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Abstract: The rock mass is susceptible to instability and damage during cavern construction. The
blast-induced cracking process of the rock mass contains a wealth of information about the precursors
of instability, and the identification of fracture nucleation signals is a prerequisite for effective hazard
warning. A laboratory mechanical test and microseismic (MS) monitoring were carried out in the
Baihetan Cavern to investigate the fracture nucleation process in the rock mass. MS monitoring
shows that pre-existing microcracks were closed or new cracks were generated under the action of
high stress, which caused the migration of microcracks. As the crack density increases, the fracture
interaction gradually increases. The study of the rock fracture nucleation mechanism helps to reveal
the MS sequences during the rock fracture process, and the fore-main shock was found in the MS
sequence during access tunnel excavation. This study can effectively provide guidance for the
early warning of rock mass failure and the stability analysis of underground caverns under blasting
excavation disturbance.

Keywords: underground cavern; microseismic monitoring; fracture nucleation; early warning;
stability analysis

1. Introduction

As underground engineering becomes deeper, excavation will inevitably lead to a
certain degree of cracking or the local failure of surrounding rock [1–4]. To date, the
main excavation mode of hard rock caverns is drill and blast [5–8]. Previous studies show
that the microcracks of rock mass are excited under the action of blasting load, which
results in damage deterioration or even ultimate local failure in underground caverns
(Figure 1) [9–14]. These macroscopic failures of rock mass are largely attributed to the
result of the evolution of internal cracks [15]. Unfortunately, the damage of rock mass is
irreversible. When the degree of damage to the rock mass accumulates to the threshold,
it is easy to induce rock mass instability failure under the action of blasting excavation
disturbance [16]. In underground engineering, there is a contradiction between rock
blasting excavation and the protection of the cavern, which must be solved [17–24]. From
the viewpoint of cavern stability, it is essential to excavate the cavern in a rational manner
using the blasting technique and to reduce the deterioration caused by rock damage.
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Figure 1. Severe rock failure cases of an underground cavern. 

A proper assessment of rock mass damage and the nucleation mechanism induced 
by blasting excavation could provide guidance for the adjustment of subsequent construc-
tion. Theoretically, the evolution of cracks inside surrounding rock is a non-linear process 
[25–28]. There may be mutual influence and promotion between multiple cracks, and mac-
roscopic failure is essentially the result of the accumulation of internal microcracks [29–
33]. In the process of stress redistribution, it may induce internal fracture of the rock mass 
or shear dislocation along the original structural plane. The most commonly used in situ 
method for studying unloading fracture in underground rock engineering is MS monitor-
ing [34–36]. The nucleation of cracks is initiated when the stress exceeds a certain thresh-
old value [37–39]. 

In order to effectively reveal the cracking process and nucleation mechanism of mac-
roscopic rock failure under blast load and to ensure the stability of the underground cav-
ern, MS monitoring was implemented in the Baihetan Cavern. The internal microcrack 
evolution and cumulative damage mechanism of hard rock under blast load were intui-
tively revealed, which greatly enriches our understanding of the rockʹs mechanical behav-
ior under blast disturbance. 

2. Project Overview 
2.1. Background 

The layout of the caverns in the Baihetan project is shown in Figure 2. The caverns of 
the hydropower stations are arranged symmetrically in the mountains. The caverns con-
sist of the powerhouse, tailrace gate room, main transformer room, tailrace surge tank, 
and drainage tunnels. The hydroelectric project is equipped with 16 sets of hydro-gener-
ator units independently developed by China, with a single unit capacity of 1000 MW. 
The significance of the sustainable development of the Baihetan hydropower station is 
that the annual power generation can meet the demand of about 75 million people, which 
can replace about 19.68 million tons of burning coal and reduce about 52 million tons of 
carbon dioxide emissions. 

Figure 1. Severe rock failure cases of an underground cavern.

