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Abstract: Wildfire is one of the most critical natural disasters that poses a serious threat to human
lives as well as ecosystems. One issue hindering a high accuracy of computer vision-based wildfire
detection is the potential for water mists and clouds to be marked as wildfire smoke due to the
similar appearance in images, leading to an unacceptable high false alarm rate in real-world wildfire
early warning cases. This paper proposes a novel hybrid wildfire smoke detection approach by
combining the multi-layer ResNet architecture with SVM to extract the smoke image dynamic and
static characteristics, respectively. The ResNet model is improved via the SE attention mechanism and
fully convolutional network as SE-ResNet. A fusion decision procedure is proposed for wildfire early
warning. The proposed detection method was tested on open datasets and achieved an accuracy
of 98.99%. The comparisons with AlexNet, VGG-16, GoogleNet, SE-ResNet-50 and SVM further
illustrate the improvements.

Keywords: wildfire early warning; smoke detection; deep learning; support vector machine;
computer vision

1. Introduction

Wildfires, caused by natural factors and various improper human activities, e.g.,
bonfires, burning of debris and littering lit cigarettes, pose a serious threat to human lives,
vegetation canopy and national economy every year, especially for the countries and regions
with large forestland area and dry climates [1,2]. The wildfire that happened in Australia
in 2020 caused 23 fatalities and burnt vegetation over more than 14 million acres [3]. In
Canada, wildfires have burned approximately 2 million hectares of forest annually over
the last several decades [4]. With the deepening impact of climate change, as well as the
ever-growing areas of wildland–urban interface and human activities, the frequency and
destructiveness of large wildfires keep increasing, which makes the escalating wildfire
situation a global issue. In the last 10 years, the number of wildfires and affected forest area
increased by 400% and 600%, respectively, in the western United States [5]. This pressure
motivates fire management agencies and researchers to pursue efficient real-time wildfire
early discovery and decision-making technologies to minimize the loss.

Smoke rises and becomes visible before fire flames, which provides an effective indi-
cator for wildfire early warning [6]. Conventional smoke sensors detect smoke particles
according to the micro-current or absorbed light intensity changes of the transmitter, and
report a fire alarm if it is present. Although being widely used in indoor fire detection, these
detectors are installed in a fixed location and usually ask for a stable background condition,
which therefore have limitations on small coverage area, delay in fire detection, and high
false alarm rate caused by excessive environment humidity. These disadvantages prohibit
smoke sensors from being widely using in outdoor, large, open space fire alarm systems,
i.e., wildfire detection. With the continued development of machine learning, wildfire
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detection is working toward online intelligent monitoring products and systems. Under
such a trend, computer vision-based wildfire detection has recently been suggested for
wildfire early discovery in order to overcome the aforementioned disadvantages. Different
from sensor-based fire detection, these methods analyze and extract smoke characteristics
from fire/smoke images captured by ground-, unmanned aerial vehicle- or satellite-based
online monitoring systems, and detect the presence of smoke using various machine learn-
ing models. Computer vision-based approaches get rid of the limitations of environment
condition, have a wide coverage area and are thought to be a promising wildfire online
monitoring technology nowadays.

