
Citation: Teale, M.A.; Schneider, S.L.;

Eibl, D.; Eibl, R. Process

Intensification in Human Pluripotent

Stem Cell Expansion with

Microcarriers. Processes 2024, 12, 426.

https://doi.org/10.3390/pr12030426

Academic Editors: Francesca Raganati

and Alessandra Procentese

Received: 22 January 2024

Revised: 13 February 2024

Accepted: 16 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Process Intensification in Human Pluripotent Stem Cell
Expansion with Microcarriers
Misha Alexander Teale * , Samuel Lukas Schneider , Dieter Eibl and Regine Eibl

Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology,
Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland;
samuel.schneider@zhaw.ch (S.L.S.); dieter.eibl@zhaw.ch (D.E.); regine.eibl@zhaw.ch (R.E.)
* Correspondence: misha.teale@zhaw.ch

Abstract: Given the demands human induced pluripotent stem cell (hiPSC)-based therapeutics place
on manufacturing, process intensification strategies which rapidly ensure the desired cell quality
and quantity should be considered. Within the context of antibody and vaccine manufacturing,
one-step inoculation has emerged as an effective strategy for intensifying the upstream process. This
study therefore evaluated whether this approach could be applied to the expansion of hiPSCs in
flasks under static and in microcarrier-operated stirred bioreactors under dynamic conditions. Our
findings demonstrated that high density working cell banks containing hiPSCs at concentrations
of up to 100 × 106 cells mL−1 in CryoStor® CS10 did not impair cell growth and quality upon
thawing. Furthermore, while cell distribution, growth, and viability were comparable to routinely
passaged hiPSCs, those subjected to one-step inoculation and expansion on microcarriers under
stirred conditions were characterized by improved attachment efficiency (≈50%) following the first
day of cultivation. Accordingly, the process development outlined in this study establishes the
foundation for the implementation of this intensified approach at L-scale.

Keywords: microcarriers; perfusion; single-use; stirred bioreactor; upstream processing

1. Introduction

The recent clinical and commercial success of cell therapeutics underscores their
substantial developmental potential within the healthcare sector [1–3]. Despite these
achievements, challenges persist, particularly in improving patient accessibility and prod-
uct affordability [4]. Here, allogeneic cell therapies based on human induced pluripotent
stem cells (hiPSCs) may prove pivotal, as they allow for both an economy-of-scale approach
and the production of a wide range of specialized cell types [5–8]. Current estimates place
the number of cells required for such treatments at up to 1012 per patient depending on
the clinical indication [4]. To achieve these cell quantities, two approaches have proven
instrumental, namely the cultivation of hiPSCs in stirred bioreactors as spheroids or using
microcarriers (MCs). While the cultivation of hiPSCs as spheroids has been particularly
successful at mL-scale, achieving expansion factors (EF) of >93 in 5 d [9] and cell densities of
>34 × 106 in 7 d [10], recreating these remarkable results at L-scale remains challenging [11].
On the other hand, the application of MCs at L-scale has demonstrated the potential for
absolute hiPSC yields of >1010 and EF >120, however, such processes required cultivation
times >12 d [12], thereby highlighting the need for further process optimization.

Intensified production processes, which primarily serve to shorten process time and
reduce the cost of manufacturing [13], have increasingly become the focus of antibody and
vaccine manufacturers during the last 10 years. Within this context, one-step inoculation
(OSI) has emerged as an effective intensification strategy, alongside the application of cells
from high cell density [12,14,15] or large volume cell banks [14,16]. Also referred to as a
frozen accelerated seed train [14], OSI describes the direct inoculation of the N-1 bioreactor
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using cryopreserved cells, thereby offering numerous advantages as demonstrated by
various working groups [12,17–20]. These advantages include a reduction of expansion
steps and the associated risk of contamination, an improvement in inoculum quality, and
enhanced process reproducibility. When applied to the expansion of hiPSCs as spheroids,
Huang et al. [11] confirmed that OSI could be used to shorten the duration seed train
without impacting cell quality under stirred conditions. Meiser et al. [16] later observed
that the OSI of hiPSCs led to a ≈15% reduction in cell aggregation and more uniform
spheroid size after 24 h when using the orbitally shaken CERO 3D bioreactor, allowing for
EF of between 6–8 to be achieved within 3 d.