A proper assessment of rock mass damage and the nucleation mechanism induced
by blasting excavation could provide guidance for the adjustment of subsequent con-
struction. Theoretically, the evolution of cracks inside surrounding rock is a non-linear
process [25–28]. There may be mutual influence and promotion between multiple cracks,
and macroscopic failure is essentially the result of the accumulation of internal microc-
racks [29–33]. In the process of stress redistribution, it may induce internal fracture of the
rock mass or shear dislocation along the original structural plane. The most commonly
used in situ method for studying unloading fracture in underground rock engineering
is MS monitoring [34–36]. The nucleation of cracks is initiated when the stress exceeds a
certain threshold value [37–39].

In order to effectively reveal the cracking process and nucleation mechanism of macro-
scopic rock failure under blast load and to ensure the stability of the underground cavern,
MS monitoring was implemented in the Baihetan Cavern. The internal microcrack evolu-
tion and cumulative damage mechanism of hard rock under blast load were intuitively
revealed, which greatly enriches our understanding of the rock’s mechanical behavior
under blast disturbance.

2. Project Overview
2.1. Background

The layout of the caverns in the Baihetan project is shown in Figure 2. The caverns of
the hydropower stations are arranged symmetrically in the mountains. The caverns consist
of the powerhouse, tailrace gate room, main transformer room, tailrace surge tank, and
drainage tunnels. The hydroelectric project is equipped with 16 sets of hydro-generator
units independently developed by China, with a single unit capacity of 1000 MW. The
significance of the sustainable development of the Baihetan hydropower station is that
the annual power generation can meet the demand of about 75 million people, which can
replace about 19.68 million tons of burning coal and reduce about 52 million tons of carbon
dioxide emissions.

2.2. Network Topology of the Microseismic System

The MS monitoring system consists of a server, modem, DSL modem, UPS, net ADC,
net SP, and uniaxial geophones (Figure 3). The designed sampling frequency of the MS
monitoring system is 6000 Hz. The principle of signal acquisition is that the released elastic
waves induced by rock fractures are detected by the MS sensors and then the wave signals
are transferred to the net ADC. These signals are then converted into digital signals. Finally,
the digital signals can be processed into rock fracture earthquake spectra. These earthquake
spectra are transferred to the server and then the experienced microseismic engineer can
process the MS signals in the monitoring center at the Baihetan office.
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Figure 3. Components and communication mode of the MS system. 

The spatial arrangement of MS sensors in the study area of the caverns is displayed 
in Figure 4. A total of three monitoring sections were arranged in the study area, and two 
sensors were installed in each monitoring section. The distance between each monitoring 
section is 30 m. The six sensors (No. 29~No. 34) used in the field are uniaxial geophones. 
The parameters of the geophones are listed in Table 1. The valid MS sensor array is fun-
damental to the study of the fracture process. According to the MS location algorithm, the 
fracture signal monitored by four or more sensors can be effectively located. In this study, 
six sensors were used to monitor the fracture process of the rock mass. The number of 
sensors is more than four, which can effectively ensure the continuity and accuracy of the 
MS monitoring results. 

In addition, preventive measures were also proposed to prevent the destruction of 
the array and to protect the continuity of the MS data. Firstly, borehole and grouting tech-
nology was used to install the MS sensor. Coupling of the MS sensor and the surrounding 
rock can significantly enhance the quality of the captured MS data. Secondly, a steel pipe 
is inserted into the surrounding rock to safeguard the exposed communication cable (Fig-
ure 5). Engineering practices have proved that these preventive measures effectively guar-
antee the reliability of the MS data. 

Table 1. Parameters of microseismic geophones. 