Existing computer vision-based wildfire detection approaches fall into two categories:
conventional machine learning- and deep learning-based methods. Conventional machine
learning methods firstly make use of various advanced image processing techniques to
characterize wildfire smoke based on various manually extracted features, e.g., colors [7–10],
textures [11–13], energy [14], irregular shape [15,16] and HOG [17,18], and then construct
a smoke identification model for wildfire early earning via mining the corresponding
relations between image features and object classifications. Although being well understood
and fundamentally sound, the detection accuracy is highly related to the extracted image
features and a false or missing warning may occur if the feature extraction is incomplete.
Instead of extracting features manually, the deep learning approach automatically obtains
smoke features from the training datasets by exploiting a serious of convolution and pooling
operations, which avoids the professionalism, limitations and singularity of manual feature
extraction, and thus can get a complete description of wildfire smoke. Currently, researchers
attempt to investigate and detect wildfire smoke using various deep learning network
architecture [19–25]. Yin et al. [26] proposes a novel deep normalization network (DCDNN)
for smoke image recognition by combining normalization methods with convolutional
neural networks. Yuan et al. [27] present a deep multi-scale network for smoke image
recognition. In their approach, multi-scale convolution was introduced to obtain scale
invariance avoiding image features shifting at various scales. Sun et al. [28] make use of
kernel principal component analysis to simply the computational pressure of CNN, and
design optimization strategies for multi-convolution kernels and batch normalization to
improve loss functions. Celik et al. [29] propose a method which combines improved static
segmentation and connectivity analysis-based dynamic segmentation. They established a
multi-channel CNN by utilizing the characteristics of color, shape and area changes. Yuan
carried out a series of studies on wildfire smoke detection using a deep convolutional
neural network and its extension [30–32]. Recently, he presented a comprehensive review
of the deep learning-based approach for wildfire detection and early warning [33].

Despite a number of deep learning-based approaches that have been developed and
applied to improve wildfire smoke detection, one issue hindering high accuracy is the
potential for water mists and clouds to be marked as wildfire smoke due to the similar ap-
pearance in images, leading to an unacceptably high false alarm rate in real-world wildfire
early warning cases. Some researchers are devoted to improving the identification accuracy
between wildfire smoke and water mists/clouds. Existing solutions mainly focus on ex-
tracting multiple and complete image features for wildfire smoke characterization [34–36],
or, constructing a robust smoke detection model via using improved classical deep neural
networks architectures, e.g., AlexNet [37], VGG [38], GoogleNet [39,40] and DenseNet [41].
Furthermore, some works also explore how to establish high-depth neural networks ar-
chitectures to extract the smoke image characteristics, where shallow convolutional layers
with small receptive fields focus on extracting local image features, e.g., edges, colors
and textures, while deep convolutional layers have a large receptive field and extract rich
semantic information on a large scale [42–44]. However, recent evidence reveals that the
detection accuracy rate will not increase after reaching a certain level even for a “very deep”
model [45]. The residual neural network (ResNet) mitigates this problem by amending the
underlying mapping with the residual one and improves the detection accuracy to new
levels. However, as for wildfire smoke detection and location, the false warning rate is still



Processes 2024, 12, 747 3 of 16

hard to accept for real-world practice, which limits its applicability. Existing methods are
not effective in distinguishing between wildfires and clouds due to the incomplete image
feature extraction and vanishing gradient.

In this paper, we propose a novel hybrid wildfire smoke detection approach by com-
bining deep learning architectures and conventional machine learning, i.e., SE-ResNet and
SVM. The SE attention mechanism is introduced to quantify the relationships between
multiple extracted features so as to improve the performance and generalization ability
of the ResNet model. The image micromorphology and semantic features are extracted
using ResNet and SVM, respectively, to characterize the wildfire smoke from different
perspectives. In order to locate and segment the smoke, a fully convolutional network is
utilized to obtain the classification of each pixel. A fusion decision procedure is proposed
for wildfire early warning. The proposed detection method is tested on open datasets
and achieves an F1-score of 99%. The comparisons with AlexNet, VGG-16, GoogleNet,
SE-ResNet-50 and SVM further illustrate the improvements.

The remainder of the paper is organized in the following manner. Section 2 presents the
whole framework and early warning procedure of the proposed hybrid approach. Section 3
establishes an improved ResNet-based wildfire smoke detection model by taking advantage
of the SE attention mechanism and fully convolutional network. Section 4 explains the
histogram of oriented gradient (HOG) feature extraction and smoke identification using
SVM. A real case study is presented in Section 5, and the advantages are illustrated via
comparison with existing popular models. Finally, Section 6 summarizes the paper.

