
Citation: Bányai, Attila, Tibor Tatay,
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Páter Károly Str. 1, H-2100 Gödöllő, Hungary; banyai.attila@phd.uni-mate.hu

2 Department of Statistics, Finances and Controlling, Széchenyi István University, Egyetem Square 1,
H-9026 Győr, Hungary
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Abstract: Portfolio diversification is an accepted principle of risk management. When constructing an
efficient portfolio, there are a number of asset classes to choose from. Financial innovation is expand-
ing the range of instruments. In addition to traditional commodities and securities, other instruments
have been added. These include cryptocurrencies. In our study, we seek to answer the question of
what proportion of cryptocurrencies should be included alongside traditional instruments to optimise
portfolio risk. We use VaR risk measures to optimise the process. Diversification opportunities are
evaluated under normal return distributions, thick-tailed distributions, and asymmetric distributions.
To answer our research questions, we have created a quantitative model in which we analysed the
VaR of different portfolios, including crypto-diversified assets, using Monte Carlo simulations. The
study database includes exchange rate data for two consecutive years. When selecting the periods
under examination, it was important to compare favourable and less favourable periods from a
macroeconomic point of view so that the study results can be interpreted as a stress test in addition
to observing the diversification effect. The first period under examination is from 1 September 2020
to 31 August 2021, and the second from 1 September 2021 to 31 August 2022. Our research results
ultimately confirm that including cryptoassets can reduce the risk of an investment portfolio. The
two time periods examined in the simulation produced very different results. An analysis of the
second period suggests that Bitcoin’s diversification ability has become significant in the unfolding
market situation due to the Russian-Ukrainian war.

Keywords: Markowitz’s portfolio theory; risk management; cryptocurrencies; diversification; Monte
Carlo simulations; Russian-Ukrainian war

1. Introduction

Markowitz’s (1952, 1959) modern portfolio theory paved the way for risk measurement.
The theory also pioneered the consideration of returns and risk together when making
equity investments. The theory was later extended by Tobin (1958) to include a risk-free
asset. Lintner (1965), Mossin (1966), Sharpe (1964), and Treynor (1999) sought to extend
the model to other assets. The theories highlighted the potential for risk reduction through
diversification. Answers were sought to optimise the allocation of assets in a portfolio and to
calculate the relationship between risk and expected returns (Maier-Paape and Zhu 2018).

Although the variance proposed by Markowitz (1952) as a measure of risk is still
used by many investors today, it has also come in for much criticism. The main problem
with using variance as a risk measure is that it also identifies positive deviations from
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expected returns as risk. For most investors, however, only negative divergence can be
interpreted as risk. Therefore, a risk measurement procedure has been developed that
only considers negative deviations from expected returns. Since the 1990s, the widely
accepted risk measure has been the VaR, developed by Jorion (1996). The VaR concept only
takes into account loss-side risks. The role of VaR in risk measurement is illustrated by
the fact that, following the development of the concept, it has been widely prescribed by
supervisory authorities for assessing banks’ risks. In the case of VaR, however, it is not
always suitable for identifying portfolio diversification opportunities (Stoyanov et al. 2013).
The recognition that VaR is not always suitable for assessing the impact of diversification
has generated professional debate. Artzner et al. (1999) developed a set of expected
properties that a coherent risk measure should satisfy. Per these expectations, variant
methods for calculating the value at risk have emerged. The original VaR calculation
evolved into a family of risk measures.

The range of products that can be included in portfolios is constantly expanding. In
addition to traditional commodities and securities, other instruments have also been added.

In 1983, the American cryptographer David Chaum created a type of cryptographic
electronic money, e-cash, which was used as a micropayment system by two American
banks between 1995 and 1998 (Chaum et al. 1990). In 1988, Wei Dai created “B money,”
a distributed electronic money system. Shortly afterwards, Nick Szabo developed the
concept of Bit Gold (Wei 1998). Bit Gold was never implemented but was seen as a “direct
precursor to the Bitcoin architecture”.

By this time, cryptography was becoming a more widespread and well-known digital
tool, and a few experimental projects created the first devices that could be considered digi-
tal money in the modern sense. At first, these digital currencies were centralised, and their
value was mostly linked to a national currency or a precious metal (Antonopoulos 2017).

Bitcoin was created in January 2009 by an otherwise unknown developer under the
pseudonym Satoshi Nakamoto. Nakamoto (2009) revived Chaum’s philosophy, adding
crowdsourcing and peer-to-peer networking. Events then accelerated with the creation
of Namecoin and Litecoin in 2011 and Peercoin in 2012. At the time of writing, there are
now nearly 25,000 types of cryptocurrencies and nearly 700 cryptocurrency exchanges.
Bitcoin is the most widely used and best-known of these. A personal wallet (where Bitcoin
is stored) contains cryptographic keys to authorise payments and can exist online, offline,
or in paper form (Reid and Harrigan 2011). Regardless of platform, type, or wallet used,
cryptocurrencies are based on blockchain technology, and transactions are recorded on an
online public register in which balances and transactions (but not user identities) can be
viewed and verified by anyone.

