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Abstract: Datasets used in AI applications for human health require careful selection. In healthcare,
machine learning (ML) models are fine-tuned to reduce errors, and our study focuses on minimizing
errors by generating code snippets for cost-sensitive learning using water potability datasets. Water
potability ensures safe drinking water through various scientific methods, with our approach using
ML algorithms for prediction. We preprocess data with ChatGPT-generated code snippets and aim
to demonstrate how zero-shot learning prompts in ChatGPT can produce reliable code snippets
that cater to cost-sensitive learning. Our dataset is sourced from Kaggle. We compare model
performance metrics of logistic regressors and gradient boosting classifiers without additional code
fine-tuning to check the accuracy. Other classifier performance metrics are compared with results of
the top 5 code authors on the Kaggle scoreboard. Cost-sensitive learning is crucial in domains like
healthcare to prevent misclassifications with serious consequences, such as type II errors in water
potability assessment.

Keywords: ChatGPT; water potability; water quality; machine learning; zero shot-learning; cost-sensitive
learning

1. Introduction

The word “potability” refers to the quality or state of being suitable for drinking or
consumption. In the context of water, potability refers to whether water is safe and clean
enough for humans to drink without causing harm or illness. Assessing the potability
of water involves various scientific and regulatory considerations to ensure that it meets
certain standards and does not pose health risks to consumers. Recent advancements
in water quality detection methods have been observed in the research conducted by
Yaroshenko et al. [1]. Their study offers a comprehensive review of the suitability of
various technologies for real-time water quality monitoring, particularly those tested in
practical settings. The performance of sensors based on molecularly imprinted polymers
is extensively evaluated, shedding light on their operational principles, stability in real-
world applications, and potential for mass production [1]. The deployment of sensors
beyond laboratory settings for water quality detection has led to the emergence of dataset
repositories. In this study, we focus on how generative AI can ensure the utilization of high-
quality datasets for predicting water quality with ML algorithms. Through the ChatGPT
platform, we were able to generate Python code snippets by parsing prompts, aimed at
cleaning the dataset through cost-sensitive learning techniques. The methodology section
provides a detailed explanation of the prompt design aimed at achieving enhanced results.

The impact of this approach is demonstrated by comparing the performance metrics
of the chosen classifier without fine tuning the original generated code snippets.
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2. Literature Review

A significant amount of research has been dedicated to water quality assessment and
monitoring. The evidence in the literature suggests that traditional scientific methods of
water quality assessment have been supplanted by artificial methods, involving the use of
sensors and ML algorithms in the monitoring processes. However, it is important to note
the distinction between water quality and water potability. To distinguish between water
quality and water potability, this section reviews the approaches employed by researchers
in these two disciplines. The efficacy of machine learning (ML) techniques for water quality
prediction was investigated in a recent study by Yaroshenko et al. A machine learning
classifier model was constructed using real-world data, with all measured characteristics
utilized as significant features. The dataset was partitioned into training and testing subsets,
and various ML algorithms were employed, with support vector machine and k-nearest
neighbor demonstrating superior performance in terms of F1-score and ROC AUC values.
Conversely, the LASSO-LARS and stochastic gradient descent methods exhibited higher
recall values [1]. The Root Zone Water Quality Model (RZWQM), developed by USDA–
ARS scientists, integrated physical, chemical, and biological processes to simulate water
and agrochemical movement in agricultural fields. Ahuja et al. evaluated the model’s
performance using field data, demonstrating reasonable simulation of soil water move-
ment and pesticide persistence [2]. Shrestha and Kazama applied multivariate statistical
techniques to assess temporal and spatial variations in water quality within the Fuji River
basin. Cluster analysis categorized sampling sites into pollution gradient clusters, while
factor analysis revealed key factors driving water quality variations across different pollu-
tion levels. Discriminant analysis effectively reduced data dimensionality and identified
indicator parameters for water quality assessment, pollution source identification, and
river water quality management [3]. The utilization of multivariate statistical techniques
for the evaluation and interpretation of water quality datasets was highlighted in the study
by researchers focusing on the Gomti river in India [4]. Through cluster analysis, distinct
groups within the river’s catchment regions were identified, while factor analysis/principal
component analysis revealed key factors responsible for variations in water quality across
different catchment areas. Discriminant analysis facilitated data reduction and pattern
recognition, aiding in the identification of indicator parameters for effective water quality
management. Additionally, receptor modeling techniques provided insight into pollution
sources/factors contributing to river contamination.