2. Framework of Proposed Approach

The framework of the proposed hybrid smoke detection approach is presented as
Figure 1. The wildfire smoke as well as water mists and clouds videos are captured
through various visual inspection systems. Typical inspection systems take the form of
ground-, unmanned aerial vehicle (UAV)-, or satellite-based visual monitoring systems.
While UAVs have a flexible monitoring path, satellite and fixed fire monitoring camera
in ground-based systems detect the wildland with a certain range. The image frame is
then extracted from the captured video at regular time intervals. The time intervals should
be well assigned to fully describe the evolution and development of smoke at all stages.
Pictures of water mists and clouds are also collected and organized for model establishment
and robustness verification. Some image-processing algorithms, i.e., Richardson-Lucy and
gamma correction, are exploited to remove camera shake and uneven lighting effects so
as to improve the picture quality. In order to avoid model overfitting caused by a small
training sample, the collected real pictures are enhanced using some data augmentation
methods, including random scaling, flipping and color enhancement.

The ResNet model and SVM were utilized to construct a hybrid smoke detection model
from the collected pictures. In this paper, a multi-layered ResNet architecture, i.e., ResNet-
50, was applied to extract the dynamic and static characteristics from different depths.
The selection of ResNet-50 was motivated by the fact that ResNet can handle gradient
vanishing in deep neural networks and an excessively deep network is not necessary. As
previously mentioned, the SE attention mechanism was introduced to each down-sampling
block of ResNet-50 to evaluate the importance of multiple convolutional features. In order
to segment the smoke region in a picture, the fully connected layer in ResNet-50 was
replaced with a full convolutional layer to output the class of each pixel. In addition to the
convolutional features, a histogram of oriented gradient was also extracted to establish the
SVM model, given that HOG is insensitive to light changes and can effectively eliminate
interference from back-lighting and tree leaves, which is used for secondary detection.



Processes 2024, 12, 747 4 of 16

Processes 2024, 12, x FOR PEER REVIEW 4 of 17 
 

 

to establish the SVM model, given that HOG is insensitive to light changes and can effec-
tively eliminate interference from back-lighting and tree leaves, which is used for second-
ary detection. 

Step 1: Video capture, preprocessing and augmentation

Sm
ok

e
cl

ou
d

m
ist

s

Multiple cameras Measured image data

frame 
extraction

video 
capture

Data augmentation
mosaic

cropping

flipping

rotation

…

Augmented Image data

Completed wildfire image datasets

Step 2: Smoke detection models based on hybrid model

Static feature (HOG) extraction SVM model construction

SE-ResNet-based smoke detection model combined with attention  mechanism

0

20

40
60

80100120
140

160

180

200

220

240 260 280 300
320

340

1
2

3
456

7
8

9
1
2

3
4 5 6 7

8
9

Residual block

conv

conv

Relu

Relu

x

( )f x x+

Conv Batch 
norm Relu Max 

pool
Conv 
block

ID 
block

Conv 
block

ID 
block

SE
attention

FCN 
layer

Stage 1

…

Stage 2 Stage 5

input

…

Step 3: Wildfire early warning based  on machine vision

Data  transfer

Image data

ResNet-based classifier

… …

…

… …

…

… …

…

Online monitoring

Class A

Class B

secondary detection module by 
SVM

Identify results

Real-world case

…

performance evaluation

warning accuracy

Fire or not?

8 pixel

8 pixel
16 pixel

16 pixel

positive 
image

first detection module by SE-
ResNet

negative image

model fusion 

 
Figure 1. Framework of proposed approach. 

In the online monitoring stage, the SE-ResNet and SVM hybrid model are jointly used 
for smoke detection. Specifically, the SE-ResNet model is firstly called to detect if there is 
smoke and to segment the smoke region if present. Since the image segmentation-based 
smoke detection model usually performs well on recall value but has a low score on pre-
cision value, a predicted positive image was further inputted to SVM for secondary detec-
tion. A fire alarm was reported only if the positive label was output by the hybrid model. 
The procedure of wildfire smoke detection using the hybrid model is presented as Algo-
rithm 1. 

Algorithm 1: Detecting wildfire smoke using a hybrid machine learning model 
Input: online wildfire monitoring video 
Output: class label of each frame and early warning results 
Steps: 
1. Extract the image frames according to time intervals t .  
2. For each image frame, call SE-ResNet model for smoke detection. 
3. If a smoke region is labeled, then input this image frame to SVM model for  second-
ary detection; otherwise, return the classification label as non-smoke. 
4. If smoke is detected by SVM, return the classification label as smoke. 
5. Issue the wildfire early warning results according to the steps above. 
6. Repeat until all image frames are detected. 