The popularity of cryptocurrencies among small investors has grown significantly over
the past decade, especially in years with low yield spreads. Technological developments
and a growing market have given rise to several crypto investment types. The best known
are investments based on purchasing specific cryptocurrencies and the capital gains they
generate (Tertina and Schmidt 2022). One of the best-known cryptocurrencies is Bitcoin,
which has evolved from a speculative trading tool to an investment tool that responds to
underlying macroeconomic factors (Vo et al. 2021). Several studies have highlighted that
Bitcoin can be considered an effective hedging tool in an uncertain economic environment,
but at the same time, contrary to this statement, some studies have highlighted that Bitcoin’s
ability to be an effective hedging tool changes from time to time (Umar et al. 2021). Jiang
et al. (2021) and Wu et al. (2021) reached a similar conclusion in their study regarding
Bitcoin’s hedging ability. According to their study, when political and economic uncertainty
is significant, Bitcoin’s hedging ability can be justified, but when the effect of the Partisan
Conflict Index (PCI) and Economic Policy Uncertainty (EPU) is negative, these effects can
no longer be verified.

The importance and diversity of cryptocurrencies are still growing, and cryptocur-
rencies are increasingly accepted as a means of diversification and portfolio management.
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Therefore, the research question of this paper is whether cryptocurrencies can be used to
reduce the risk of investment portfolios.

There is a growing body of literature examining the inclusion of cryptocurrencies in
portfolios (Almeida and Gonçalves 2022). There is also a body of literature analysing the
issues of hedging against the risk of traditional assets. These traditional assets are equities,
official currencies, and gold (Fang et al. 2020).

We want to go further than has been done in the existing literature in the study of this
issue by looking for answers to the question of what proportion of cryptocurrencies should
be included alongside traditional instruments to optimise portfolio risk. We use VaR risk
measures to optimise outcomes. We evaluate diversification opportunities under normal
return distributions, thick-tailed distributions, and asymmetric distributions. To answer
our research question as thoroughly as possible, we have created a quantitative model to
analyse the risk-adjusted value at risk of different portfolios, including cryptocurrency,
using Monte Carlo simulations.

Cryptocurrencies are commonly considered high-risk assets that are often avoided
in asset management due to their volatile characteristics. The aim of this study is to
demonstrate that cryptocurrencies have the potential to mitigate risk within diversified
portfolios, particularly in changing macroeconomic conditions. The timeframe analysed is
particularly suitable for assessing risk in such portfolios, considering the numerous market
fluctuations experienced all across the financial markets.

The methods are determined by selecting the most commonly utilised measures and
techniques in the field. The core element of the analysis is the Monte Carlo simulation for
Value at Risk (VaR) estimation. Monte Carlo simulation is capable of capturing the fat tail
risk, which accounts for extreme and rare events often missed by simpler methods. The
model constructed for this study integrates not only the conventional VaR formula but
also the two variations of Conditional VaR and the less frequently emphasised Modified
VaR, specifically developed for analysing highly volatile samples. The latter is particularly
relevant in the context of measuring the risk of cryptocurrencies.

2. Results

Descriptive statistics:
In the following, we will present a descriptive analysis of the assets analysed in the

quantitative model.
During the first period in Table 1, the average log return of Bitcoin was positive, then

negative in the second period. The volatile nature of Bitcoin can be seen in both periods,
with higher dispersion and increased skewness and peakedness in the second period. The
mean and standard deviation of gold log returns did not change significantly over the
two periods. However, the skewness in the second period indicates a significant reduction
in left asymmetry and peakedness. The mean and standard deviation of the log yield of
Apple stock did not change significantly over the two periods, but the left asymmetry and
skewness decreased, as in the case of gold.

Table 1. Descriptive statistics of log returns during periods 1 and 2 (source: authors’ construction).

1st Period

Average Standard Deviation Skewness Kurtosis

Bitcoin 0.0055 0.0497 −0.1749 1.4394

Gold −0.0003 0.0103 −1.1916 4.4728

Apple stock 0.0005 0.0197 −0.4058 1.7355
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Table 1. Cont.

2nd Period

Average Standard Deviation Skewness Kurtosis

Bitcoin −0.0034 0.0427 −1.0092 5.708

Gold −0.0002 0.0092 −0.2661 0.4231

Apple stock 0.0001 0.0193 −0.1554 0.4444

Figure 1 illustrates the graphical normality test.
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Figure 1. VaR and MVaR histogram with 50% Bitcoin/50% Apple.

In addition to examining the periodic data, it is also worth observing the histogram
of the sample generated by the Monte Carlo simulation, which illustrates in Figure 1 the
difference between the two different VaR formulae. Application of the conventional VaR
model yields a virtually perfectly regular bell curve, while the MVaR shows a right-skewed,
thick-edged distribution. As expected, the latter considers the asymmetry and thick edges
due to volatile exchange rates more strongly and is expected to provide a more realistic
risk estimate for the portfolio.

By incorporating skewness and kurtosis of return distributions in modified Value
at Risk MVaR, we aspire to attain a more precise estimation of potential losses within
the portfolios analysed. The emphasis on extreme values captured by the measures of
asymmetry makes MVaR highly suitable for assessing the risk associated with assets such as
cryptocurrencies. Consequently, MVaR shows greater capability in capturing risks arising
from extreme events, which prevail in financial markets to a greater extent than a normal
distribution would suggest (Favre and Galeano 2002).