Sensor Orientation Natural Frequency Response Range 
Geophone Uniaxial 10 Hz 10~2000 Hz 
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The spatial arrangement of MS sensors in the study area of the caverns is displayed
in Figure 4. A total of three monitoring sections were arranged in the study area, and two
sensors were installed in each monitoring section. The distance between each monitoring
section is 30 m. The six sensors (No. 29~No. 34) used in the field are uniaxial geophones.
The parameters of the geophones are listed in Table 1. The valid MS sensor array is
fundamental to the study of the fracture process. According to the MS location algorithm,
the fracture signal monitored by four or more sensors can be effectively located. In this
study, six sensors were used to monitor the fracture process of the rock mass. The number
of sensors is more than four, which can effectively ensure the continuity and accuracy of
the MS monitoring results.
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In addition, preventive measures were also proposed to prevent the destruction of the
array and to protect the continuity of the MS data. Firstly, borehole and grouting technology
was used to install the MS sensor. Coupling of the MS sensor and the surrounding rock
can significantly enhance the quality of the captured MS data. Secondly, a steel pipe is
inserted into the surrounding rock to safeguard the exposed communication cable (Figure 5).
Engineering practices have proved that these preventive measures effectively guarantee
the reliability of the MS data.
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Table 1. Parameters of microseismic geophones.

Sensor Orientation Natural Frequency Response Range

Geophone Uniaxial 10 Hz 10~2000 Hz

2.3. Study Area

The access tunnel of the underground cavern was selected as the test site to monitor
the crack process of the rock mass, and the selected study area is demonstrated in Figure 6.
The range of the study area is 60 m wide surrounding the access tunnel.
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3. Fracture Nucleation Mechanism
3.1. Laboratory Test

Scholars have carried out systematic research work on rock cracking and have a deeper
understanding of rock damage and deformation processes [40–43]. During rock uniaxial
compression, the axial and lateral strains were measured by an axial extensometer and
circumferential strain gauge, respectively. Then, the total volumetric strain of the rock
sample can be calculated as:

εv = ε1 + 2ε3 (1)

where ε1 is the axial strain and ε3 is the lateral strain. The Poisson’s ratio υ and elastic
modulus E are calculated by the linear elastic section of the stress–strain curve. According
to the three principal stresses σ1, σ2, σ3 of the rock sample, the elastic volumetric strain
caused by the deformation of the rock matrix under different stress states is calculated as:

εe
v =

1 − 2ν

E
(σ1 + σ2 + σ3) (2)

The volume deformation of the rock samples is influenced by the rock matrix and
microcracks. For uniaxial compression (σ2 = σ3 = 0), the volumetric strain caused by
micropores and microcracks in the rock is:

εc
v = εv − εe

v = εv −
1 − 2ν

E
σ1 (3)

There are four stress thresholds in the rock failure process: (1) closure stress σcc
of initial microcracks; (2) initiation stress σci of new microcracks; (3) damage stress σcd;
and (4) peak stress σp, also denoted as for uniaxial compressive strength σc. Once the
damage stress is exceeded, the crack density increases greatly. Strain softening occurs in
brittle rock, resulting in irreversible crack damage [44]. The damage stress corresponds to
the long-term strength of the rock sample [45].
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The internal cracking of rock is very complex and the measurement of characteristic
stresses, such as initiation stress, damage stress, and peak stress, can represent the state
of the rock. However, acoustic emission and MS contain rich information about cracks,
and the internal damage and cracking process of the rock can be revealed by analyzing the
characteristics of the seismic signals.

3.2. In Situ Microseismic Monitoring
3.2.1. Evolution of MS Activity with Time

During the fracture process of the rock, the inelastic seismic wave is radiated outwards,
which is recorded as an MS event after being captured by the MS sensors. Theoretically,
a rupture of rock mass will produce an MS event. Figure 7 demonstrates the temporal
evolution of MS events with time in the access tunnel. It is clear that MS events accumulated
rapidly in the rock mass from 1 to 16 August 2016. And the number of MS events increased
slowly from 17 August to 12 September 2016. Then, the MS activity characteristics of the
rock mass were in a calm state. Finally, the number of MS events increased rapidly in
the rock mass from 13 to 19 September 2016. MS events are closely related to the internal
fracture of the rock mass, which directly reflects the evolution characteristics of the inside
cracks of the rock mass.
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Figure 7. Time evolution of cumulative MS events during excavation.

