkers of GBM 

ADAMTS9-AS2 (ADAM metallopeptidase with thrombospondin type 1 motif 9 antisense 

RNA 2) is considered a proto-oncogenic GBM lncRNA in most studies [49,241]. This 

lncRNA is also abnormally upregulated in other malignancies, with significantly in-

creased levels in ovarian cancer tissue [217], while in lung adenocarcinoma, its level is 

reduced [242]. ADAMTS9-AS2 is involved in several major signalling pathways, includ-

ing PI3K/AKT and MEK/Erk, and interacts with many miRNAs (in most cases as a sponge) 

[243]. ADAMTS9-AS2 has both tumour suppressor and proto-oncogenic functions de-

pending on the type of cancer and can be used as a biomarker for cancer. Abnormal ex-

pression levels of this lncRNA measured in plasma or tissue have diagnostic value, with 

changes reported in patients with malignancy of lung, oesophageal and prostate cancer 

[243], and lung adenocarcinoma [112,244,245]. The decreased expression of 

ADAMTS9-AS2 in tumour tissue correlates with poor prognosis and shorter survival in 

patients with oesophageal cancer [246], lung adenocarcinoma [242], breast cancer, and 

bladder urothelial carcinoma [243]. The expression of ADAMTS9-AS2 was reduced and 

negatively correlated with the extent of tissue and organ damage, which makes this 

lncRNA a potential qualitative biomarker [111]. ADAMTS9-AS2 has repeatedly demon-

strated GBM oncogenic effects [49,241]. Its expression was measured in resected GBM tis-

sue and cell lines, with levels correlating with glioma grade [241]. Increased 

ADAMTS-AS2 levels are also prognostic, as higher expression levels were found in GBM 

patients resistant to TMZ treatment compared to those responding to the same treatment 

[49]. Considering that elevated levels of this lncRNA are also found in the blood of patients 

with several diseases, the most effective use of this lncRNA profile in patients with GBM 

would be in combination with other indicators of disease. 

ANRIL (antisense noncoding RNA in INK4 locus) is considered an oncogenic lncRNA 

linked to GBM. The dysregulation of ANRIL in blood has been associated with cancers in 

general, cardiovascular diseases [247], and type 2 diabetes mellitus [248] (see Table 2). This 

lncRNA can modulate gene expression at the post-transcriptional level by interacting with 

Figure 6. Suggested lncRNA signatures for glioblastoma multiforme and clinical application. Created
with BioRender.com (accessed on 21 March 2024).

8. Emerging lncRNA Biomarkers of GBM

ADAMTS9-AS2 (ADAM metallopeptidase with thrombospondin type 1 motif 9 antisense
RNA 2) is considered a proto-oncogenic GBM lncRNA in most studies [49,241]. This lncRNA
is also abnormally upregulated in other malignancies, with significantly increased levels
in ovarian cancer tissue [217], while in lung adenocarcinoma, its level is reduced [242].
ADAMTS9-AS2 is involved in several major signalling pathways, including PI3K/AKT and
MEK/Erk, and interacts with many miRNAs (in most cases as a sponge) [243]. ADAMTS9-
AS2 has both tumour suppressor and proto-oncogenic functions depending on the type
of cancer and can be used as a biomarker for cancer. Abnormal expression levels of this
lncRNA measured in plasma or tissue have diagnostic value, with changes reported in
patients with malignancy of lung, oesophageal and prostate cancer [243], and lung ade-
nocarcinoma [112,244,245]. The decreased expression of ADAMTS9-AS2 in tumour tissue
correlates with poor prognosis and shorter survival in patients with oesophageal can-
cer [246], lung adenocarcinoma [242], breast cancer, and bladder urothelial carcinoma [243].
The expression of ADAMTS9-AS2 was reduced and negatively correlated with the extent of
tissue and organ damage, which makes this lncRNA a potential qualitative biomarker [111].
ADAMTS9-AS2 has repeatedly demonstrated GBM oncogenic effects [49,241]. Its expres-
sion was measured in resected GBM tissue and cell lines, with levels correlating with glioma
grade [241]. Increased ADAMTS-AS2 levels are also prognostic, as higher expression levels
were found in GBM patients resistant to TMZ treatment compared to those responding to
the same treatment [49]. Considering that elevated levels of this lncRNA are also found in
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the blood of patients with several diseases, the most effective use of this lncRNA profile in
patients with GBM would be in combination with other indicators of disease.