Despite its success in stirred and orbitally shaken bioreactors, OSI has yet to be
described in detail for the expansion of hiPSCs on commercially available MCs. This is
noteworthy, considering that, from a scalability perspective, stirred bioreactors operated
using commercially available MCs are currently the preferred choice for the expansion of
adherently growing stem cells [21,22]. As shown in Figure 1, this study therefore aimed not
only to investigate the impact of hiPSC density upon freezing on subsequent attachment,
growth and quality, but also the applicability of OSI for the expansion of hiPSCs in stirred
MC-operated single-use (SU) bioreactors.
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Figure 1. Workflow overview of the OSI trials performed in coated T25 flasks and MC-operated
BioBLU 0.3c’s. Following the static seed train in conventional flatware, the hiPSCs were passaged
as single cells and either frozen away for prolonged storage or immediately transferred to either
T25 flasks or the MC-operated BioBLU 0.3c’s to act as trial controls. Following long-term storage in
liquid N2, the working cell bank was thawed and again characterized in both culture vessels. All
cultivations were evaluated through daily sampling, as well as following final harvest. Created using
Biorender.com.

2. Materials and Methods
2.1. Cell Line, Cultivation and Cell Banking

Experiments were conducted using the Gibco™ Episomal hiPSC (Thermo Fisher Scien-
tific, Waltham, MA, USA), which were generated from CD34+ cord-blood progenitors with
seven episomally expressed factors (Oct4, Sox2, Klf4, Myc, Nanog, Lin28 and SV40 T). Prior
to the inoculation of the experiments, the hiPSCs were plated at 10,000–20,000 cells cm−2

and expanded at 37 ◦C with 5% CO2 under feeder-free conditions on polystyrene-based
tissue culture (TC)-treated cultureware (Corning, NY, USA) coated with 0.5 µg cm−2 of
recombinant human vitronectin (rhVTN). Essential 8™ Flex (Thermo Fisher Scientific,
Waltham, MA, USA), henceforth denoted as E8F, served as the cell culture medium and was
supplemented for the first 24 h with Y-27632 (RI), a pan-rho associated coiled-coiled kinase
inhibitor (Miltenyi Biotec, Bergisch Gladbach, Germany) and known dissociation-induced
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apoptosis inhibitor [23]. Media exchanges (MEs) were performed 24 h post-inoculation,
then every 48–72 h as recommended by the manufacturer. Cell passaging was performed ev-
ery 4 d by exposing the cells to Accutase® (Corning, NY, USA) for 6–8 min at 37 ◦C without a
prior washing step. Once detached, the cells were rinsed with culture medium, centrifuged,
and resuspended in fresh culture medium for replating. The cells were passaged at least
twice before quality control, growth characterization or cryopreservation. To establish
the working cell bank, cells were centrifuged and resuspended in CryoStor® CS10 (STEM-
CELL Technologies, Vancouver, BC, Canada) at cell densities of 1–100 × 106 cells mL−1,
and frozen away at a rate of −1 ◦C min−1 in a −80 ◦C freezer using a CoolCell® LX Cell
Freezing Container (Corning, NY, USA). Once frozen, the cells were transferred to liquid
N2 for long-term storage.

The hiPSCs from the working cell bank were thawed in a water bath at 37 ◦C and
plated at 10,000 cells cm−2 in E8F containing RI on rhVTN-coated TC-treated T25 flasks
(Corning, NY, USA) for growth characterization under static conditions. The duration of
the repeated batch cultivations encompassed 5 d at 37 ◦C and 5% CO2, with a 100% ME
performed on day 1 and 3 using E8F. For the experiments under dynamic conditions, the
DASbox® Bioreactor System and corresponding BioBLU® 0.3c SU bioreactors (Eppendorf,
Hamburg, Germany), equipped with a three-bladed marine impeller, were used. The SU
units were fitted with standard glass pH electrodes, dissolved oxygen (DO) probes, and
temperature sensors to allow for the online monitoring and regulation of these critical
process parameters. The bioreactors were modified for perfusion mode operation by
introducing a sterile triple-port equipped with level probes, set to a height corresponding
to a maximum target working volume of 150 mL, and a MC retention probe. The MC
retention probe consisted of a dip tube modified with SEFAR NITEX 03-80/40 (Sefar, Thal,
Switzerland) to restrict outflow particle diameters to <80 µm. Further preparatory work
included the transfer of 1.5 g of sterile Synthemax® II coated low concentration polystyrene
MCs (Corning, NY, USA) in 140 mL of RI supplemented E8F to each unit. The medium
was then equilibrated for >4 h to the desired process setpoints prior to inoculation.