Table 2 represents the data of the non-parametric test.

Table 2. Jarque-Bera test results in periods 1 and 2 (source: authors’ construction).

1st Period 2nd Period

Bitcoin 0.000 0.000
Gold 0.000 0.0883

Apple stock 0.000 0.2138

We chose the Jarque-Bera test for the non-parametric test to see if the log returns follow
a normal distribution. In Table 2 the results show p < 0.05 for all instruments in the first
period, and therefore, the null hypothesis is rejected, i.e., log returns do not follow a normal
distribution. In the second period, we again reject the null hypothesis for Bitcoin. The log
returns do not follow a normal distribution here either. In contrast, for gold and Apple
stock, p > 0.05, so we accept the null hypothesis. Log returns follow a normal distribution.

Table 3 represents the data of the log returns correlation matrix.
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Table 3. Correlation matrix of the log returns of the instruments tested in periods 1 and 2 (source:
authors’ construction).

1st Period

Bitcoin Gold Apple

Bitcoin 1

Gold 0.0192
(p = 0.7620) 1

Apple stock 0.1608
(p < 0.05)

0.2008
(p < 0.05) 1

2nd Period

Bitcoin Gold Apple

Bitcoin 1

Gold 0.0247
(p = 0.6963) 1

Apple stock 0.4313
(p < 0.05)

−0.1352
(p < 0.05) 1

After the descriptive statistics and normality tests, we constructed a correlation matrix
for the log yield of assets for both periods. In Table 3 the correlation coefficients show that
during the first period, there was a weak positive relationship between Bitcoin and gold and
between Bitcoin and Apple stock, while there was a medium positive relationship between
gold and Apple stock. In the second period, there is a stronger but still weak positive
relationship between Bitcoin and gold compared with the first period. A significantly
stronger, medium positive relationship is observed between Bitcoin and Apple stock
compared with the first period. Finally, the weak negative relationship between gold and
Apple stock is the opposite of the first period.

The results of the simulation:
In the simulation, the model seeks to find the maximum Bitcoin rate at which the risked

value is the smallest. Technically, this means varying the asset ratio of a given portfolio
from zero to 100% by iterating several times, during which the simulated risk values are
fixed. The ratio assigned to the lowest-fixed-risked values represents the optimal Bitcoin
ratio. The simulation was also performed at 95%, 99%, and 99.9% confidence intervals for
all four VaR models, according to the most common risk management standards in practice,
which were as follows for the first period:

The values in Table 4 represent the highest possible Bitcoin weights, where the simu-
lated losses are the smallest from Table 5; consequently, these are regarded as the optimal
Bitcoin weights for mitigating risk within the given confidence intervals and VaR formulas.

Table 4. Maximum Bitcoin weight for the smallest loss in period 1 (Source: Authors’ construction).

Bitcoin–Gold VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 0% 0% 0% 0%

99% 0% 0% 0% 0%

99.90% 0% 0% 0% 0%

Bitcoin–Apple Stock VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 0% 0% 0% 0%

99% 0% 3% 0% 0%

99.90% 0% 0% 0% 0%
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Table 5. Maximum Bitcoin weights and minimum losses in period 1 (Source: Authors’ construction).

Bitcoin–Gold 95% Confidence Int. Bitcoin–Apple Stock 95% Confidence Int.

Model Bitcoin
Weight Minimum Loss Model Bitcoin

Weight Minimum Loss

VaR 0.00% 4.53% 45,294 EUR VaR 0.00% 17.14% 171,426 EUR

CVaR
(averaged) 0.00% 6.41% 64,127 EUR CVaR

(averaged) 0.00% 20.63% 206,332 EUR

CVaR (Mills) 0.00% 5.49% 54,937 EUR CVaR (Mills) 0.00% 22.95% 229,483 EUR

MVaR 0.00% 2.48% 24,809 EUR MVaR 0.00% 15.75% 157,481 EUR

Bitcoin–Gold 99% Confidence Int. Bitcoin–Apple Stock 99% Confidence Int.

Model Bitcoin
Weight Minimum Loss Model Bitcoin

Weight Minimum Loss

VaR 0.00% 7.45% 74,512 EUR VaR 0.00% 22.96% 229,577 EUR

CVaR
(averaged) 0.00% 8.90% 88,963 EUR CVaR

(averaged) 3.00% 25.82% 258,163 EUR

CVaR (Mills) 0.00% 8.34% 83,403 EUR CVaR (Mills) 0.00% 26.99% 269,877 EUR

MVaR 0.00% 5.58% 55,847 EUR MVaR 0.00% 23.03% 230,269 EUR

Bitcoin–Gold 99.9% Confidence Int. Bitcoin–Apple Stock 99.9% Confidence Int.