The distribution characteristics of MS events with different moment magnitudes
induced by blasting excavation are shown in Figure 8. The moment magnitude of MS
events ranges from −3.0 to −0.5 and is concentrated in the range of (−2.0, −1.0), which
reveals that the region meets the seismic conditions for possible rock mass failure.
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3.2.2. Spatial Distribution of MS Activity

The spatial evolution of MS events is shown in Figure 9. The fractures of rock mass in
the access tunnel are excited by blasting disturbance. The micro-fractures of the rock mass
are randomly initiated. The adjacent micro-fractures are far away from each other, and the
interaction of micro-fractures is weak. The pre-existing microcracks close or new cracks are
generated under the action of high stress, which leads to the migration of microcracks. With
the increase in crack density, the interaction of fractures is gradually enhanced, and the
micro-fracture changes from disorder to order. When the local density of the micro-fracture
reaches the critical value, local nucleation of the micro-fracture occurs. In the later stage
of micro-fracture evolution, nucleation reaches the macro-scale and finally leads to the
nucleation of small-scale micro-fractures into large-scale cracks or faults. The blasting-
induced MS events are clustered in the roof of the access tunnel, and the corresponding
spalling failure is shown in Figure 10. Once the fracture nucleation forms a local weakening
of the macroscopic critical scale, it will lead to the instability and failure of the rock mass.
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3.2.3. Macroscopic Damage Risk Warning

In the field of seismology, the forecast of rock failure can be based on a statistical
approach in the short and long term [46]. There is no doubt that more information can be
obtained through long-term monitoring and that the effect of the early warning will be
more precise. The evolution curves of energy index (EI) and cumulative apparent volume
with time can reflect the micro-fracture characteristics before the macroscopic failure of
rock mass and evaluate the stability of the cavern. The computational formula of EI is:

EI =
E

E(P)
(4)

In the formula, EI is the energy index and E(P) is the average released MS energy in
the analysis area.

The energy index and cumulative apparent volume evolution curve induced by blast-
ing excavation are shown in Figure 11. From 5 to 23 August 2016, the energy index showed
an overall upward trend, while the cumulative apparent volume increased slowly. The
MS deformation of rock mass in this period was small, and the surrounding rock was in
the compaction stage before the peak strength of the rock. From 24 to 30 August 2016,
the energy index decreased rapidly in a stepped manner, and the cumulative apparent
volume increased rapidly, indicating that the stored strain energy of the rock mass exceeded
the limited storage capacity. The rapid release of energy in the source, accompanied by
an increase in the inelastic deformation volume, indicates that the risk of macroscopic
deformation or fracture is increasing. At this time, an early warning should be issued in
time. From 31 August to 10 September 2016, the energy index and cumulative apparent
volume showed an upward trend. Similarly, if no timely support reinforcement measures
or insufficient support strength were taken after the previous stage of early warning, the
risk of macroscopic failure of rock mass at this stage was greater. In short, before the macro-
scopic failure of the rock mass occurs, it has the remarkable characteristics of a sudden
increase in apparent volume and a sudden decrease in energy index. Combined with the
temporal and spatial evolution law of MS events, it can be seen that the MS events in the
access tunnels induced by blasting excavation increase rapidly, which indicates that the
risk of surrounding rock fracture is high. The failure characteristics of the surrounding
rock of the access tunnel further verify the accuracy of risk early warning results based on
MS parameters.
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4. Discussion
4.1. MS Sequences

The crack evolution and nucleation mechanism are related to the characteristics of the
rock medium. The study of the rock fracture nucleation mechanism helps to reveal the
MS sequences during the rock fracture process. Mogi [47] studied the failure of different
rock materials in acoustic emission experiments. (1) In homogeneous rock, the number
of microcracks before the main crack is very small. However, there are many microcracks
after the main crack. (2) In heterogeneous rock materials, a large number of microcracks
occur before and after the main crack. (3) It is worth noting that in the failure process
of extremely heterogeneous rock materials, there are many microcracks, but there is no
main crack. Based on the above observations of different rock mediums, three types of AE
sequences are summarized: main shock sequence, fore-main shock sequence, and swarm
shock sequence.