3. Wildfire Smoke Segmentation Using SE-ResNet Combined with FCN 
In this paper, we exploit ResNet as the backbone of a first-order detector in a hybrid 

wildfire smoke detection model, given that ResNet can construct a high-depth network 

Figure 1. Framework of proposed approach.

In the online monitoring stage, the SE-ResNet and SVM hybrid model are jointly
used for smoke detection. Specifically, the SE-ResNet model is firstly called to detect if
there is smoke and to segment the smoke region if present. Since the image segmentation-
based smoke detection model usually performs well on recall value but has a low score
on precision value, a predicted positive image was further inputted to SVM for secondary
detection. A fire alarm was reported only if the positive label was output by the hybrid
model. The procedure of wildfire smoke detection using the hybrid model is presented
as Algorithm 1.

Algorithm 1: Detecting wildfire smoke using a hybrid machine learning model

Input: online wildfire monitoring video
Output: class label of each frame and early warning results
Steps:
1. Extract the image frames according to time intervals t.
2. For each image frame, call SE-ResNet model for smoke detection.
3. If a smoke region is labeled, then input this image frame to SVM model for secondary detection;
otherwise, return the classification label as non-smoke.
4. If smoke is detected by SVM, return the classification label as smoke.
5. Issue the wildfire early warning results according to the steps above.
6. Repeat until all image frames are detected.

3. Wildfire Smoke Segmentation Using SE-ResNet Combined with FCN

In this paper, we exploit ResNet as the backbone of a first-order detector in a hybrid
wildfire smoke detection model, given that ResNet can construct a high-depth network
architecture to fully integrate the wildfire smoke low/mid/high level image without
network degradation and gradient diffusion. ResNet trains a deeper network by adding
the idea of residual learning to the traditional convolutional neural network via the use of
shortcut connections and by fitting residual representations. The adjacent convolutional
layers of Resnet are connected by shortcuts to form residual blocks while multiple residual
block structures overlap to compose the residual neural network. The structure of the
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residual block is shown in Figure 2, where x denotes the input vector and F(x) represents
recast mapping in a residual block.
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Instead of making a network model that directly fits a desired underlying mapping
H(x), a residual block in a ResNet model is used to try to find a residual mapping F(x) + x,
where F(x) = H(x)− x. The recast of underlying mapping is realized via the shortcut
connection represented as the curve in Figure 2. Thus, the output of a residual block is
given as

xl+1 = xl + F(xl , Wl) (1)

A linear mapping is necessary for the cases in which the identity mapping of x in the
shortcut connection has different dimensionality with F(x), i.e.,

xl+1 = Wsxl + F(xl , Wl) (2)

The output feature Xs in s-th network layer can be deduced recursively from the
output of a shallow layer Xl .

Xs = Xl +
s−1

∑
i=1

F(xi, Wi) (3)

In the back propagation stage, during model training, the error gradient is derived as

∂ε
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=

∂ε

∂xs

∂xs

∂xl
=

∂ε

∂xs

(
1 +

∂
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)
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The error gradient in Equation (4) contains two multipliers, in which ∂ε
∂xs

transmits
the training error directly to the shallow convolutional layer without passing through the

weight layer, and ∂ε
∂xs

· ∂
∂xl

s−1
∑

i=1
F(xi, Wi) updates the convolution kernels of the current weight

layer according to the learning error. The special structure in ResNet, i.e., residual block,
ensures the training error can skip the intermediate layer and feed back to the shallow
convolutional layer, which solves the gradient degradation for a deep network.