Model Bitcoin
Weight Minimum Loss Model Bitcoin

Weight Minimum Loss

VaR 0.00% 10.63% 106,271 EUR VaR 0.00% 28.17% 281,693 EUR

CVaR
(averaged) 0.00% 11.59% 115,863 EUR CVaR

(averaged) 0.00% 29.76% 297,567 EUR

CVaR (Mills) 0.00% 11.45% 114,469 EUR CVaR (Mills) 0.00% 31.06% 310,638 EUR

MVaR 0.00% 11.15% 111,520 EUR MVaR 0.00% 31.86% 318,567 EUR

The values in Table 5 represent the highest possible Bitcoin weights where the portfo-
lio’s risk, expressed as both a percentage and an absolute value, is minimised; consequently,
these are regarded as the optimal Bitcoin weights for mitigating risk within the given
confidence intervals and VaR formulas.

In the first period, the Bitcoingold portfolio was tested with a maximum Bitcoin ratio
of 0% for all formulas and confidence intervals, at which the portfolio loss was the smallest.
This outcome means that any minimum Bitcoin ratio would only increase the value at risk
during this period. A similar result was also observed for the Bitcoin–Apple portfolio.
However, the averaged CVaR indicator marked the smallest value at risk at a Bitcoin rate of
3% with a 99% confidence interval. Although this minimal deviation could be considered a
measurement error, it is still worth considering.

The values in Table 6 represent the highest possible Bitcoin weights, where the simu-
lated losses are the smallest from Table 7; consequently, these are regarded as the optimal
Bitcoin weights for mitigating risk within the given confidence intervals and VaR formulas.

The values in Table 7 represent the highest possible Bitcoin weights where the portfo-
lio’s risk, expressed as both a percentage and an absolute value, is minimised; consequently,
these are regarded as the optimal Bitcoin weights for mitigating risk within the given
confidence intervals and VaR formulas.
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Table 6. Maximum Bitcoin weight for the smallest loss in period 2.

Bitcoin–Gold VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 26% 18% 26% 19%

99% 21% 13% 21% 10%

99.90% 16% 13% 16% 4%

Bitcoin–Apple Stock VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 81% 55% 81% 78%

99% 47% 45% 47% 47%

99.90% 29% 31% 29% 24%

Table 7. Maximum Bitcoin weights and minimum losses in period 2.

Bitcoin–Gold 95% Confidence Int. Bitcoin–Apple Stock 95% Confidence Int.

Model Bitcoin
Weight Minimum Loss Model Bitcoin

Weight Minimum Loss

VaR 26.00% 1.56% 15,566 EUR VaR 81.00% 5.75% 57,477 EUR

CVaR
(averaged) 18.00% 3.73% 37,312 EUR CVaR

(averaged) 55.00% 11.93% 119,275 EUR

CVaR (Mills) 26.00% 1.78% 17,808 EUR CVaR (Mills) 81.00% 6.59% 65,949 EUR

MVaR 19.00% 0.00% 21 EUR MVaR 78.00% 0.00% 2 EUR

Bitcoin–Gold 99% Confidence Int. Bitcoin–Apple Stock 99% Confidence Int.

Model Bitcoin
Weight Minimum Loss Model Bitcoin

Weight Minimum Loss

VaR 21.00% 4.83% 48,291 EUR VaR 47.00% 14.46% 144,638 EUR

CVaR
(averaged) 13.00% 6.15% 61,510 EUR CVaR

(averaged) 45.00% 17.58% 175,812 EUR

CVaR (Mills) 21.00% 5.29% 52,931 EUR CVaR (Mills) 47.00% 15.97% 159,723 EUR

MVaR 10.00% 4.99% 49,921 EUR MVaR 47.00% 10.49% 104,904 EUR

Bitcoin–Gold 99.9% Confidence Int. Bitcoin–Apple stock 99.9% Confidence Int.

Model Bitcoin
Weight Minimum Loss Model Bitcoin

Weight Minimum Loss

VaR 16.00% 7.55% 75,537 EUR VaR 29.00% 21.12% 211,159 EUR

CVaR
(averaged) 13.00% 8.68% 86,753 EUR CVaR

(averaged) 31.00% 22.92% 229,234 EUR

CVaR (Mills) 16.00% 8.05% 80,526 EUR CVaR (Mills) 29.00% 22.68% 226,849 EUR

MVaR 4.00% 8.47% 84,651 EUR MVaR 24.00% 17.08% 170,802 EUR

The second period’s simulation—essentially the stress test itself—produced very
different figures. For the Bitcoin–gold portfolio, the confidence interval averages were 22%,
16%, and 12%. So, in this case, the diversification effect of Bitcoin is already clearly visible.
Even if the MVaR indicator, which is the least permissive regarding volatility, is taken as a
benchmark, a Bitcoin weight of at least 4–10% is still the minimum risk weight to achieve
a lower risked value. The Bitcoin–Apple portfolio has an even higher Bitcoin ratio, with
confidence interval averages of 74%, 47%, and 28%. Here, the results show that even at the
lowest value, the portfolio should contain almost one-third Bitcoin to minimise risk.

Relationship between Bitcoin rate and value at risk:
In addition to the optimal Bitcoin ratio defined by the model, we examined the corre-

lation between the asset ratio and the individual risked values to evaluate the differences
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between the values of the VaR indicators (Table 8). The correlation was still based on
the output of the Monte Carlo simulation, which consisted of 10,100 elements for each
VaR indicator.