ANRIL (antisense noncoding RNA in INK4 locus) is considered an oncogenic lncRNA
linked to GBM. The dysregulation of ANRIL in blood has been associated with cancers in
general, cardiovascular diseases [247], and type 2 diabetes mellitus [248] (see Table 2). This
lncRNA can modulate gene expression at the post-transcriptional level by interacting with
miRNAs and proteins [249]. Furthermore, ANRIL negatively and positively influences
gene expression at the chromatin level [247]. ANRIL functions as a scaffold for PRC2 and,
therefore, participates in epigenetic gene silencing [250] and is involved in alternative splic-
ing in HEK293 and HUVEC cells [251]. Through these mechanisms, ANRIL contributes to
tumourigenesis processes, increasing cell proliferation, migration, invasion, and metastasis
and suppressing apoptosis and senescence [248]. Upregulated ANRIL expression levels
have been found to be linked with cancers such as lung, stomach, breast, ovarian, cervical,
colorectal, bladder, thyroid, brain, osteosarcoma, myeloma, prostate, endometrial, renal,
leukaemia, melanoma, retinoblastoma, and hepatocellular carcinoma [248]. In addition to
an increased risk of cancer, polymorphisms in the ANRIL gene are also associated with
the risk of atherosclerosis, obesity, and type 2 diabetes. ANRIL expression is also affected
by inflammation, with pro-inflammatory factor IFN-γ activating the transcription factor
STAT1, thereby inducing ANRIL expression in endothelial cells [249]. Elevated ANRIL
can affect the expression of NF-κB-dependent inflammatory molecules, such as IL-6 and
IL-8 [250]. In GBM, the oncogenic lncRNA ANRIL is upregulated in cell lines, resected
GBM tissue, and the serum of patients diagnosed with glioma [16,54]. The high expression
of this lncRNA in patient serum correlates with adverse prognosis, grade, size, and metas-
tasis [54]. This lncRNA should be part of the standard screening procedure of patients with
suspected GBM.