A ResNet model is the multi-layer combination of a series of residual blocks. Various
classical ResNet models are proposed with different numbers of weighted layers. The
network architecture of ResNet-50 is shown as Figure 3. A ResNet-50 has fifty weight layers
and consists of one convolutional block, four residual blocks and one fully connected output
layer. The convolutional block is composed of a convolutional layer with a filter size of
3 × 3, a batch normalization layer, an activation layer (ReLU) and a 3 × 3 max pooling layer.
Residual blocks are the core structures of ResNet-50. The residual blocks in a ResNet-50
model have two different bottlenecks: convolution residual blocks and identity blocks. All
convolution residual blocks and identity blocks are composed of three convolutional layers
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with filter sizes of 1 × 1, 3 × 3 and 1 × 1, respectively, and the difference lies in whether
Equation (2) is activated. The input and output features in convolution residual block
have different dimensions; therefore, an additional convolution operation is needed in the
shortcut path. According to the combination of convolution residual block and identity
block, ResNet-50 can be divided into four stages; each stage has one convolution residual
block and the number of identity blocks is 2, 3, 5 and 2, respectively. The feature maps
extracted from the four stages are then flattened and linked with a fully connected layer to
output the class label of the research object.
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The last convolutional layer of ResNet-50 outputs 2048 feature maps to describe the
original image. Conventional ResNet-50 uses a fully connected network as an output layer
to map the features with class label and all feature maps are assigned with the same weight,
which may cause the vital features to be drowned out by the more inessential ones. This
paper introduces the SE channel attention mechanism to ResNet-50 down-sampling blocks
to weight the feature maps of each stage. The multi-scale feature pyramid network of the
wildfire smoke detection model after introducing the SE block is presented as Figure 4.
The SE block consists of a squeeze operation and an excitation operation, summarizing
the overall information about each feature map and scaling the importance of each feature
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map. Convolutional layers in ResNet-50 learn the local spatial connection patterns in the
corresponding receptive field using multiple filters. The local spatial connection patterns
are then weighted and scaled to the input size via the SE block. The semantic features at all
scales are used to describe the input image and determine the class label, which therefore
is more accurate compared with conventional ResNet-50. Meanwhile, the output layer of
ResNet-50 is replaced by a fully convolutional network to obtain the class label of every
pixel for smoke segmentation. All pixels are identified as smoke or non-smoke objects
according to the extracted image features, and the whole image is consequently classified if
the smoke pixels exceed a threshold.
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4. Secondary Smoke Detection Based on SVM Model
4.1. HOG for Wildfire Smoke Description

Wildfire smoke normally has clear edges in both vertical and horizontal directions,
which provides a clue for hand-crafted features extraction. A set of features may be
considered as various options to describe smoke image edges. However, two main problems
should be taken into consideration. Some visual inspection systems, especially in terms
of unmanned aerial vehicles, have a flexible monitoring path and variable shooting angle
and distance, which lead to various image distortions, such as barrel, pincushion and wave
distortions, to name a few. Although some image data-processing methods can be used to
correct these distortions, the smoke edge features may be masked during the processing.
Further, the uneven and dim lighting conditions also bring considerable difficulties for
wildfire smoke edge description. Given the situations above, the HOG, which is widely
used in pedestrian identification, is introduced to depict the wildfire smoke.

A histogram of oriented gradients is a classical feature descriptor that computes and
counts histograms of gradient directions in local regions of an image to represent image
features for computer vision-based object identification. The HOG describes the appearance
and edges of objects in an image through the intensity distribution of gradient and contours
direction, which therefore can effectively minimize the effects of translation, rotation and
lighting variations. The procedure of the HOG algorithm is shown in Figure 5. The digital
image is firstly transformed into a grey-scale map, and the horizontal and vertical gradients
Gx, Gy of each pixel f (x, y) are then calculated via partial derivative as

∇ f =

[
Gx
Gy

]
=

[
∂ f (x,y)

∂x
∂ f (x,y)

∂y

]
(5)
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Let the first difference be calculated using the first difference and the filter kernels of
[−1, 0, 1] and [−1, 0, 1]T, respectively, which can be written as a more computable form{

Gx = f (x + 1, y)− f (x − 1, y)
Gy = f (x, y + 1)− f (x, y − 1)

(6)