The Athens Water Supply and Sewerage Company (EYDAP SA) played a crucial role
in supplying potable water to millions of inhabitants in Attica, Greece [5]. Stringent quality
control measures were enforced, with thorough analysis conducted to ensure compliance
with established guidelines. Statistical tools were employed to enhance quality control
processes, with particular attention given to parameters such as turbidity, residual chlo-
rine, and aluminum levels. Statistical process control techniques were utilized to evaluate
control limits and improve process quality. In addressing the imperative need for accurate
detection and identification of contaminants in drinking water, a real-time event adaptive
detection, identification, and warning (READiw) methodology was explored [6]. Through
pilot-scale pipe flow experiments, various chemical and biological contaminants were ex-
amined, with adaptive transformation techniques enhancing sensor detection capabilities.
Kinetic and chemical differences among contaminants allowed for their distinguishability,
providing a reliable method for contamination event identification. The optimization and
artificial intelligence (AI) techniques applied in the simulation and operation of the Barra
Bonita reservoir in Brazil were elucidated in the methodology proposed by Chaves et al. [7].
A fuzzy stochastic dynamic programming model was developed to calculate optimal op-
eration procedures, considering multiple fuzzy objectives. The Markov chain technique
handled the stochastic nature of river flow, while the water quality analysis employed
artificial neural network models to predict organic matter and nutrient loads based on
river discharge. The proposed methodology demonstrated efficacy in reservoir operation,
providing a valuable tool for water resource management. The necessity for comprehensive
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information on water quality, especially concerning sediment, phosphorus, and nitrogen ex-
ports from catchments, is emphasized by catchment managers and stakeholder groups [8].
Due to the limited availability of intensive spatial and temporal data on nutrient concentra-
tions or loads, there’s a demand for nutrient export models capable of providing valuable
insights with sparse data inputs. This paper evaluates four such models and various direct
estimation methods for their efficacy in predicting loads in Australian catchment scenarios.
The discussion underscores the significance of coordinated data collection over extended
periods and fine temporal scales to improve load prediction accuracy.

Artificial neural network procedures were employed to define and predict diatom as-
semblage structures in Luxembourg streams using environmental data [9]. Self-organizing
maps (SOM) classified samples based on their diatom composition, while a multilayer
perceptron with a backpropagation learning algorithm (BPN) predicted these assemblages.
Classical methods were then utilized to identify relationships between diatom assemblages
and SOM cell numbers. The study demonstrated a high predictability of diatom assem-
blages using physical and chemical parameters within a limited geographical area. In
planning sampling regimes, minimizing estimation error or sampling effort for a desired
accuracy is essential [10]. This paper compares classical and geostatistical approaches for
matching sampling effort to accuracy using airborne thematic mapper images of British
lakes. It illustrates that the systematic scheme outperforms the random scheme, especially
with increasing sample size and spatial dependence. The study underscores the necessity
of calibrating sampling regimes to the spatial dynamics of the lake and suggests remote
sensing as an ideal means for determining such dynamics. A pilot study was conducted
to assess the hormonal activity of freshwaters in Victoria using recombinant receptor-
reporter gene bioassays [11]. Water samples from the Yarra River were analyzed for toxicity,
genotoxicity, and receptor assay activity. The results indicated weak to moderate toxicity
with no significant location-based trends along the river. Estrogenic, thyroid, and retinoic
acid receptor activity was negligible, while AhR activity increased downstream, possibly
influenced by bush fires. Approximately 24% of total AhR activity was associated with
suspended solids. The preceding reviews focused on evaluating various aspects of water
quality. In the following reviews, the focus shifts towards assessing water potability. These
reviews examine the suitability of water for human consumption, considering factors such
as chemical composition, microbial contamination, and adherence to regulatory standards.
Nyende-Byakika et al. provide insights into the raw water quality of Bospoort dam in
South Africa [12]. Through a comprehensive time-series analysis, various parameters were
monitored, revealing that while most parameters remained within recommended threshold
levels for the majority of the study period, conductivity, hardness, and high coliform counts
exceeded acceptable limits. The water exhibited excessive hardness and high conductivity,
surpassing alarm levels for a considerable portion of the study duration despite dissolved
solids being below their alarm thresholds. Notably, total coliform and E. coli counts were
found to be significantly elevated, indicating potential microbial contamination concerns.
Pehlivan and Emre investigate the environmental and hydrological processes in the Sarma
Stream basin, located southwest of Akcakoca in the Duzce Province of Turkey [13]. Sam-
ples from various sources, including rocks, soil, stream water, rain, snowmelt, and bed
and suspended sediment, were collected and analyzed. The study reveals that sandstone
and soil samples contribute to the stream’s muddy flow during the rainy season, with
chlorite-type minerals prevalent in the bed and suspended sediments. The water chemistry
indicates a calcium bicarbonate-rich composition, influenced by acid rain and containing
elevated levels of certain heavy metals and elements, necessitating treatment of water in
the Sariyayla Reservoir.