Table 8. Correlation between asset ratio and value at risk in period 1.

Bitcoin–Gold VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 0.9987
(p < 0.05)

0.9984
(p < 0.05)

0.022
(p < 0.05)

0.9995
(p < 0.05)

99% 0.9981
(p < 0.05)

0.9978
(p < 0.05)

0.9963
(p < 0.05)

0.9988
(p < 0.05)

99.90% 0.997
(p < 0.05)

0.9964
(p < 0.05)

0.9969
(p < 0.05)

0.9947
(p < 0.05)

Bitcoin–Apple Stock VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 0.9961
(p < 0.05)

0.995
(p < 0.05)

−0.0577
(p < 0.05)

0.9966
(p < 0.05)

99% 0.9942
(p < 0.05)

0.9934
(p < 0.05)

0.9959
(p < 0.05)

0.993
(p < 0.05)

99.90% 0.9915
(p < 0.05)

0.9902
(p < 0.05)

0.9931
(p < 0.05)

0.9835
(p < 0.05)

In Table 8 in the first period, at 95% confidence intervals, the MVaR indicator has the
highest correlation coefficient for both portfolios (0.9995 and 0.9966), while the CVaR (Mills)
has the lowest (0.0220 and −0.0577). In the latter case, it is important to highlight that
both portfolios have hyperbolic functions plotted on the graph. The discontinuity of the
function has led to an extreme distortion in the correlation coefficient, which may be the
reason for the extremely weak relationship. Since the function cannot be continuous, the
values obtained are difficult to interpret. Therefore, the averaged CVaR value is considered
more relevant as the lowest value in this case. As the function exhibits discontinuity,
resulting in exceptionally high values for CVaR (Mills), the VaR and CVaR (avg.) values in
Figures 2 and 3 are so low in comparison that they are not clearly visible with this scaling.
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In Figures 4 and 5 at the 99% confidence interval, a similar situation is observed for
the Bitcoin–gold portfolio, where MVaR shows the highest value (0.9988) and CVaR (Mills)
the lowest (0.9963). For the Bitcoin–Apple pair, however, the opposite is true, with CVaR
(Mills) being the highest (0.9959) and MVaR the lowest (0.9930). The difference between the
values is relatively small, but it is worth noting that the higher confidence intervals mean
that the graphs of the functions show a significant divergence.
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In Figures 6 and 7 with a 99.9% confidence interval, the Bitcoin–gold portfolio had
the highest correlation coefficient for VaR (0.9970) and the lowest for MVaR (0.9947). For
Bitcoin–Apple, CVaR was the highest (0.9931), and MVaR was the lowest (0.9835). With such
a high probability level, the extreme values are also much more extreme—a relationship
visible in the graph.
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Table 9 represents the data of the asset ratio and value at risk correlation matrix.

Table 9. Correlation between asset ratio and value at risk in period 2.

Bitcoin–Gold VaR CVaR (Averaged) CVaR (Mills) MVaR

95% 0.7896
(p < 0.05)

0.9381
(p < 0.05)

0.7713
(p < 0.05)

−0.6647
(p < 0.05)

99% 0.9563
(p < 0.05)

0.9681
(p < 0.05)

0.9539
(p < 0.05)

0.9682
(p < 0.05)

99.90% 0.9703
(p < 0.05)

0.971
(p < 0.05)

0.9695
(p < 0.05)

0.9671
(p < 0.05)

Bitcoin–Apple Stock VaR CVaR (Averaged) CVaR (Mills) MVaR

95% −0.9049
(p < 0.05)

−0.4983
(p < 0.05)

−0.8971
(p < 0.05)

−0.9717
(p < 0.05)

99% 0.1232
(p < 0.05)

0.6175
(p < 0.05)

−0.0478
(p < 0.05)

0.4998
(p < 0.05)

99.90% 0.7766
(p < 0.05)

0.8182
(p < 0.05)

0.7435
(p < 0.05)

0.8933
(p < 0.05)

In Table 9 in contrast to the first period, the second period shows greater dispersion. At
95% confidence intervals, the averaged CVaR indicator for both portfolios was the highest
(0.9381), while MVaR was the lowest (−0.6647). The medium-to-strong negative correlation,
which occurred in several cases, was not caused by a break in the function this time but by
nonlinearity, whereby an increasing Bitcoin rate, as opposed to the previous one, no longer
increases but decreases the value at risk (at least up to a certain level).

Below are the values at risk for the Bitcoin-Gold (Figure 8) and Bitcoin-Apple (Figure 9)
stock portfolios at 95% confidence intervals in period 2.
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In Figures 10 and 11 at the 99% confidence interval, the Bitcoin–gold portfolio had the
highest MVaR (0.9682) and the lowest CVaR (Mills) (0.9539). The Bitcoin–Apple portfolio
had the highest average CVaR (0.6175) and the lowest CVaR (Mills) (−0.0478).
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In Figures 12 and 13 at a 99.9% confidence interval, the Bitcoin–gold portfolio had
the highest correlation coefficient for the averaged CVaR (0.9710) and the lowest for the
MVaR (0.9671). For Bitcoin–Apple, MVaR was the highest (0.8933), and CVaR (Mills) was
the lowest (0.7435). Perhaps best illustrated in the graphs shown here is how much more
sensitive MVaR is to extreme price movements than any other indicator. After the inflection
point, the simulated risk values show increasing dispersion compared with the values of
the other indicators, which remain roughly in the same range throughout the simulation.
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3. Discussion