Inoculation of 10× 106 cells per bioreactor vessel (≈66,666 cells mL−1 or 18,500 cells cm−2)
was performed in one of two ways, either following routine passaging as previously de-
scribed or directly from freshly thawed working cell bank cryovials. Following inoculation,
the working volume was corrected to 150 mL with E8F+RI. Subsequent cell attachment
was supported through a 12 h intermittent stirring phase at 70 rpm (5 min on, 175 min off),
followed by continuous stirring for the remainder of the cultivation. This stirring speed
set to correspond to a specific power input of ≈1 W m−3, which was slightly lower than
Ns1u as defined elsewhere [24]. Dissolved oxygen and pH were corrected to setpoints of
40% and 7.2, respectively, through overlay aeration of air, N2 and CO2 at a combined rate
of 0.15 vvm. Following 24 h in RI supplemented E8F, perfusion with E8F was initiated at
a rate of 90–100 mL d−1 (0.60–0.66 vvd) until cultivation completion. This ensured that
RI, a known hiPSC mesoendodermal differentiation primer and ectodermal differentiation
inhibitor [25], was washed out in a timely manner. Similar to the trials under static condi-
tions, rhVTN-coated TC-treated T25 flasks inoculated with routinely passaged hiPSCs at
20,000 cells cm−2 served as a static control.

2.2. Cell Counting and Medium Component Analysis

The sampling procedure varied slightly depending on whether the cells were culti-
vated under static or dynamic conditions. During static cultivation, images were taken daily
using the EVOS™ FL 2 Auto (Thermo Fisher Scientific, Waltham, MA, USA) to determine
confluency, followed by a complete harvest of the T25 flasks with TrypLE™ Select (Thermo
Fisher Scientific, Waltham, MA, USA) at 37 ◦C for 6–8 min without prior wash step. For the
dynamic cultivations, stirring speed was increased to 100 rpm 5 min prior to daily sampling
to ensure homogenous MC distribution. The MC suspension was centrifuged at 200 rcf for
2 min following sampling and the resulting pellets either treated with TrypLE™ Select and
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analyzed by cell counter or fixed with 10% neutral buffered formalin (Sigma-Aldrich, St.
Louis, MO, USA) and stored at 4 ◦C.

In all experiments, cell count and viability were assessed using the NucleoCounter®

NC-200™ and Via1-Cassettes™ (ChemoMetec, Lillerød, Denmark) following treatment
with proteolytic reagent. This allowed for the calculation of growth-dependent parameters
as recently reported by others [26,27]. In Equation (1), EF represents the expansion factor
(%) or the ratio between the viable cell density on day i (VCDi) of cultivation (cells mL−1)
and the viable cell density directly following inoculation.

EF =
VCDi
VCD0

(1)

Equation (2) describes the attachment efficiency (AE) or the ratio of inoculated cells
which have attached to the scaffold or microcarrier following the attachment phase (%).

AE =
VCD1

VCD0
(2)

Further evaluation of the change in VCDi over time (ti) during the exponential growth
phase permitted the calculation of µ or the specific growth rate (h−1) through linear regres-
sion using Equation (3).

ln(VCDi) = µ × (ti − t0) + ln(VCD0) (3)

Equation (4) may then be used to calculate td or doubling time (h) using the specific
growth rate.

td =
ln(2)

µ
(4)

Daily samples of the cell culture medium were collected from all trials and analyzed
using the Cedex Bio (Roche, Basel, Switzerland) along with the corresponding kits for
glucose (Glc), glutamine (Gln), lactate (Lac), ammonium (NH4), and lactate dehydrogenase
(LDH). This allowed for the calculation of specific consumption and production rates of
these components, as well as their respective yields, using Equations (5) and (6).