Comparatively, a study by an undisclosed author assesses potable water filtration
methods commonly used in rural Ghanaian communities [14]. Physico-chemical and
microbiological analyses were conducted on water samples from ponds, dams, and rivers,
revealing elevated levels of total suspended solids, turbidity, total coliforms, and bacterial
counts. However, filtration methods, including ceramic filters and household sand filters,
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effectively reduced these parameters to acceptable standards. The study suggests that a
combination of filtration methods, including the use of alum and activated carbon, could
further improve water quality, recommending follow-up research in this area. Elizabeth and
Rajpramikh monitored the microbiological and physico-chemical parameters of drinking
water samples from two villages in the Vizianagaram District. Borewell water from Somi
Naiduvalasa village exhibited elevated coliform levels and exceeded permissible limits
for various physic-chemical parameters, rendering it non-potable [15]. In contrast, the
historical shift in perceptions of water quality assessment was discussed, highlighting the
transition from sensory-based evaluations to reliance on standardized analytical methods.
This shift, driven by institutional and regulatory practices, marginalized consumer sensory
knowledge as merely aesthetic, focusing instead on objective analytical data. However, the
exclusion of sensory information from water quality assessment overlooks the subjective
experiences of consumers, calling for new practices that engage consumers as valuable
participants in ensuring water quality [16]. Furthermore, an evaluation of the water
potability of various regions in Ludhiana, Punjab, revealed suboptimal potability levels
despite acceptable hardness and pH values. Physicochemical and bacteriological analysis
conducted across six areas of Ludhiana city showed low levels of potability, highlighting the
need for interventions by local water authorities to ensure the supply of safe drinking water
to the population [17]. The integration of sensor materials into new-generation transducers
and the use of household electronic devices for signal registration offer potential for the
development of economical, portable detectors operating in real-time mode [18].

In another study, physico-chemical and microbial parameters of water quality in hand-
dug wells in Bolgatanga, Ghana, were assessed. The study revealed elevated coliform levels
in dry seasons and increased concentrations of various parameters during the rainy season,
suggesting infiltration from stormwater. The proximity to pollution sources also influenced
coliform counts, indicating the need for the disinfection of well water before use [19].
Similarly, research on the potability of packaged sachet water within the Federal University
of Agriculture, Abeokuta campus, Nigeria, found that while physicochemical parameters
met WHO and Nigerian standards, bacteriological analysis revealed total bacteria count in
all samples and contamination with total coliforms in two brands. The study underscores
the importance of routine water quality examination and regulatory oversight to ensure safe
drinking water supply [20]. The assessment of water quality in a village involved analyzing
various physicochemical parameters and calculating a water quality index. While most
parameters met Indian standards, coliform levels exceeded permissible limits, indicating
contamination and leading to waterborne diseases. Although some water sources were
classified as excellent, the disinfection of coliform before use was recommended [21].
Furthermore, groundwater samples from different areas in Ariyalur District, Tamil Nadu,
were analyzed for various physicochemical parameters. The majority of samples were
found unsuitable for drinking purposes, highlighting the need for comprehensive water
quality management [22].

Thus far, researchers have found ChatGPT to be beneficial in several areas, leading to
its application in various research endeavors [23–28]. Our proposed approach is centered
on ChatGPT’s zero-shot learning prompt design for generating code snippets to preprocess
the data, aiming to improve cost-sensitive learning metrics when training a classifier model.
ChatGPT is a chatbot developed by OpenAI that uses a large language model to engage in
conversation, answer questions, and provide information on a wide range of topics [29]

3. Materials and Methods

Misclassification by ML classifiers results in either type I or type II errors. In ML
applications where the health of people comes first, it is important to design ML classifiers
for cost-sensitive learning. Cost-sensitive learning, also known as imbalanced learning
or asymmetric learning, is a technique in machine learning where the classifier’s training
process is adjusted to account for the unequal costs associated with different types of errors,
including type I and type II errors. The birth of ChatGPT has bridged the gap between
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academics who lack coding skills but can only solve problems through mathematical
presentations, for instance. Similarly, this study aims to introduce prompt design on
ChatGPT for the generation of code snippets based on cost-sensitive learning to bridge
the gap between the lack of coding skills and theoretical knowledge. In this study, cost-
sensitive learning is demonstrated on a water potability dataset. Through a set of prompts
on ChatGPT, various Python code snippets were generated. The aim of this study is not to
update the generated code snippets for better performance of the chosen classifier but to
provide insight of designing zero-shot learning prompts for cost-sensitive learning. Figure 1
shows zero-shot learning prompts on ChatGPT. In the context of prompt design, the two
famous types of prompts are zero-shot learning and few-shot learning. Zero-shot learning
prompts are designed to enable a model (ChatGPT in this context) to generate responses
or make predictions for classes or categories that it has never been explicitly trained on.
Few-shot learning prompts, on the other hand, are designed to help a model (ChatGPT in
this context) adapt quickly to new tasks or classes with only a small number of examples or
shots per class. It can be seen in Figure 1 that each prompt from prompt 1 to prompt 8 of
the design prompts generates a Python code snippet. The Python code is later updated by
the user to add the water potability dataset.