CASC2 (cancer susceptibility candidate) is another lncRNA candidate for the diagnosis
of GBM [55], with its downregulation also reported in endometrial, lung, gastric, colorectal,
and bladder cancer. In clinical practise, low levels of CASC2 are associated with a more
aggressive cancer phenotype and shorter survival time [252]. CASC2 is involved in the
MAPK and Wnt/B-catenin signalling pathways. This lncRNA functions as a sponge for
some oncogenic miRNAs, such as miR-21 and miR-18a [252]. The lncRNA CASC2 was
monitored in the blood of patients with type 2 diabetes. Low serum levels of CASC2
predict the appearance of chronic renal failure [139] and rheumatoid arthritis [144] in these
patients. Different plasma levels of CASC2, along with IL-6 and IL-8, were found in patients
treated for aphthous stomatitis compared to healthy controls. Higher levels of CASC2 after
treatment predicted a higher rate of recurrence [135]. CASC2 expression levels measured in
whole blood negatively correlate with liver cancer stage [137]. The deregulation of CASC2
expression was also investigated in the serum of patients hospitalized with sepsis. Levels
were negatively correlated with the Assessment of Acute Physiology and Chronic Health II
(APACHE II) and the Sequential Organ Failure Assessment (SOFA). With lower CASC2
levels, the risk of death increases in these patients. CASC2 insufficiency may be a good
biomarker, as it correlates with reduced cytokine release, the severity of multiorgan injury,
and prognosis in these patients [144]. On the other hand, the upregulation of CASC2 was
observed in pancreatic tissues of patients with acute pancreatitis [253]. The expression of
CASC2 was examined in GBM cell lines, xenografts, and tissues resected from patients
diagnosed with glioma [55,254,255]. The level of this lncRNA is upregulated compared
to healthy controls. This fact leads to changes in the expression of some miRNAs, e.g.,
miR-193a-5p, and a decrease mTOR expression [254]. The expressional changes negatively
correlate with the tumour grade and survival time in patients [255] and with its role in
the efficacy of chemotherapy also reported [256]. Unfortunately, data reporting changes in
CASC2 expression in the blood of GBM patients are not available. Given the diagnostic and
prognostic value of this lncRNA in GBM patients and the significance of changes in blood
levels of CASC2 in other diseases, it is desirable to investigate in more detail the dynamics
of this tumour suppressor lncRNA in the blood of GBM patients.
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CRNDE (colorectal neoplasia differentially expressed) is an oncogenic lncRNA detected
in tissue from GBM patients and is associated with resistance to TMZ therapy [58]. This
lncRNA is also abnormally expressed in other cancers. Alterations in CRNDE expression
correlate with tumour clinico-pathological characteristics and the prognosis of patients
diagnosed with colorectal cancer, breast cancer, cervical cancer, lung adenocarcinoma,
multiple myeloma, chronic lymphocytic leukaemia, and ovarian cancer [257]. The phys-
iological expression of CRNDE is tissue-specific; low levels are detected, e.g., in the col-
orectal mucosa; on the other hand, CRNDE is found in breast tissue and testes in higher
amounts [257]. CRNDE interacts with a wide variety of targets involved in the activation
of the Wnt/β-catenin signalling pathway, as well as some miRNAs (e.g., miR335-3p) and
proteins [258]. CRNDE may serve as a scaffold for some tumour-associated proteins (e.g.,
DMBT1) [259,260]. Through the molecular mechanisms described above, CRNDE regulates
the tumour microenvironment, contributing to tumorigenesis—proliferation, cell invasion,
apoptosis, metastasis, and treatment resistance [151]. Elevated levels of this lncRNA are an
indicator of the prognosis of cancer patients [151], e.g., in a patient with osteosarcoma [258].
The deregulated expression levels found in the blood of patients hospitalized with sepsis
are correlated with APACHE II and SOFA, as well as inflammation, and are a prognostic
biomarker for sepsis [151]. Finally, CRNDE appears to be a good biomarker for the clinical
course of hepatocellular carcinoma. The available analyses suggest that serum-measured
exosomal lncRNA CRNDE is an independent marker of survival time in patients with
hepatocellular carcinoma [148]. CRNDE is one of the best characterized lncRNA in as-
sociation with gliomas and GBM, with increased expression observed in GBM cell lines
(including CSCs [261]) and in resected GBM tissues [262]. Tissue expression levels of this
lncRNA correlate with prognosis, tumour size and the risk of recurrence [261], and GBM
subtype [263], and levels predict patients’ chemosensitivity to TMZ treatment [58]. In vitro
experiments suggest that CRNDE knockdown enhances TMZ chemosensitivity in GBM
cells [58]. This makes CRNDE a potential therapeutic target for further GBM treatment
research. The level of CRNDE in the blood of GBM patients has been investigated [166].
Because it was detected in only 20% of patients, its biomarker potential has not been further
investigated [166]. In consideration of the facts described above, it would be a good idea
to focus on a larger sample of patients with different subtypes of GBM to see if increased
CRNDE expression in the blood of patients indicates only that subtype of GBM or decreased
chemosensitivity to TMZ.