qs =

[(
|cs,i − cs,i+1|

ti − ti+1

)
+

.
Vi
Vi

×
∣∣∣∣(cs,0 −

(ci+1 + ci)

2

)∣∣∣∣
]
× 2

(VCDi+1 + VCDi)
(5)

YA/B =
qA
qB

(6)

Daily changes in the specific uptake or production rates of substance s or qs
(pmol cell−1 d−1) during cultivation were calculated by considering changes to the con-
centration of substance s or cs,i (mol L−1), viable cell density, time, volumetric flow rate
of the feed on day i or

.
Vi (L d−1), the working volume of the vessel on day i or Vi (L),

and the concentration of substance s in the inlet or cs,0 (mol L−1). During repeated batch
mode operation,

.
Vi was assumed to be 0 L d−1, simplifying the equation. YA/B or the

substance B dependent yield of substance A (mol mol−1) was calculated as the ratio be-
tween the specific production rate of A (mol cell−1 d−1) and the specific consumption rate
of B (mol cell−1 d−1). The cell specific perfusion rates (CSPRs), as described by Ozturk [28]
and Bausch et al. [29], were then calculated using the VCDi,

.
Vi, and Vi or the qs during

perfusion mode operation and cs,0, to give the applied and minimum CSPR or CSPRapp
(pL cell−1 d−1) and CSPRmin (pL cell−1 d−1), respectively. According to Bausch et al. [29],
CSPRapp and CSPRmin may be placed in relation to one another by additionally taking
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into account the critical CSPR or CSPRcrit (pL cell−1 d−1) and the non-dimensional safety
margin R.

CSPRapp =

.
Vi

Vi × VCDi
(7)

CSPRmin =
qs

cs,0
(8)

CSPRapp ≥ CSPRcrit = (1 + R)× CSPRmin (9)

2.3. Microcarrier Aggregate Analysis

Analyses of the MC aggregates were conducted by centrifuging the fixed samples at
200 rcf for 2 min, after which the formalin was replaced with phosphate buffered saline
(PBS) solution containing 0.3% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) and
5 µg mL−1 4′,6-diamidino-2-phenylindole (Roche, Basel, Switzerland). The samples were
incubated for 30 min at 25 ◦C in the dark, after which they were washed twice with PBS.
Prior to imaging with the EVOS® FL 2 Auto, the stained MCs were embedded in a 3 g L−1

agarose gel. Attention was given to restrict MC weight to <5 mg per sample to ensure
adequate distribution within 6-well plate. Post-image processing was performed using
MATLAB R2022a (MathWorks, Natick, MA, USA). Non-spherical MC aggregate diameters
were calculated by assuming perfect circularity, while cell distribution on day i or CDi (%)
was calculated as the ratio between the number of inhabited or MCinhabited and total MCs or
MCtotal . Finally, the rate of change in cell distribution or

.
CD was calculated by observing

changes to cell distribution over time.

CDi =
MCinhabited,i

MCtotal,i
(10)

.
CD =

CDi+1 − CDi
ti+1 − ti

(11)

2.4. Analysis of Cell Quality and Potency

The quality of the hiPSCs prior to inoculation and following harvest was determined
by quantifying the expression of the pluripotency markers Oct3/4, Sox2, Nanog, TRA-
1-60, and SSEA-4, and the differentiation marker SSEA-1 in >1 × 105 cells using the
MACSQuant® 10 (Miltenyi Biotec, Bergisch Gladbach, Germany) flow cytometer (FCM)
and suitable fluorophore-conjugated antibodies (Miltenyi Biotec, Bergisch Gladbach, DE
and BioLegend, San Diego, CA, USA). In parallel, single cells were plated on rhVTN-
coated TC-treated 6-well plates and brought to differentiate towards either an endo-, meso-,
or ectodermal lineage over 5–7 d using the STEMdiff™ Trilineage Differentiation Kit
(STEMCELL Technologies, Vancouver, BC, Canada) as recommended by the manufacturer.
Successful differentiation was confirmed following single cell harvest, staining and FCM
analysis of >1 × 105 cells by quantifying markers typical for either endo- (Sox17+/CD184+),
meso- (CD56+/CD184+), and ectodermal (Nestin+/Pax6+) tissue. For all intracellular
markers, cells were treated with the Transcription Factor Staining Buffer Set (Miltenyi
Biotec, Bergisch Gladbach, Germany) prior to staining.