Informatics 2024, 11, x 5 of 16 
 

 

asymmetric learning, is a technique in machine learning where the classifier’s training 
process is adjusted to account for the unequal costs associated with different types of er-
rors, including type I and type II errors. The birth of ChatGPT has bridged the gap be-
tween academics who lack coding skills but can only solve problems through mathemat-
ical presentations, for instance. Similarly, this study aims to introduce prompt design on 
ChatGPT for the generation of code snippets based on cost-sensitive learning to bridge the 
gap between the lack of coding skills and theoretical knowledge. In this study, cost-sensi-
tive learning is demonstrated on a water potability dataset. Through a set of prompts on 
ChatGPT, various Python code snippets were generated. The aim of this study is not to 
update the generated code snippets for better performance of the chosen classifier but to 
provide insight of designing zero-shot learning prompts for cost-sensitive learning. Figure 
1 shows zero-shot learning prompts on ChatGPT. In the context of prompt design, the two 
famous types of prompts are zero-shot learning and few-shot learning. Zero-shot learning 
prompts are designed to enable a model (ChatGPT in this context) to generate responses 
or make predictions for classes or categories that it has never been explicitly trained on. 
Few-shot learning prompts, on the other hand, are designed to help a model (ChatGPT in 
this context) adapt quickly to new tasks or classes with only a small number of examples 
or shots per class. It can be seen in Figure 1 that each prompt from prompt 1 to prompt 8 
of the design prompts generates a Python code snippet. The Python code is later updated 
by the user to add the water potability dataset. 

 
Figure 1. Zero-shot learning prompts on ChatGPT. 

In this study, zero-shot learning prompts were developed to generate code snippets 
for cost-sensitive learning on a water potability dataset. The generated code snippets were 
tested on Jupyter IDE (Appendix A). Although the aim was not to tune the classifiers, the 
logistic regressor and gradient boosting classifiers were used to demonstrate the zero-shot 
learning prompts. To incorporate the water potability dataset into the generated code 
snippets, the Pandas library was used to read the CSV file and convert it to the Pandas 
DataFrame, which was further utilized to train the classifiers. Below are the eight carefully 
designed prompts recommended for generating code snippets when considering cost-sen-
sitive learning (Appendix A). 

1. Feature Engineering: 
Prompt: “Generate Python code snippet to perform feature engineering on a [Classi-

fier name]. Include techniques such as adding interaction terms, creating polynomial fea-
tures, and transforming variables. Show all the classification metrics of the model.” 

Figure 1. Zero-shot learning prompts on ChatGPT.

In this study, zero-shot learning prompts were developed to generate code snippets
for cost-sensitive learning on a water potability dataset. The generated code snippets were
tested on Jupyter IDE (Appendix A). Although the aim was not to tune the classifiers,
the logistic regressor and gradient boosting classifiers were used to demonstrate the zero-
shot learning prompts. To incorporate the water potability dataset into the generated
code snippets, the Pandas library was used to read the CSV file and convert it to the
Pandas DataFrame, which was further utilized to train the classifiers. Below are the eight
carefully designed prompts recommended for generating code snippets when considering
cost-sensitive learning (Appendix A).

1. Feature Engineering:
Prompt: “Generate Python code snippet to perform feature engineering on a [Classifier

name]. Include techniques such as adding interaction terms, creating polynomial features,
and transforming variables. Show all the classification metrics of the model”.

2. Handling Imbalanced Classes:
Prompt: “Generate Python code snippet to handle class imbalance in a [Classifier name].

Include techniques such as oversampling, under-sampling, or using weighted loss functions
to address imbalanced class distributions. Show all the classification metrics of the model”.
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3. Regularization:
Prompt: “Write Python code to implement regularization techniques on a [Classifier

name]. Include options for controlling tree complexity and learning rate to prevent overfitting.
Show all the classification metrics of the model”.

4. Hyperparameter Tuning:
Prompt: “Generate Python code snippet for hyperparameter tuning of a [Classifier

name]. Include techniques like grid search or random search to optimize hyperparameters
such as tree depth, learning rate, and the number of estimators. Show all the classification
metrics of the model”.