DGCR5 (DiGeorge syndrome critical region gene 5) is one of the GBM suppressor lncR-
NAs [60]. The oncogenic and suppressor functions of DGCR5 have been described depend-
ing on the type of malignancy (e.g., gallbladder cancer, lung cancer) [264]. The dysreg-
ulation of DGCR5 expression has also been documented in patients with Huntington’s
disease [265]. At the molecular level, this lncRNA is involved in various mechanisms of
tumourigenesis, including cell proliferation, invasion, migration, apoptosis, and response
to therapy. It interacts with many miRNAs, including miR-21, and functions as compet-
ing endogenous RNA (ceRNA) [266]. Reduced expression compared to healthy controls
has been observed in the following malignancies: cervical [267], laryngeal, bladder [268],
pancreatic, thyroid, prostate, ovarian cancer, hepatocellular carcinoma [269,270], colorectal
cancer [266], and gliomas [60]. For these types of malignancies, DGCR5 could be used
as a biomarker, as reduced expression levels correspond to clinical stage, tumour size,
survival time, and the amount of metastasis [264,266,271,272]. On the other hand, increased
expression was detected in gallbladder cancer and triple negative breast cancer [264,273].
This lncRNA also correlates with the number of immune cells and the strength of the
immune response in the tumour microenvironment [264]. DGCR5 is downregulated in
glioma tissue and cell lines [60]. The analysis of data from xenograft experiments confirmed
that this lncRNA acts as a tumour suppressor by inhibiting glioma growth [60]. The level
of lncRNA in resected tissue negatively correlates with glioma grade and prognosis [274].
This lncRNA could be included in the tissue signature of GBM to refine diagnosis and
prognosis. DGCR5 expression level correlates with the amount of immune and stromal
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cells and is, thus, associated with immune response and immune infiltration [274]. Further
studies indicate that this lncRNA is involved in the process of angiogenesis and could be a
promising therapeutic target [275]. Given its diagnostic and prognostic character in GBM
and deregulation in the blood of gastric cancer patients [155], this lncRNA is an interesting
target for analysis in the blood of GBM patients.

GAS5 (growth arrest specific 5) is a GBM tumour suppressor lncRNA [63]. The decreased
expression of this lncRNA is also detected in other cancers including breast, prostate,
ovarian, cervical, colorectal, gastric, kidney, bladder, lung, pancreatic, endometrial, and
renal cancers, as well as melanoma, osteosarcoma, neuroblastoma, and gliomas [276].
GAS5 naturally accumulates in cells after growth arrest induced by, for example, nutrient
deficiency. GAS5 affects cell cycle progression, and it is necessary for normal cell growth
arrest. High levels of GAS5 expression inhibit cell cycle progression, while decreased
GAS5 expression reduces apoptosis and promotes accelerated cell division [276]. GAS5
is considered a tumour-suppressive lncRNA in association with many malignancies, in
which the reduced expression of this transcript has been detected. Clinico-pathological
characteristics, which include survival time, relapse-free survival, the presence of distant
metastases, the presence of lymph node metastases, tumour size, and progression, are
inversely correlated with expression levels in different types of cancer, suggesting that
GAS5 could become a diagnostic and prognostic biomarker. Furthermore, it also has the
potential to be a biomarker allowing for the monitoring of therapeutic responses [277].
GAS5 tumour suppression has been associated with gliomas, and the expression level of
this lncRNA is correlated with the degree of tumour malignancy and patient survival time.
Differential expression levels of GAS5 are detected not only in tissues but also in body fluids,
including blood and urine [278]. Decreased plasma and serum GAS5 levels have been
detected in patients with multiple sclerosis and in patients with myelofibrosis. Measured
values were correlated with the clinico-pathological status of the patient [161,162]. Reduced
expression was detected in serum from patients with various diseases including breast
cancer [167], stroke [168], COVID-19 [170], liver cancer, sepsis [181], rheumatoid arthritis,
and osteoporosis [177]. The tumour suppression of GAS5 has been associated with gliomas,
and the expression level of this lncRNA correlates with the degree of tumour malignancy
and patient survival time. GAS5 transcription is higher in lower-grade gliomas compared
to higher-grade gliomas, including GBM [279]. Low levels of GAS5 expression observed in
GBM compared to healthy controls correlate with poor prognosis [269]. Serum levels of
GAS5 may become a good prognostic biomarker as part of the lncRNA signature because
deregulated levels of this lncRNA are associated with the two-year overall survival of
GBM patients after surgery [166]. The deregulation of GAS5 in multiple diseases shows
the importance of this lncRNA. For the clinical use of GAS5 as a biomarker, specific sets of
lncRNAs are needed to facilitate higher diagnostic specificity.