The gradient magnitude m(x, y) and orientation θ(x, y) are calculated as m(x, y) =
√

G2
x + G2

y

θ(x, y) = arctan
(

Gy
Gx

) (7)

The orientation histograms, consisting of several bins with even intervals within
0 − 180◦, are used to describe the gradient distribution in a local image region called cells.
A cell is a square area in an image with the same pixels in the x-axis and y-axis. The
gradient orientation θ(x, y) of each pixel determines the bins this pixel contributes, and the
weight is decided via gradient magnitude m(x, y). Considering a pixel belonging to bin t,
the contributions of the pixel to vt and vt±1 are calculated via

vt = (1 − α)m(x, y), vt±1 = α · m(x, y) (8)

where α can be calculated via

α = (t + 0.5)− n · θ(x, y)
π

(9)

where n denotes the number of bins.
The score of each bin is organized in series to form a cell vector. To compensate for the

changes in lighting, the normalization of each orientation histogram is applied on a certain
area in an image called a block. The block is made of several cells with same size in the
x-axis and y-axis. Connect the cell vectors in series to form a block vector, and suppose the
orientation histograms are normalized using the L2-norm; then the normalized value of
the block vector is

v′i =
vi√

∥v∥2
2 + ε2

(10)

where i is the i-th element in a block vector; vi and vi denote the i-th element before and
after normalization; ε represents a small constant to avoid division by zero; and ∥v∥2 is
the L2-norm of a block vector which is calculated as Equation (11), in which s denotes the
length of the block vector.

∥v∥2 = v2
1 + v2

2 + · · ·+ v2
s (11)
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The block vectors are then combined in the manner above to construct an HOG feature
vector of a whole image. The feature vector is a row vector which contains edge information
for all objects in an image. A classifier can be established accordingly for wildfire smoke
detection via learning the feature vectors of the training image datasets.

4.2. SVM Model for Smoke Detection

In this section, we make use of the support vector machine (SVM) to construct a
wildfire smoke classifier from the feature vectors extracted above. The support vector
machine is a supervised machine learning algorithm that realizes binary classification
by finding the optimal hyperplane to maximize the margin between different classes.
Letting xi ∈ Rn (i = 1, · · · , M) be the m-dimensional inputs, and yi ∈ {+1,−1} be the
corresponding binary outputs, the training data can be represented as pairs of input–output
pairs, i.e., T = {(x1, y1), (x2, y2), · · · , (xk, yk)}. As for the task of wildfire smoke detection,
input x ∈ Rn represents the extracted feature vector in Section 4.1, where n is the vector
dimension; binary output y denotes the labels of the image, i.e., smoke and non-smoke; T
depicts the training datasets derived from the historical monitoring images.

The mapping function between x and y is defined as

f (x) = wTx + b (12)

where w is a normal vector with dimension of m, which separates the two classes on both
sides, and b represents bias.

There exists an infinite hyperplane when the training datasets are linearly separable.
The SVM maximally distinguishes pairs of classes by finding the unique optimal hyperplane
f (x) = 0, that is {

wTxi + b ≥ 1, ∀yi= +1
wTxi + b ≤ −1, ∀yi= −1

(13)

The optimal problem can be reformulated as Equation (14) after introducing a regular-
ization term ∥w∥2/2.  min

w,d

∥w∥2

2

s.t.yi(wTxi + b) ≥ 1, i = 1, 2, · · · , k
(14)

Equation (14) is essentially a convex quadratic programming problem; the optimal
hyperplane is determined via the solution w∗ and b∗. The Lagrangian function can be
introduced to search the optimum. After considering the Karush-Kuhn-Tucker conditions,
the optimal solutions of w∗ and b∗ can be derived as

w∗ =
k
∑

i=1
λ∗

i yixi

b∗ = yj −
k
∑

i=1
λ∗

i yi
(
xi · xj

) (15)

where λ∗
i is the Lagrangian multiplier reduced via the training data; xi · xj represents the

inner product operator.
The decision function is therefore given by

f (x) = sgn(w∗ · x + b∗) (16)