From an economic perspective, the triggers of financial crises and high market volatility
after the onset of crises can be endogenous and exogenous (Song et al. 2022). The origin of
endogenous crises is to be found within the economy. Exogenous shocks come from outside
the economy, causing crises in financial markets and the real economy. In Song et al.’s
(2022) view, it is possible to analyse endogenous shocks on the basis of price paths and
predict the occurrence of collapse due to endogenous shocks. However, crashes caused by
exogenous shocks cannot be predicted. However, they also found that stock market indices
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in several countries showed signs of endogenous crashes despite the 2020 COVID crisis.
Thus, the growth of the indices revealed features predictive of endogenous collapse. For
several indices, however, the COVID crisis was found to have been a genuine exogenous
shock (Song et al. 2022).

According to Sornette et al. (2004), the price movements of individual financial prod-
ucts follow a continuous flow of news. Shocks reflected in exchange rate movements can,
in turn, be both endogenous and exogenous to the economy. Although no clear evidence
can be found, sudden, large market price falls are generally attributed to exogenous factors
by those who are grounded in standard economics (Sornette et al. 2004).

Models describing the dynamics of exchange rate movements of stock market products
distinguish between endogenous and exogenous risks that determine price movements
(Arias-Calluari et al. 2021). Endogenous shocks can be derived from the behaviour of
economic agents and their interactions. Exogenous risks are risks with a global impact.
These risks are the macro-level determinants of market movements at the macro level.
Exogenous risks cannot be endogenised by markets in advance and, therefore, cause rapid
changes in the overall market.

In our view, the COVID-19 crisis and the Russian-Ukrainian war in 2022 could be
considered exogenous shocks in terms of their economic impact. Although their mecha-
nisms of impact on markets were different, both triggered a crisis. In both cases, there was
an increase in volatility in both financial product markets and commodity markets after
the crisis. Our approach is that appropriate portfolio diversification can be an effective
hedge against high market volatility. In addition to the composition of the portfolio, it is
important to design the portfolio with the right mix of assets.

Fang et al. (2020) studied the long-term volatility of cryptocurrencies. They found that
cryptocurrencies can provide an effective hedge against price movements of traditional
instruments, and Bitcoin investment can provide a hedge against changes in the S&P index.
Bouri et al. (2020) analysed the relationship between eight cryptocurrencies and US equities.
They evaluated the relationship between the S&P 500 stock index, ten stock sectors, and
cryptocurrencies. They concluded that Bitcoin can be considered a promising hedging
instrument against any US equity sector. Kumah and Mensah (2020) investigated the
relationship between gold and cryptocurrency price movements. They examined the rela-
tionships in both rising and falling markets. In all cases, they found that cryptocurrencies
can be a hedge for gold investors. Hsu et al. (2021) investigated the correlations between
major cryptocurrencies, traditional currencies, and gold prices. They found differences
in values before and during the pandemic. Cryptocurrencies and gold yields showed a
stronger positive relationship during the pandemic. Their results suggest that cryptocur-
rencies, like gold, may provide a buffer against changes in the returns of other assets. In
concordance with the findings presented by Hsu et al. (2021), our study similarly deduces
that crypto assets serve as an efficacious mechanism for portfolio diversification. González
et al. (2021) analysed the relationship between the twelve largest cryptocurrencies and
the gold exchange rate between 1 January 2015 and 30 June 2020. They found that, due
to the COVID-19 crisis, the correlation between the majority of cryptocurrencies and the
gold price increased. During the turbulence, the persistence between gold and crypto asset
prices increased. According to their findings, some of the cryptoassets (Cardano, Tether,
and Tezos) offer diversification benefits to investors. Their findings are consistent with our
own research, which identified similar diversification benefits when examining the pairing
of Bitcoin and gold. We compared the results of our studies with the research of Lee et al.
(2020), in their study they concluded that it is possible to create a diversified portfolio even
with a limited set of assets. Their results provide further evidence of the importance of
Bitcoin as a potential diversification tool to reduce risk in portfolios (Lee et al. 2020). The
Liu et al. (2021) study supports the view that crypto assets can improve the risk-return
characteristics of traditional portfolios, even during periods of sharp market fluctuations
such as the market volatility caused by COVID-19. Similar to the results of our study, they
concluded that crypto assets have potential value in portfolio diversification and improving
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risk-return, although further research is needed to develop future strategies for investing
in digital currencies. Bhuiyan et al. (2021) highlight the diversification properties of Bitcoin
in their study, which leads them to the conclusion that Bitcoin is relatively isolated from
most financial instruments, so it can provide diversification benefits for investors (Bhuiyan
et al. 2021). We also examined Bitcoin’s ability to diversify in our study, and based on our
results, we came to the same conclusion that Bitcoin supports diversification.