LINC00467 (long intergenic non-protein coding RNA 467) is an oncogenic GBM lncRNA,
and its expression correlates with the grade of glioma [72]. This lncRNA has been shown to
be pro-inflammatory in association with some other malignancies such as gastric cancer,
with its increase reported in lung cancer, breast cancer, colorectal cancer, hepatocellular
carcinoma, osteosarcoma, head squamous cell carcinoma, and others [280]. LINC00467 is
part of several signalling pathways including Akt, STAT, and EGFR, and its deregulation
may contribute to pro-inflammatory mechanisms [281,282]. Tumourigenesis can also occur
through the sponging of, e.g., miR-4779 and miR-7978 [283]. LINC00467 can also act as
a ceRNA and, thus, participate in the regulation of signalling pathways (e.g., EGFR) and
tumorigenesis [284]. It correlates with the clinical stage of various cancer types, with their
poor prognosis and survival time [281,285–288]. Interestingly, this lncRNA can encode a
short ASAP peptide. Research shows that this micropeptide is involved in mitochondrial
metabolism, and high levels correlate with a poor prognosis in patients with colorectal can-
cer [289]. Another argument for considering this lncRNA among diagnostic and prognostic
biomarkers, including GBM, is the detection of LINC00467 deregulation in the plasma of
patients with acute myeloid leukaemia [101]. Increased expression levels of LINC00467
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have also been detected in prostate cancer tissue. The level of expression varied between
cells and specifically between two macrophage phenotypes, pro-inflammatory and anti-
inflammatory. Studies show that LINC00467 is involved in the polarization of macrophages
towards the pro-inflammatory type. These facts make LINC00467 a promising therapeutic
target for patients with early stage prostate cancer [290]. LINC00467 was analysed in
glioma tissues and in cell lines [291]. The expression level was upregulated [291], and its
knockdown inhibited the proliferation of cell [291] and induced apoptosis [291]. These
observations make LINC00467 a potential therapeutic target. More experiments, including
the analysis of this lncRNA in patients’ blood, are required to designate LINC00467 as a
GBM biomarker.

LINC00641 (long intergenic non-protein coding RNA 641) is a potential biomarker for
GBM and is differentially expressed in other types of cancer [73,292]. LINC00641 can be
classified as both a tumour suppressor and an oncogenic lncRNA depending on the type
of cancer. The tissue expression of this biomolecule is upregulated in association with
gastric, renal, prostate, and rectal cancers and acute myeloid leukaemia [292,293]. On the
other hand, reduced expression levels are linked with cervical, bladder, breast, non-small
cell lung, and thyroid cancer [292]. Differences in tissue expression are associated with
prognosis and survival in patients with cancers that include prostate cancer, thyroid cancer,
bladder cancer [294], gastric cancer, renal cell carcinoma, and rectal cancer [292,295]. In
patients with breast cancer, expression levels correlate with tumour size and clinical stage,
including lymph node metastasis [295]. LINC00641 interacts with many miRNAs as a
sponge, e.g., for miR-197-3p, or as competing endogenous RNAs (ceRNAs) in cervical,
bladder, and rectal cancers and acute myeloid leukaemia [292]. LINC00641 is also in-
volved in the regulation of several signalling pathways including PTEN/PI3K/AKT and
Notch-1 [296]. Therefore, targeting the LINC00641/miR-197-3p/KLF10/PTEN/PI3K/AKT
cascade could hold promise as a therapeutic strategy. LINC00641 has been shown to be
involved in the regulation of proliferation and apoptosis, as well as invasion and metastasis
in several cancer types. Many studies in cell lines demonstrated the therapeutic potential of
LINC00641. Targeting this lncRNA has been reported to alleviate features of tumourigene-
sis in almost all cancer types mentioned above [292]. In some cases, for example, in gastric
cancer, targeting LINC00641 also affects drug resistance [297]. The above facts nominate
LINC00641 as a high-quality potential biomarker and therapeutic target in the context
of cancer and other diseases. LINC00641 has also been detected at higher levels in the
serum of patients diagnosed with inflammatory bowel diseases such as ulcerative colitis
and Crohn’s disease and may, thus, be part of a non-invasive diagnostic pathway [204].
Furthermore, the results of some studies suggest the involvement of this lncRNA in the
autophagy process and its indirect effect on the expression of brain-derived neurotrophic
factor (BDNF) [298,299]. It is reportedly downregulated in GBM cell lines and tissues
and is proposed to be a tumour suppressor lncRNA acting as an inhibitor of GBM cell
proliferation [300,301]. Based on bioinformatics analyses, LINC00641 is recommended as
part of the lncRNA signature for more accurate diagnosis from resected tissue [300,302]. In
the serum of GBM patients, LINC00641 was analysed together with LINC00565, and both
lncRNAs showed increased expression compared to healthy controls [73].