5. Ensemble Methods:
Prompt: “Write Python code to implement ensemble methods for improving a [Clas-

sifier name] performance. Include techniques such as bagging, boosting, or stacking to
combine multiple models. Show all the classification metrics of the model”.

6. Cross-Validation:
Prompt: “Generate Python code snippet to perform k-fold cross-validation on a

[Classifier name]. Ensure that the code evaluates model performance accurately and
reliably. Show all the classification metrics of the model”.

7. Feature Selection:
Prompt: “Write Python code to select relevant features for a [Classifier name]. Include

techniques such as recursive feature elimination or feature importance ranking to improve
model simplicity and performance. Show all the classification metrics of the model”.

8. Optimizing Decision Threshold:
Prompt: “Write Python code to optimize the decision threshold of a [Classifier name].

Include techniques to adjust the threshold to balance between sensitivity and specificity
based on specific requirements. Show all the classification metrics of the model”.

After comparing the accuracies of the authors’ code without parameter optimization
with the code generated by ChatGPT, we proceeded to compare additional classifier metrics,
particularly focusing on the logistic regressor, with those of the top 5 Kaggle authors listed
on the Kaggle scoreboard (https://www.kaggle.com/datasets/uom190346a/water-quality-
and-potability/code) (accessed on 2 February 2024).

While zero-shot learning on ChatGPT is fascinating, delving into the history of trans-
formers provides valuable insights into the technological advancements that paved the way
for the existence and capabilities of ChatGPT. Transformers have revolutionized natural
language processing (NLP) and artificial intelligence (AI) tasks, offering unprecedented ca-
pabilities in understanding, and generating human-like text. Among the forefront pioneers
in leveraging transformers is OpenAI’s ChatGPT. ChatGPT is built upon the transformer ar-
chitecture, a paradigm-shifting model introduced by Vaswani et al. [30]. Unlike traditional
recurrent neural networks (RNNs) or convolutional neural networks (CNNs), transformers
employ self-attention mechanisms to capture global dependencies within input sequences,
enabling efficient parallelization and long-range context modeling. Figure 2 shows the
transformer model architecture [30].

In conclusion, transformers have propelled ChatGPT to the forefront of AI-powered
natural language processing. With its transformative capabilities, ChatGPT represents a
significant milestone in the evolution of conversational AI and holds immense potential
for diverse applications. As depicted in Figure 2, the transformer relies on attention, a
mechanism that enables each word in a sentence to consider all other words’ relevance, sur-
passing the limitations of sequential models like RNNs or LSTMs. Through self-attention,
words compute their attention scores with respect to all others, facilitating an understand-
ing of their contextual relationships. Multi-head attention allows the model to capture
diverse aspects of these relationships simultaneously. To address sequence order, positional
encodings are incorporated into input embeddings. Following self-attention, a feedforward
neural network further processes the output, reducing dimensionality. Residual connec-
tions around each sub-layer and layer normalization aid in training deeper models. In tasks

https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability/code
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability/code
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like translation, transformers employ an encoder–decoder architecture where the encoder
processes the input sequence, and the decoder generates the output sequence.
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In the Results section, we discuss the classifier performance results and the short-
comings observed in the code snippets generated by zero-shot learning prompts when
incorporated with the water potability dataset.

4. Results and Discussion

The water potability dataset consisted of 10 columns of which 9 were inputs and 1 a
target. Figure 3 illustrates the distribution of classes in the target column of the water
potability dataset, and the code to view this distribution was generated by the authors to
provide insight into the data handled by ChatGPT for code generation. The prompts on
ChatGPT did not encompass the classification distribution information, as the focus was
on investigating the capability to generate code with performance metrics. It can be seen
in Figure 3 that there is an imbalance of classes, and the predictions may not be accurate.
In cases where classes are imbalanced, a few approaches can be used to mitigate class
imbalance. One approach commonly used to address imbalanced classes in a classification
problem is resampling. This can involve either oversampling the minority class (creating
more instances of the minority class) or under sampling the majority class (removing
instances of the majority class). Another approach is to use different evaluation metrics
such as F1-score, precision, and recall, which can provide a better understanding of model
performance when dealing with imbalanced classes. Additionally, ensemble methods
like boosting algorithms (e.g., AdaBoost, XGBoost) and bagging algorithms (e.g., Random
Forest) can also help mitigate class imbalance by adjusting the weights of samples or
aggregating predictions from multiple classifiers.
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As previously stated, the primary focus of this study was not on enhancing the
performance metrics of the classifiers utilized, but rather on presenting a set of zero-
shot learning prompts tailored for ChatGPT to generate code snippets conducive to cost-
sensitive learning. To illustrate this, the logistic regressor and gradient boosting classifiers
were employed. The performance metrics of these models were not subjected to further
refinement for enhancement, as the primary objective of the study was to formulate a
series of zero-shot learning prompts for generating code snippets pertinent to cost-sensitive
learning. These generated code snippets were evaluated using a water potability dataset,
chosen due to its relevance for models designed for cost-sensitive learning. A comparative
analysis of these models, along with their associated prompts, is presented in tabular
form, and the results are subsequently discussed. Figure 4 provides a simplified visual
representation of the previously described process.
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Overview of Classifier Metrics for Different Generated Code Snippets