In fact, there are many MS events with different energies during the fracturing process
of the rock mass. The maximum energy of an MS event is 102~104 times that of the
minimum energy. The role of MS events with low energy is almost ignored in the MS
energy evolution curve. In order to avoid the influence of order of magnitude difference,
the radiated energy of ith MS event is processed by finding the cube root as follows:

E∗
i = 3

√
Ei (5)

Then, to compare the characteristic between the AE sequence and MS sequence in-
duced by blasting disturbance, the evolution curves of moment magnitude and cumulative
energy in the MS sequence is shown in Figure 12. The MS energy is processed by the
cube root transformation. In this study, the evolution characteristics of microseismicity in
Figure 12 is the fore-main shock MS sequence. Engineering practices have proved that the
fracture process of rock mass macroscopic failure has two remarkable characteristics [48].
The first feature is the random generation of internal cracks of rock, which is also the
accumulation period of damage degradation. The seismic events of this period correspond
to the foreshock of the MS sequence. The second feature is the generation and evolution of
rock cracks gradually changed from disorder to order, contributing to the fracture merging
and nucleation of rock mass. In the meantime, the number and scale of cracks accelerate
and enter the unstable failure stage. The seismic events of this period correspond to the
main shock of the MS sequence.
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4.2. Kinetic Model

Microseismology is derived from earthquake seismology. The common kinetic model
of seismology is also used in the field of microseismology. The kinetic mode can help
us to understand the mechanical behavior and the destruction process of the rock mass.
The determination of the fracture mechanism and source parameters is based on the well-
known kinetic model of the Brune model [49]. The Brune model assumes that the seismic
source is a circular dislocation and that the instantaneous stress drop is generated along
the dislocation. The Brune model was developed by Madariaga [50], who modified the
concept of the source radius. In the Madariaga model, the seismic source is considered
to be an extended circular crack with a finite rupture velocity. The size of the crack plays
a very important role in the process of fracture nucleation in the rock mass. The source
radius can be used to characterize the size of the rock fracture in the underground cavern.
The source radius is calculated on the basis of the velocity of the S-wave and the corner
frequency as follows:

r =
cVS

2π f0
(6)

In the formula, r is the source radius; c is a constant and the value of c depends on the
source model; Vs is the S-wave velocity; and f 0 is the corner frequency.

For the Brune and Madariaga models, the constant c is 2.34 and 1.32, respectively. This
means that the calculated fracture size of the Brune model is twice that of the Madariaga
model. The magnitude of the rock mass rupture induced by the earthquake is large. The
Brune model assumes that the source is a double couple shear mechanism, so the model
has a wide range of applications in earthquake engineering. However, in underground
caverns, the excavation-induced fracture is relatively small, and the source is dominated
by the tensile mechanism. The size calculated by the Brune model is significantly larger
than the fracture size observed in the field. Relatively speaking, the size calculated by the
Madariaga model is closer to engineering practice. Therefore, the study of a kinetic model
suitable for the tensile fracture mechanism of underground caverns is of great benefit to
fully reveal the destruction process of the rock mass. The next stage of research is to study
a kinetic model suitable for underground caverns and to test the effectiveness of the model.

5. Conclusions

An MS monitoring technique was implemented to study the blasting-induced fracture
nucleation mechanism of rock mass in underground caverns. It is clearly shown that inside
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cracking in laboratory rock is very complicated and that simply measuring the peak stress
does not reflect the cracking process. That is, it is momentous to explore the internal crack
and damage process of the rock mass, which can be used for warning about the macroscopic
instability of surrounding rock.

By analyzing the characteristics of the seismic signals radiated by rock cracking, the
fracture nucleation of rock masses can be comprehensively revealed. The MS monitoring
results show that the micro-fractures of rock mass are randomly initiated. With the increase
in crack density, the interaction of fractures is gradually enhanced, and micro-fracture
changes from disorder to order. When the fracture nucleation forms a local weakening
of the macroscopic critical scale, it will lead to the instability and failure of caverns. The
MS energy index and cumulative apparent volume evolution curve can be used for early
warning of the failure of the rock mass.
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