MIR210HG (MIRNA210 host gene) is an oncogenic GBM lncRNA [45] and is deregu-
lated in other cancers (liver, lung, pancreatic, breast, gastric, cervical, ovarian, and colorec-
tal) and non-cancerous diseases such as preeclampsia, acute renal injury, and others [303].
MIR210HG is involved in cell proliferation, migration and invasion, energy metabolism,
autophagy, hypoxia, radiosensitivity, and chemoresistance. MIR210HG has been confirmed
to interact with many miRNAs, e.g., by sponging miR-520a-3p, suppressing trophoblast
migration and invasion in vitro, or as a ceRNA [304]. Cell culture studies and clinical data
show that there is an association between drug resistance and the abnormal expression of
MIR210HG in certain cancers, including GBM, pancreatic cancer, non-small cell lung cancer,
ERPR/Her2-type breast carcinoma, and colorectal cancer. These data make MIR210HG
a novel therapeutic target that could improve tumour sensitivity to radiotherapy and
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chemotherapy and inhibit neoplastic process [45,303,305]. Elevated levels of MIR210HG
expression have been found in other cancers, with its higher levels reported in hepatocel-
lular carcinoma tissue, which correlates with the clinical stage of the disease and tumour
characteristics, including size, vascular invasion, and histological differentiation. It is
also negatively correlated with overall cancer survival and could, therefore, be a good
prognostic marker [306]. The abnormal expression of MIR210HG was found in pancre-
atic tumour tissue and its level is also associated with the survival time of patients [307].
Expressional changes are also associated with the clinical presentation of patients with
osteosarcoma, as well as breast cancer, colorectal cancer, gastric cancer, cervical cancer, and
ovarian cancer [303]. Interestingly, this lncRNA is overexpressed in the sperm of infertile
men with varicocele and negatively correlates not only with the quantity of sperm but also
with the motility of the sperm [308]. MIR210HG was detected in the placenta of patients
with preeclampsia compared to healthy controls [304]. These data suggest that MIR210HG
may be included in the list of potential prognostic markers related to various diseases. The
upregulation of MIR210HG was detected in the serum of glioma patients compared to
healthy controls [227]. In addition to blood, MIR210HG levels were also elevated in GBM
tissue and cell lines [45]. As mentioned above, MIR210HG is involved in the mechanism
of hypoxia, which affects tumour aggressiveness. Elevated levels of this lncRNA predict
poor prognosis associated with cell invasion, CSC, and TMZ resistance [45]. Based on
bioinformatics analyses, MIR210HG was found to be part of a set of lncRNAs that can be
used to distinguish GBM from other gliomas [309].