Below is a summary of the classifiers that were used in the study to demonstrate the
performance of the code snippets that were generated through zero-shot learning prompts
on ChatGPT.

Logistic regression tackles binary classification problems by modeling the relationship
between features (X) and the probability of belonging to the positive class (y = 1) using
a linear model. This model’s output is transformed by the sigmoid function to ensure
probabilities between 0 and 1. The model is then optimized using maximum likelihood
estimation to find the best coefficients for the linear model. Finally, a threshold is used on
the predicted probabilities to classify new data points.

Gradient boosting classifiers (GBCs) tackle classification by combining multiple weak
learners, often decision trees. These learners are added sequentially, with each focusing on
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correcting the errors of the previous ones. GBC uses loss functions to quantify errors and
pseudo-residuals to pinpoint areas for improvement. Each weak learner is trained on these
pseudo-residuals, and their predictions are combined to make final classifications. This
ensemble approach offers flexibility, interpretability, and improved accuracy compared to
single models.

Table 1 presents a summary of the classifier accuracies obtained from the generated
code snippets using zero-shot learning prompts on ChatGPT.

Table 1. Comparison between classifier accuracy based on prompts generated by humans and by ChatGPT.

Cost-Sensitive
Learning Approach

Zero-Shot Learning
Prompts on
ChatGPT

Metric Results of the
Human-Written Code Using

Logistic Regressor as a
Base Classifier

NB: Cost-Sensitive Learning Not Catered for.

Metric Results of the ChatGPT-Generated
Code Snippets [Both Logistic Regressor and
Gradient Boosting Classifiers] (Appendix A)

NB: Cost-Sensitive Learning Is
Catered for.

1. Feature
Engineering Prompt 1 Logistic regressor is a base model:

Accuracy → 57%

Logistic regressor:
Accuracy → 66%

Gradient boosting:
Accuracy → 65%

2. Handling
Imbalanced Classes Prompt 2 Logistic regressor is a base model:

Accuracy → 57%

Logistic regressor:
Accuracy → 43%

Gradient boosting:
Case1 : Accuracy → 60.7%
Case2 : Accuracy → 62%

Case3 : Accuracy → 58.5%

3. Regularization Prompt 3 Logistic regressor is a base model:
Accuracy → 57%

Logistic regressor:
Accuracy → 57%(For both L1 and L2)

Gradient boosting:
Accuracy → 64%

4. Hyperparameter
Tuning Prompt 4 Logistic regressor is a base model:

Accuracy → 57%

Logistic regressor:
Accuracy → 57%

Gradient boosting:
Accuracy → 66%

5. Ensemble Methods Prompt 5 Logistic regressor is a base model:
Accuracy → 57%

Logistic regressor:
Bagging Accuracy : 57%
AdaBoost Accuracy : 57%

Stacking Accuracy → 59.8%
Gradient boosting:

Case1 : Base Classi f ier Accuracy → 64%
Case1 : Bagging Ensemble Accuracy → 65%

Case2 : Base Classi f ier Accuracy → 64%
Case2 : Boosting Ensemble Accuracy → 59%
Case3 : Stacking Ensemble Accuracy → 65%

6. Cross-Validation Prompt 6 Logistic regressor is a base model:
Accuracy → 57%

Logistic regressor:
Mean accuracy → 60.5%

Standard deviation → 0.012
Gradient boosting:

Mean accuracy : 64%
Standard deviation : 0.0157

7. Feature Selection Prompt 7 Logistic regressor is a base model:
Accuracy → 57%

Logistic regressor:
Model Accuracy with Selected Features → 57%

Model Accuracy with Top Features → 57%
Gradient boosting:

Accuracy with selected f eatures → 67%

8. Optimizing
Decision Threshold Prompt 8 Logistic regressor is a base model:

Accuracy → 57%

Logistic regressor:
Accuracy with optimal threshold → 57.5%

Gradient boosting:
ROC AUC → 66%

Figure 5 is a histogram that offers a visual representation of the variability in accuracy
values for both models, highlighting differences in performance and distribution characteristics.
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Logistic regressor classifier: In the provided histogram, the accuracy distribution for
the logistic regressor model spans from approximately 43% to 66%. Notably, there is a con-
centration of accuracy values around 57%, with a few instances deviating from this central
value, ranging from as low as 43% to as high as 66%. The distribution exhibits a somewhat
skewed pattern, with more occurrences towards the lower end of the accuracy range.