2.5. Statistical Analysis

All experiments were performed in triplicate and values reported as means together
with their standard deviations where applicable. Statistical analyses were performed
with Prism 10 (Graphpad, La Jolla, CA, USA) and significance determined using one-way
analysis of variance followed by Tukey’s honest significance post-test. Differences were
considered statistically significant if p < 0.05 (*) and grouped as such.
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3. Results and Discussion
3.1. One-Step Inoculation under Static Conditions

The hiPSCs, frozen at up to five-fold higher viable cell densities (VCDs) than described
by other authors [11,16], were characterized under static cultivation conditions for attach-
ment, growth, viability, morphology and quality following replating. The results of the
study clearly indicated a freezing density dependent impact on initial attachment efficiency,
especially for VCDs ≥ 5 × 106 cells mL−1 (Figure 2a). Yet despite the lower attachment
efficiency (<50%), no discrepancies in doubling times for VCDs ≤ 25 × 106 cells mL−1 were
apparent, plateauing around 16.5 h for VCDs ≥ 50 × 106 cells mL−1 (Figure 2b). Further
examination of viability indicated that cells frozen away at VCDs ≤ 50 × 106 cells mL−1

typically recovered within 2 d following replating, coinciding with cell adaptation to the
removal of RI (Figure 2c).
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Figure 2. Cell growth under static conditions following cryopreservation at various VCDs. Cells
were either routinely passaged (•), or frozen away at VCDs of 1 × 106 (■), 5 × 106 (♦), 25 × 106 (▲),
50 × 106 (▼) and 100 × 106 (•) cells mL−1, thawed and then replated for evaluation. (a) Attachment
efficiency 24 h following replating. (b) Doubling time as a function of VCD during cryopreservation,
with the horizontal line representing the routinely passaged control. (c) VCDA and viability over a
5 d cultivation period following replating, with vertical black dashed lines indicating intermittent
medium exchanges and the grey field indicating the adaptation phase to the removal of RI. (d) VCDA
as a function of confluency. (e) Expression of pluripotent markers Oct3/4, Sox2, Nanog, TRA-1-60
and SSEA-4, as well as the differentiation marker SSEA-1 5 d post-inoculation. * p < 0.05.
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Consequently, the significant differences in viable cell density per area (VCDA) ob-
served over the 5 d cultivation period were primarily the result of lower initial cell attach-
ment, with the higher doubling times playing a secondary role if VCD during freezing
exceeded 50 × 106 cells mL−1. A further comparison of VCDA and confluency (Figure 2d)
showed no significant differences in the spatial requirements of the cells, regardless of
treatment, however, fewer adherent cells were observed 1 d post-inoculation on the flask
surfaces following OSI, as shown in the Appendix A (Figure A1). This led to both fewer
and more isolated colonies following the removal of RI, confirming the observations made
regarding attachment efficiency. Considering that the impact of cryopreservation on the
biological function of pluripotent stem cells at VCDs of up to 25 × 106 cells mL−1 is well
documented [11,16,30], the observed initial disparities in attachment and growth were
deemed unsurprising.

While critical to achieving a cost-effective manufacturing process, in the context
of cell therapeutics product yield assumes a subordinate role to product quality. It is
therefore notable that, despite initial phenotypic differences between the OSI and control
replicates, all tested conditions resulted in a >90% expression of relevant hiPSC markers
5 d post-inoculation (Figure 2e). This clearly surpasses the reported necessary minimum of
70% [31]. Furthermore, as SSEA-1 expression remained <4% in all cases, the occurrence of
spontaneous differentiation was deemed to be negligible. Together, these findings support
the argument that hiPSC expansion was possible following cryopreservation at densities of
≤100 × 106 cells mL−1 without noticeably affecting cell quality. To confirm whether these
findings also applied to the cultivation of hiPSCs under stirred MC-operated conditions, a
freezing density of 5 × 106 cells mL−1 was selected for further study in the BioBLU® 0.3c
SU bioreactor.