The results of our calculations are similar to those found in the literature. Bitcoin,
representing cryptocurrencies, provides an efficient hedge for equity investors. The shelter
role is stronger in turbulent market conditions. In contrast to the literature, our study could
not only demonstrate the role of cryptocurrencies in diversification. We also showed the
optimal ratio of Bitcoin in a gold and equity portfolio.

4. Materials and Methods

The study database includes exchange rate data for two consecutive years. When
selecting the periods under examination, it was important to compare favourable and
less favourable periods from a macroeconomic point of view so that the study results can
be interpreted as a stress test in addition to observing the diversification effect. The first
period under examination is from 1 September 2020 to 31 August 2021, and the second
from 1 September 2021 to 31 August 2022. As shown in Figure 14, in the first half of the first
period, the prolonged economic and social shock caused by the coronavirus epidemic was
still very much present. However, the announcement of the first vaccine led to a positive
market reaction and a slow recovery.
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The second period includes the Russian-Ukrainian war that began on 24 February
2022 and the subsequent shock. Most businesses have not yet fully recovered from the
downturn caused by the coronavirus outbreak. However, the outbreak of war, combined
with the long-standing energy crisis and chip shortages, has ushered in a period of greater
uncertainty than ever before. In most economies, inflation and (consequently) base rates
have risen sharply. In general, the unfolding macroeconomic trends have also harmed the
money and capital markets, which are key for analysis.

For the analysis, we have chosen three investment instruments, one of which is
Bitcoin—a cryptocurrency. Since Bitcoin is one of the most dominant crypto assets with the
largest market capitalisation, it is suitable to represent the underlying trend of the crypto
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market in the analysis. Gold was chosen as the second instrument because its price is
countercyclical, unlike many other assets. It is important to emphasise that this is not an
exchange-traded fund or other gold-related security, but physical gold. The exchange rate
is per ounce (28.3495 g) in US dollar terms. We chose a generally well-performing popular
technology stock, Apple, for the third instrument. Two portfolios were created from the
three assets selected. One consists of Bitcoin and gold, and the other consists of Bitcoin and
Apple stock.

The VaR method was chosen for the risk analysis used in the model. By definition,
it expresses the maximum expected loss at a given significance level over a given time
horizon (worst-case scenario). The so-called conservative formula originally developed is
structured as follows: (J.P.Morgan/Reuters 2018)

VaR(α) = µ + Z(α)σ (1)

α = confidence interval
µ = average
Z = standard score
σ = standard deviation

During the 2008 global economic crisis, it was shown that the VaR ratios used until
then significantly underestimated market risks. The main reason is that the conservative
VaR formula is based on a specific confidence interval and does not consider potential
losses beyond that interval. As a tail risk indicator, the Conditional Value at Risk indicator
(CVaR) is:

CVaR(α) =
1
α

∫ α

0
VaR(x)dx (2)

An approximation for the integral function is obtained by calculating the arithmetic
mean of the range (worst realised returns) above a given confidence interval. The resulting
value is no longer just the maximum expected loss at a given point. Rather, it is the
average of the losses beyond the maximum loss, giving a much more accurate picture of
the potential risk (Banihashemi and Navidi 2017).

In addition to the expected shortfall formula, another formula for calculating the
conditional value at risk can be derived from an inverse Mills ratio. Unlike averaging, it
gives an accurate result for a given VaR value:

CVaR(α) = µ− σ
φ
(

VaR(α)−µ
σ

)
ϕ
(

VaR(α)−µ
σ

) (3)

Regarding the VaR and CVaR indicators described thus far, it is important to note
that they can be used reliably, assuming a normal distribution of returns. However, when
considering volatile instruments, such as cryptocurrencies, it is important to bear in mind
that the distribution can be somewhat asymmetric, so in addition to the mean and standard
deviation of returns, we also need to take into account their skewness and peakiness.
To overcome this problem, in 2002, Laurent Favre and José-Antonio Galeano developed
the MVaR (mean-variance-adjusted risk-adjusted return) formula, which builds on the
conservative VaR formula and takes into account both the peak and skewness. The authors
mentioned that the formula may be inaccurate at lower confidence levels (Favre and
Galeano 2002).

ZMVaR= z +
1
6

(
z2 − 1

)
S +

1
24

(
z3 − 3z

)
K − 1

36

(
2z3 − 5z

)
S2

MVaR= µ− ZMVaRσ

(4)

S = skewness
K = Peakedness
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z = standard normal distribution
µ = mean
σ = standard deviation

All the VaR variations described so far have been considered in the analysis for
comprehensive results. In addition to choosing formulas, another essential condition for
calculating the VaR is using the right methodology. In the literature, three different methods
are distinguished:

• Monte Carlo method
• Parametric method
• Non-parametric (historical) method (Bugár and Uzsoki 2006)

The Monte Carlo method is a stochastic simulation method in which a pseudo-random
number generator produces the values of the probability variables. It is considered a com-
putationally intensive method, but with developments in computer science, it is becoming
less and less technically problematic.

The parametric (or variance-covariance) method is one of the simplest and most widely
used simulation methods. It is based on the variance-covariance matrix of the assets in the
portfolio. In practice, it is best expressed as the volatility according to the conservative VaR
formula multiplied by the market value. Since it assumes a normal distribution, measuring
the risk from thick edges is unsuitable.