Gradient boosting classifier: For the gradient boosting model, accuracy values range
from approximately 58.5% to 67%. Unlike the logistic regressor, the distribution is relatively
more consistent, with most accuracy values clustered between 60% and 67%. Fewer extreme
values are observed, indicating a more stable performance. The distribution appears to be
slightly right-skewed, with more occurrences towards the higher end of the accuracy range.

Thus far, the explained results are founded on accuracy. Nevertheless, it is crucial
to acknowledge that other performance metrics need to be taken into account in case-
sensitive learning. The subsequent results are showcased for alternative performance
metrics, excluding accuracy, which was detailed in Table 1. Unlike the accuracy results in
Table 1, which were compared against the model performance of the code written by the
authors, the following performance metrics generated by ChatGPT’s code were compared
against those achieved by Kaggle code authors who ranked at the top of the scoreboard for
water potability predictions using the same dataset. The results of the top 5 code authors
on the Kaggle scoreboard were selected to compare their model outcomes with ChatGPT’s
performance results (https://www.kaggle.com/datasets/uom190346a/water-quality-and-
potability/code) (accessed on 2 February 2024).

1. Additional experiment results based on Prompts 1–4
To demonstrate additional metrics beyond accuracy, as shown in Table 1, we specif-

ically examined the results of the logistic regression code generated by ChatGPT. The
Precision, Recall, F1-score, and ROC AUC results were consistent across logistic regression
models generated by ChatGPT prompts 1–4, as depicted in Table 1. Based on the perfor-
mance of models generated by prompts 1–4, it appears that the models failed to discern
meaningful patterns from the data and are essentially making random predictions. This
could stem from various factors such as insufficient data, inappropriate model selection, or
a lack of feature relevance.

At the time of writing this article, the authors of “Neural Network from scratch using
PyTorch”, ranked second on the Kaggle scoreboard, and achieved the performance metrics
depicted in Figure 6 (https://www.kaggle.com/code/sidhaarth2110035/neural-network-
from-scratch-using-pytorch) (accessed on 2 February 2024).

https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability/code
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability/code
https://www.kaggle.com/code/sidhaarth2110035/neural-network-from-scratch-using-pytorch
https://www.kaggle.com/code/sidhaarth2110035/neural-network-from-scratch-using-pytorch
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Figure 6. Performance metrics of the model by Kaggle authors of “Neural Network from scratch
using PyTorch”.

The model developed by the aforementioned Kaggle code authors prove to outperform
the models generated by invoking prompts 1–4.

2. Additional experiment results based on Prompts 5–8
Invoking prompt 6 on ChatGPT resulted in the generation of a code snippet with model

performance results similar to those displayed in Table 2. However, Table 3 showcases the
results of the models developed using the code generated by invoking prompt 5. Based
on the results provided, the “Stacking model” demonstrated significant Precision, Recall,
F1-Score, and ROC AUC values compared to the Bagging and AdaBoost models. Referring
to both Figure 6 and Table 1, it is evident that starting from the accuracy of the “Stacking
model” presented in Table 1 to Precision, Recall, and F1-Score displayed in Table 3, the
ChatGPT code outperforms the Kaggle authors in Precision, Recall, and F1-Score. The
Kaggle authors’ model resulted in an accuracy approximately equal to that of ChatGPT’s
“Stacking model” (≈62%).

Table 2. Additional performance metrics by ChatGPT logistic regression model.

Metrics Result Description

Precision 0% A precision of 0% indicates that none of the positive predictions made by the model were correct.
Recall 0% A recall of 0% indicates that the model failed to correctly identify any of the actual positive instances.

F1-Score 0% An F1-score of 0% indicates that both precision and recall are extremely low.

ROC AUC 49% ROC AUC is close to 0.5, indicating that the model’s ability to distinguish between classes is almost
equivalent to random chance.

Table 3. Performance of models generated by the ChatGPT code on invoking prompt 5.

Model Precision Recall F1-Score ROC AUC

Bagging 0% 0% 0% 50%
Adaboost 0% 0% 0% 50%
Stacking 56% 49% 52% 60%

The performance of the “Stacking model” in Table 3 is visually represented by Figure 7.
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Figure 7. “Stacking model” performance as displayed in Table 3.