3.2. One-Step Inoculation of Microcarrier-Operated Stirred Bioreactors

It is widely accepted that static cultivation systems face challenges with regards to
their scalability [9,32]. Hence, the compatibility of OSI in combination with a more scalable
approach to hiPSC expansion under stirred conditions was evaluated, namely by using
spherical Synthemax II coated MCs with a diameter of 125–212 µm and a rigid polystyrene
backbone. A comparison of the growth-dependent parameters between the results obtained
from the OSI and control BioBLU® cultivations revealed that OSI under stirred conditions
improved attachment efficiency (≈50%) and led to slightly better cell distribution on
the MCs (≈10%) within the first 24 h following inoculation (Table 1). Considering the
reported correlation between attachment efficiency and expansion factor when cultivating
pluripotent stem cells on MCs [33], it is unsurprising that this development consistently
led to comparable or higher cell densities (≈100%), viabilities (≈8%) and doubling times
(≈7%) over the first 2–3 d (Figure 3a,b). OSI also appeared to improve cell survivability
within the BioBLU® systems during and following the attachment phase, as substantiated
by the lower cell specific LDH activities (≈35%) as shown in Figure 3c.



Processes 2024, 12, 426 8 of 15

Table 1. Overview of the main growth-dependent parameters achieved for the stirred OSI experiments
compared to the static and stirred controls. Letters indicate grouping based on significant differences
(p < 0.05) between the individual conditions tested.

