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Analytical solution of Eq. 1

The solutions to Eq. 1 for conditions (i), (ii), ("), and (ii’) are as follows.
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For (i) and (ii), Laplace transform may be applied.
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where X(s) and F(s) are the Laplace transforms of x(¢) and f{¢), respectively.
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As x(0) = 0, the inverse Laplace transform provides
x(t) = Ka[(l — e—at) _ H(t _ T){l _ e—a(t—‘r)}]'

Here, H(t) denotes the Heaviside function.
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As x(0) = 0, the inverse Laplace transform provides
x(t) =" (1 - e = LH(t - )(1 - e D) — k{t — R(t — 1)}.
Here, R(t) denotes the Ramp function

R(t)=tatt>0; =0att<O0.

For (i’) and (ii"), Fourier series may be applied.
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where ¢, and f, are complex Fourier coefficients of x(¢) and f{(¢), respectively.

Applying the Fourier series to Eq. 1 yields
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Using trigonometric function, x(¢) becomes
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The same procedure for the given £(¢) yields
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