The results obtained by invoking prompt 7 on ChatGPT are presented in Table 4. A
logistic regression model was developed in two versions: one with selected features and
another with top features. However, both models showed poor performance across all
evaluation metrics. Although the ‘Top Features’ model slightly outperformed the other in
terms of precision, it still demonstrated very low recall and overall effectiveness, indicating
room for improvement. When compared to the results of the Kaggle authors depicted in
Figure 6, the models displayed in Table 4 outperform them across all metrics except for the
precision of the “Top Features” model.

Table 4. Performance of models generated by the ChatGPT code on invoking prompt 7.

Model Precision Recall F1-Score ROC AUC

Selected
Features

0% 0% 0% 50%

Top Features 100% 0.5% 1.1% 50%

Figure 8 depicts the performance of the “Top Features model” displayed in Table 4.
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The results derived from invoking prompt 8 on ChatGPT closely resemble those of the
“Top Features model” depicted in Table 4. Appendix A provides information on accessing
the code snippets for the experiments conducted in this study.

The ChatGPT prompts we developed aim to generate code snippets that can optimize
the classifier models for cost-sensitive learning. It is important to understand that the
models with the best performance metrics are the ones to consider for further improvement.
In this study, models with metrics resulting in 0% performance are clearly not suitable
for further optimization. The prompts that led to better performance metrics, like those
used for the “Stacking” and “Top Features” models in this study, are the ones to adopt
and refine their generated code snippets for even better performance. It is also important
to realize that the way data are structured can affect how well a model performs. This
is particularly significant due to the curse of dimensionality, where high-dimensional
data can pose challenges for machine learning models. As a result, prompts showing 0%
metrics might have performed better in different datasets due to variations in data structure
and dimensionality.

5. Discussions

Furthermore, the variability in accuracy values for logistic regression and gradient
boosting classifiers was explored, shedding light on differences in distribution character-
istics. The study primarily aimed to introduce zero-shot learning prompts tailored for
ChatGPT to generate code snippets suitable for cost-sensitive learning. Logistic regression
and gradient boosting classifiers were employed without extensive refinement, highlighting
the emphasis on code generation over model optimization. Comparative analyses were
conducted between models generated by ChatGPT prompts and human-written code from
Kaggle champions, revealing competitive performance levels in terms of precision, recall,
and F1-score.

Specific experiments were conducted to showcase the utility of zero-shot learning
prompts in generating code snippets for various aspects of model development, including
feature engineering, handling imbalanced classes, regularization, hyperparameter tuning,
ensemble methods, cross-validation, feature selection, and optimizing decision thresholds.
The results demonstrated varying degrees of model performance across different prompts,
underscoring the versatility of ChatGPT in generating tailored code snippets to meet
specific requirements.

The imbalance of classes in the water potability dataset was also addressed, with
potential approaches discussed to mitigate this issue, such as resampling techniques and
alternative evaluation metrics. The findings highlight the effectiveness of zero-shot learning
prompts in tackling real-world challenges and streamlining model development for cost-
sensitive learning tasks.

6. Conclusions

The study showcases the effectiveness of zero-shot learning prompts tailored for Chat-
GPT in generating code snippets suitable for cost-sensitive learning tasks. By employing
these prompts, the study demonstrated the versatility of ChatGPT in automating various
aspects of machine learning model development. Comparative analyses between models
generated by ChatGPT prompts and human-written code from Kaggle champions revealed
competitive performance in terms of precision, recall, and F1-score. This suggests that
ChatGPT-generated code snippets can achieve comparable results to manually written code.

Specific experiments conducted to explore different aspects of model development, such
as feature engineering, handling imbalanced classes, and hyperparameter tuning, underscored
the versatility of ChatGPT in generating tailored code snippets to address specific requirements.
This highlights ChatGPT’s potential in streamlining the model development process.

The study addressed the imbalance of classes in the water potability dataset and dis-
cussed potential approaches, such as resampling techniques and alternative evaluation metrics,
to mitigate this issue. This demonstrates the effectiveness of zero-shot learning prompts in
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tackling real-world challenges and enhancing model development for cost-sensitive learn-
ing tasks.

In conclusion, the study contributes to advancements in the field of machine learning
by showcasing the potential of ChatGPT in automating aspects of model development. By
facilitating code generation for various machine learning tasks, ChatGPT can accelerate
the pace of research and innovation in the field, ultimately leading to more efficient and
effective machine learning models. The Supplementary Materials provide the codes used
in this study (https://zenodo.org/records/10884304) (accessed on 27 March 2024).

Supplementary Materials: The code for the experiments conducted in this study is available at
Zenodo repository (https://zenodo.org/records/10884304).
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