Parameter T25 Control BioBLU Control BioBLU OSI

AE * (%) 75.9 ± 6.2 a 69.5 ± 19.0 a 121.4 ± 18.6 b

CD * (%) - **** 57.8 ± 31.3 a 67.0 ± 14.4 a

td ** (h) 16.4 ± 0.3 a 15.0 ± 0.8 b 13.9 ± 0.3 b

Max. VCDA *** (105 cells cm−2) 3.4 ± 0.3 a 3.4 ± 1.6 a 4.1 ± 1.3 a

Viability *** (%) 94.6 ± 1.5 a 92.9 ± 0.6 a 95.4 ± 1.4 a

EF (-) 17.1 ± 1.5 a 18.1 ± 8.6 a 22.0 ± 7.1 a

qGlc (pmol cell−1 d−1) 14.1 ± 4.6 a 14.7 ± 7.4 a 10.1 ± 5.7 a

qLac (pmol cell−1 d−1) 26.4 ± 7.0 a 24.0 ± 4.5 a 17.1 ± 2.2 a

qGln (pmol cell−1 d−1) 2.3 ± 0.6 a 2.0 ± 1.2 a 1.4 ± 0.9 a

qNH4 (pmol cell−1 d−1) 1.8 ± 0.6 a 1.3 ± 0.8 a 1.0 ± 0.6 a

YLac/Glc (mol mol−1) 1.9 ± 0.5 a 1.6 ± 0.0 a 1.7 ± 0.1 a

YNH4/Gln (mol mol−1) 0.8 ± 0.2 a 0.7 ± 0.1 a 0.8 ± 0.1 a

* Following the attachment phase ** During the exponential growth phase *** At the start of the stationary phase
**** The static T25 cultivation was not conducted using MCs, therefore the cell distribution equation does not
apply. AE: Attachment efficiency. CD: Cell distribution. td: Doubling time. EF: Expansion factor. qGlc: pecific
glucose consumption rate. qLac: Specific lactate production rate. qGln: Specific glutamine consumption rate. qNH4:
Specific ammonium production rate. YLac/Glc: Lactate yield per glucose equivalent. YNH4/Gln: Ammonium yield
per glutamine equivalent. Abbreviations: One-step inoculation (OSI), viable cell density per scaffold surface area
(VCDA), lactate (Lac), glucose (Glc), ammonium (NH4), glutamine (Gln).
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Figure 3. Cell growth under static and dynamic conditions following either standard passaging or
cryopreservation at 5 × 106 cells mL−1 and OSI. (a) Changes in VCDA and viability over time, with
vertical dashed lines indicating either the start of perfusion for the dynamic cultivations (day 1) or
intermittent medium exchanges for the static repeated batch controls (day 1 and 3). (b) Attachment
efficiency plotted against doubling time. (c) Changes in pH and cell specific LDH activity in the
culture medium supernatant.
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When evaluating doubling time in dependence of attachment efficiency, it was ob-
served that cell growth improved by up to 15% when cultivating the hiPSCs under stirred
instead of static conditions, independent of initial attachment (Figure 3b). More remarkably,
it was observed that OSI in combination with MCs improved both attachment efficiency
and doubling time under stirred conditions when compared to routine passaging. These
findings may be attributed to two important differences between trial conditions. Firstly,
superior process control. Given that only the BioBLU® trials were actively regulated to a
DO of 40% and pH of 7.2, while mechanically stirred with a specific power input ideally
suited for the expansion of hiPSCs (≈1 W m−3) [34], it is conceivable to expect better growth
in these systems. Secondly, the choice of scaffold coating. A study by Badenes et al. [35],
showed no significant differences between hiPSC growth kinetics between Synthemax II or
rhVTN-coated scaffolds under static conditions. The impact of the coating was therefore
considered negligible in this instance. Taken together, the findings not only indicate that
OSI increased cell attachment and distribution (Table 1), but also led to comparable or
superior doubling times (≈14 h) and therefore a ≈94% improvement to VCDA after 3 d
(Figure 3a,b). As illustrated in more detail in the Appendix A (Figure A2), during this
time the change in cell distribution, or the number of inhabited MCs, increased at a rate of
≈4.5% d−1 and ≈8.6% d−1 for the control and OSI BioBLU® replicates, respectively, further
substantiating our observations.

Towards the end of the exponential growth phase, pH dropped below 7.0 (Figure 3c),
leading to decreased cell growth within the instrumented stirred bioreactors and pH-
mediated cell death within the non-instrumented static controls. This implies that the
cultivation results observed within the first 3 d may further be improved through base
addition or perfusion rates >1 vvd, as described elsewhere [10,12]. However, while medium
remains a cost driver for such processes [36], care must be taken to identify appropriate
CSPRs prior to scale-up. As reported by Bausch et al. [29], CSPRapp should ideally be
equivalent to CSPRcrit and slightly greater than CSPRmin when accounting for R. Given
this relationship, it is worth mentioning that the metabolic requirements of cells have
been shown to change over time depending on biological cell function and the prevailing
cultivation conditions [19]. The more quiescent the cells, the lower the metabolic needs [37]
and, therefore, the lower CSPRmin. Alongside the variations in cell specific metabolic re-
quirements, CSPRmin also depends on the nutrient composition of the cultivation medium
which may vary from process to process. Current peer reviewed literature reports CSPRapp
of between 111–715 pL cells−1 d−1 to be sufficient for maintaining hiPSC growth and qual-
ity [10,12]. Our findings indicated that while CSPRapp of between 510–13,100 pL cell−1 d−1

were used, a Gln dependent CSPRmin of 1050 ± 180 pL cell−1 d−1 was necessary to main-
tain exponential cell growth following OSI, when using E8F and while ensuring ade-
quate pH control. Such CSPRs permitted expansion factors of 21 ± 5 and cell densities of
1.39 ± 0.33 × 106 cells mL−1 within 4 d, improving on the findings reported for comparable
cultivations by Pandey et al. [12].

Recent studies with hiPSCs have suggested that non-uniform cell-cell aggregation or
spheroid formation may lead to poor cell quality and impede efficient cultivation, especially
when spheroid diameters exceed 400 µm [9,36,38]. To improve process homogeneity, Meiser
et al. [16] proposed using OSI, as this was shown to restrict cell aggregation within the first
day of cultivation and led to more uniform spheroid size distributions. To observe whether
similar effects could be observed when working with MCs, microscopic monitoring of the
stirred cultivations was performed over a 5 d period (Figure A3). Analysis of the images
highlighted that while the hiPSCs subjected to routine passaging produced both spheroids
and cell-MC aggregates, hiPSCs subjected to OSI primarily produced cell-MC aggregates.
This is remarkable, as restricting spheroid formation and size facilitates subsequent cell
harvest, as suggested by Petry and Salzig [38].