The non-parametric (or historical) method is more flexible than the parametric method
because it does not assume a specific distribution and can be applied to a wider range of
instruments. In principle, it is suitable for measuring risk from thick-edged instruments,
but this is only possible if the historical data used also show a thick-edged distribution
(Romero et al. 2013).

The Monte Carlo method was chosen for the model used in the analysis. It is generally
well suited for value-at-risk modelling and measuring the risks arising from thick edges.
The model was created in Microsoft Excel (Figure 15). As a first step, the log returns of the
downloaded exchange rates were calculated. The model is automated using Visual Basic
and can be easily parameterised.
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The first step in the parameters is to specify the portfolio amount, the composition
(Bitcoin–gold or Bitcoin–Apple stock), the expected return, and the period to be tested.
For the analysis, we have specified 1,000,000 EUR with an expected return of 5%. The
programme itself runs the asset allocation from zero to 100%. The programme can repeat
the calculation of the risked value for each pair of asset ratios any number of times, which
in this case was 100, so the sample consisted of 10,100 elements (101 × 100) for all four
VaR models, or a total of n = 40,400. In contrast to the simple target value search, each
variation’s risked value is recorded, allowing a graphical interpretation of the trend in the
simulation. As additional VaR parameters, a time horizon of 20 days and 252 trading days
per year were considered.
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The risk values generated by the simulation are calculated as follows for the conserva-
tive formula:

VaR = expected return − portfolio amount × standard deviation of annualised portfolio log return × standard
score × (time horizon/trading days) ˆ0.5

Expected return = portfolio amount × expected return % × (time horizon/trading days)
Standard score = the inverse of the standard normal distribution function, where the seed value

is a random number uniformly distributed between 0 and 1

(5)

5. Conclusions

Based on the results of the descriptive statistics, we can say that the general statement
that cryptocurrencies—in our case, Bitcoin—are rather volatile assets has been proven. In
the stress test, the mean of its log odds went from positive to negative, and an increased
left-asymmetric distribution based on skewness and peakedness was observed. In contrast,
the mean and standard deviation of the log returns of gold and Apple stock did not change
significantly during the stress test, but the degree of left asymmetry decreased.

The graphical normality test demonstrated the inaccuracy of risk analysis based on
conservative Value at Risk indicators. As in the period preceding the 2008 global economic
crisis, the simulation produced a near-normal distribution, with the main problem being
that it ignores extreme losses due to thick edges. In contrast, the simulation for the MVaR
indicator produced a highly asymmetric distribution in all cases, highlighting the expected
risks. Based on the results of the non-parametric test, only two out of six cases of normal
distribution were observed, neither of which was Bitcoin. These results allow us to confirm
again the conclusion drawn from the descriptive statistics and the graphical normality
test that extremely large fluctuations characterise the Bitcoin exchange rate. Considering
the correlation matrix’s results, Bitcoin showed a stronger co-movement with gold and
Apple stock during the stress test. However, there was an opposite correlation between
gold and Apple stock. The result of the correlation matrix illustrates the extent to which
the correlation between the log returns of different assets can change in response to a stress
event. It also predicts that, partly because of this, the Monte Carlo simulation is expected
to find significantly different asset ratios over the two periods.

The research results ultimately confirm that including cryptoassets can reduce the risk
of an investment portfolio. The two periods examined in the simulation produced starkly
different results, suggesting that Bitcoin’s ability to diversify has become significantly
important in the market situation that has unfolded due to the Russian-Ukrainian war.

6. Limitations and Further Research

Our study, which focuses on the risk-reducing ability of crypto asset investment
portfolios, has several limitations. Our research, which focused on the effect of integrating
crypto assets into portfolios, provided valuable insight into their risk-reducing potential;
however, the narrower focus of the study, especially due to the examination of gold and
Apple shares, allows for more limited generalisation. The main reason for choosing gold
and Apple was due to their market importance and frequent use. Gold is one of the most
popular investment instruments, and Apple is one of the most important stocks with its
role and market capitalisation in the S&P 500 index. As a result, gold and Apple are
the most frequently used instruments in portfolio diversification and risk management
studies. At the same time, to confirm the results of our study, a wider range of instruments
should be taken into account. Investigating a wider range of crypto-assets and other
traditional investment instruments, such as additional stocks and bonds, could increase
the generalizability of our results. Furthermore, the long-term effects of integrating crypto
assets into investment portfolios could be better understood by including additional market
cycles and economic conditions.

As a future research opportunity, the performance and risk characteristics of crypto
assets should be investigated by examining a wider range of instruments as well as by
expanding market cycles. The introduction of crypto ETFs and the investigation of their
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impact on financial markets can be formulated as further research opportunities, especially
in the investigation of the risk reduction ability of the investment portfolios of crypto assets
examined in this study. When examining crypto ETFs and other traditional instruments,
particular attention can be paid to asset allocation strategies, risk management, and port-
folio diversification. Analysing the market integration of crypto ETFs can be particularly
important in understanding the role these instruments can play in improving the stability
and performance of investment portfolios in volatile market conditions, as well as their
impact on correlation with traditional financial instruments and market liquidity.
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