ZEB1-AS1 (zinc finger E-box-binding homeobox 1 antisense 1) is an oncogenic GBM
lncRNA [79]. Protumour ZEB1-AS1 is associated with several other malignancies, includ-
ing colorectal cancer, breast cancer, gastric cancer, prostate cancer, hepatocellular carcinoma,
non-small cell lung cancer, osteosarcoma, and others [310]. ZEB1-AS1 may potentially
boost the proliferation, invasion, and migration capabilities of melanoma cells by directly
suppressing miR-1224-5p. A study showed that elevated levels of ZEB1-AS1 were corre-
lated with a decrease in the overall survival rate among melanoma patients, suggesting
that ZEB1-AS1 and miR-1224-5p play crucial roles in melanoma pathogenesis and could
serve as predictive biomarkers and potential therapeutic targets [311]. ZEB1-AS1 lncRNA
also plays a role in non-malignant conditions such as atherosclerosis, pulmonary fibrosis,
ischemic vascular disease, and complications accompanying diabetes, including diabetic
nephropathy [103]. ZEB1-AS1 is involved in the regulation of gene expression and, thus,
contributes to cancer cell proliferation and migration [310]. It is an important modulator of
ZEB1 gene expression, which is one of the main regulators of the epithelial–mesenchymal
transition. ZEB1-AS1 acts as a sponge for many miRNAs and can, therefore, influence other
genes [103]. Based on the results of the studies, ZEB1-AS1 appears to be a good biomarker
not only in the context of cancer. Measured serum and plasma levels correlate with prog-
nosis, response to treatment and stage in the following diseases [103]. In the context of
colorectal cancer, ZEB1-AS1 has a diagnostic function. Its expression level correlates with
clinical stage and histological grade, metastasis, and microvascular invasion, and its over-
expression is associated with a poor prognosis [310]. Serum expression levels of ZEB1-AS1
were measured in patients with oral squamous cell carcinoma before and after tumour
resection, with highly detectable differences. Data from this study suggest that ZEB1-AS1
could be a good marker for measuring treatment success [311]. In patients treated for
oesophageal cancer, ZEB1-AS1 was also detected in serum. The measured levels were
correlated with a poor prognosis and ZEB1-AS1 levels in tumour tissues. Clinical studies
show that ZEB1-AS1 expression levels also correlate with complications of diabetes [312].
Different expression levels of this lncRNA were measured in plasma from patients treated
for diabetes-related complications (e.g., lung damage, nephropathy) compared to diabet-
ics without complications and a healthy group, where the expression was higher [240].
The opposite trend was observed in the serum of patients with atherosclerosis, where
the increased expression of ZEB1-AS1 was detected compared to healthy controls [313].
Changes in ZEB1-AS1 expression were detected in glioma tissue (including GBM) and
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GBM cell lines [314]. In both types of material, ZEB1-AS1 is detected at high levels, and in
resected tissue, it correlates with tumour size and malignancy grade (I–IV) [314]. In vitro
experiments suggest that the knockdown of this lncRNA induces G0/G1 phase arrest
and correspondingly reduces the percentage of cells in S phase, thus affecting GBM cell
proliferation, invasion, and migration [314]. Given the diagnostic relevance of ZEB1-AS1 to
GBM and its tissue-related changes, as well as deregulation in the blood of patients with
other diseases, the analysis of the ZEB1-AS1 profile and dynamics in the blood of GBM
patients is well-warranted.

9. Conclusions

LncRNAs, which are the largest group of noncoding transcripts, have received much
research and translational interest. Their specificity for various tissue types and changes
under different physiological and pathophysiological conditions have been explored as
markers for normal and disease states. Most human diseases, including different forms of
cancer, are linked to deregulated lncRNAs, making these molecules promising biomarker
candidates and therapeutic targets. Advances in genome and transcriptome analysis have
facilitated lncRNA research with numerous new transcripts identified and characterized
over recent years. Several databases specialized in lncRNAs have been created to organize
and use the growing information, some of which were utilized in the writing of this article
(e.g., LNCipedia 5.2, lncRNAfunc).

As emerges from this analysis of rapidly advancing research on lncRNAs of the brain
specimens and biological fluids, these transcripts can be highly instructive for the diagnosis
of GMB, which belongs to the most aggressive group of malignant brain tumours in adults
and resists conventional therapies. Despite the relatively low incidence (3–4 cases per
100,000 people), GMB remains one of the greatest challenges and priorities for neuro-
oncology and cancer research in general, owing to its severity and high mortality. The
effectiveness of treatment and the course of disease is influenced by the heterogeneity
of tumour tissue, with their regulation involving lncRNAs, as shown in many studies.
Importantly, changes in lncRNA profiles in the blood of GBM patients provide reliable
readouts of the state and grade of pathology, offering a rapid and lowly invasive diagnostic
approach. Based on the analysis of clinical and translational data, we propose diagnostic
lncRNA fingerprint for GBM, which combines ANRIL (↑), HOTAIR (↑), LINC00641 (↑),
LINC00565 (↑), MALAT1 (↑), SAMMSON (↑), and GAS5 (↓). Given that lncRNAs profiling
in blood involves relatively simple sample collection and measurement procedures, their
in-depth profiling could lead to early interventions with better therapeutic outcomes.
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