Further post-processing of the images emphasized that, regardless of treatment, most
MCs did not aggregate to larger structures (Figure 4a,b). However, those that did formed
small clusters of 2–3 MCs within the first few days which later gave rise to larger clusters
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with equivalent diameters of >400 µm towards the end of cultivation. Closer inspection
of these clusters revealed the preferential formation of more open structures (Figure A3),
as proposed by Ornelas-González et al. [39] for rigid spherical MCs types. This effectively
minimized diffusive distances and, thus, reduced the likelihood of a necrotic core and
impact to cell quality, as has been demonstrated for spheroids with similar diameters [40].
To substantiate this claim, cell quality was again evaluated to determine the prevalence of
typical pluripotency markers following cell harvest on day 5 (Figure 4c). Again, all pluripo-
tency markers exceeded the reported necessary minimum [31] with >95% expression, while
SSEA-1 expression could be kept to <1% in all cases. In parallel, tri-lineage differentia-
tion potential, often referred to as potency in the context of hiPSCs, was confirmed by
differentiating the harvested cells towards all three germ layers. In all cases, germ line
specific marker expression of the one-step inoculated stirred trials were either comparable
or superior to the routinely passaged static T-flask and dynamic stirred controls when
quantified by FCM. Together, these findings suggest that OSI is compliant with the quality
guidelines associated with hiPSC cultivation [31] and, furthermore, is suited for use with
stirred SU bioreactors operated with MCs.
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Figure 4. Distribution and change in equivalent MC aggregate diameter over the 5 d cultivation
period for the (a) BioBLU controls and (b) BioBLU OSI replicates. Expression of (c) pluripotency
(Oct3/4, Sox2, Nanog, TRA-1-60 and SSEA-4) and differentiation (SSEA-1) markers following the
harvest of the hiPSCs from either the routinely passaged static T-flask controls (purple), stirred
controls (blue), or stirred OSI experiments (pink), as well as their respective germ line specific marker
expression following subsequent tri-lineage differentiation.
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4. Conclusions

In closing, it could be demonstrated that the slow-rate freezing of hiPSCs in concentra-
tions of up to 100 × 106 cells mL−1 using CryoStor® CS10 was possible without significant
impact to growth or pluripotency following replating. Care should however be taken
to account for freezing density dependent changes to attachment efficiency, which may
invariably delay the expansion process. When applied to the stirred BioBLU® cultivation
system operated with MCs and in perfusion mode, it was demonstrated that the OSI of
hiPSCs improved overall attachment efficiency and cell distribution on MCs within the first
day by ≈50% and ≈10%, respectively. OSI also improved cell-MC aggregation, restricting
the undesirable formation of spheroids. Moreover, OSI was shown to increase cell sur-
vivability, as substantiated by a ≈35% lower cell specific LDH activity in the supernatant
post-attachment. This allowed for a ≈90% faster change in cell distribution on the MCs
and comparable doubling times (≈7%) during the exponential growth phase, with no
discernible impact to hiPSC viability, pluripotency, or trilineage differentiation potential.
Given that hiPSCs must be differentiated towards a specific tissue prior to their application,
this study highlights the advantages of OSI in shortening the seed train duration when
producing hiPSC-based therapeutics in clinically relevant numbers. Consequently, the
process development work outlined in this manuscript establishes a crucial foundation for
the future transfer of this intensified approach to L-scale.
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Appendix A

The impact of OSI on cell morphology is readily discussed in the results and discus-
sion section. To substantiate these claims, microscopic images depicting the described
observations are shown in Figure A1.

The claims in the results and discussion section that OSI improves cell distribution
and its rate of change during cultivation, as well as that MCs with rigid backbones allow
for the formation of more open structures are further illustrated and substantiated with
Figures A2 and A3.
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Figure A1. Microscopic images of hiPSCs cultivated in T25 flasks either directly after routine passag-
ing (a–e) or following cryopreservation at a cell density of 100 × 106 cells mL−1 and replating (f–j).
The scale bar in the lower left corner corresponds to 200 µm.
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Figure A2. The change in cell distribution on the MCs as observed for the MC-operated cultivations
under stirred conditions following routine passaging (blue) or OSI (pink).
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Figure A3. Microscopic images of treated MC aggregates sampled daily during the MC-operated
cultivation of hiPSCs under stirred conditions following either routine passaging (a–e) or OSI (f–j).
The scale bar in the lower left corner corresponds to 500 µm.
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