The conventional SVM is a linear classifier. In order to deal with nonlinear classifica-
tion, kernel transformation is introduced to map inputs from the linear space to the feature
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space, which extends SVM to high-order nonlinear problems. Let ϕ(x) be a mapping from
input space X to feature space H, for ∀x, z ∈ Rn, with the kernel function K(x, z) defined as

K(x, z) = ϕ(x) · ϕ(z) (17)

The explicit expression of ϕ(x) is normally unnecessary. Replace the inner product
xi · xj with the kernel function K(x, z), and the nonlinear support vector machine can be
written as

f (x) = sgn

(
k

∑
i=1

λ∗
i yiK(x, xi) + b∗

)
(18)

Kernel function K(x, z) usually takes different forms, typically Gaussian, radial basis
function, Sigmoid and polynomial. Radial basis function can map the original data space to
an infinite dimensional feature space, making it more widely used in practical applications.
Supposing the radial basis kernel function is used in Equation (17), the decision function
can be written as

f (x) = sgn

(
k

∑
i=1

λ∗
i yi exp

(
−γ∥xi − x∥2

)
+ b∗

)
(19)

where γ represents an adjustable constant term, where a small γ maps the data into a
low-dimensional space, whereas a large γ is corresponds to a high-dimensional space. The
preferred value for the general classification problem is 0.1.

5. Case Study
5.1. Datasets

Currently, the wildfire smoke detection community has no standard database with
appropriate scale, rich content, and unified format which is authoritative enough to evaluate
any smoke detection model. Researchers usually construct their respective datasets from
web or fire agent surveillance video, or from burning tests in the laboratory, to illustrate their
model’s performance. Some fire smoke datasets have been proved to be well-constructed
for model validation in various applications and are open access. The datasets used in
our research were sourced from the State Key Laboratory of Fire Science at the University
of Science and Technology of China (USTC) and have been publicly released for research
usage (http://smoke.ustc.edu.cn, accessed on 22 October 2023.). As for wildfire smoke
images, unmanned aerial vehicles configured with high-definition cameras are used to
capture real videos of wildfires under various scenarios, and the images are then extracted
from the videos every 5 to 25 frames and unified to a size of 960 × 540. In order to extend
the image samples’ number and diversity, some synthetic image technologies are used to
generate certain smoke images under given scenarios and combustion conditions.

Image data in the sub-datasets Video Smoke Detection Base on Deep Saliency Network
and Smoke Detection Based on Scene Parsing and Salienct are used to demonstrate our
hybrid model. The first sub-dataset contains 5700 images, where the training set has
1401 smoke and 1499 non-smoke images, while the test dataset consists of 1399 smoke
and 1401 non-smoke images. The second sub-datasets has 4695 images, consisting of
2695 images for training and 2000 images for testing. Since our research focuses on wildfire
smoke detection, the smoke images of building fires, indoor fires, car fires and indoor
simulated combustion testing were removed from the datasets. In order to fully verify
the proposed hybrid model on smoke and smoke-like objects identification, a substantial
number of water mist, cloud and dust images were selected both from the USTC datasets
and from other open fire detection datasets as interference information. Specifically, the
datasets in our research contain six classes of images, i.e., wildfire smoke, water mist, cloud,
dust, wildland without fire and background scenery. Some sample images of the rebuilt
datasets in our research are shown in Figure 6. The datasets were randomly separated into
a training set and testing set, both for SE-ResNet and SVM model construction.

http://smoke.ustc.edu.cn
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5.2. Results

Some online data augmentation technologies were firstly applied in this paper to
avoid the overfitting of the SE-ResNet-based smoke detection model and improve the
generalization ability. The activation probabilities are presented as Table 1. As for random
cropping, we randomly generated an aspect ratio within a certain range, and set the
clipping area accordingly in the captured picture. The cropped pictures were then scaled
up to the normal size after interpolation. Given that the lighting conditions in wildland
are usually complex and varied, the color and brightness of training pictures in this paper
were also randomly changed with a probability of 0.5 to reduce the sensitivity of the SE-
ResNet network to color and brightness. In order to ensure a smoke detection model with
translation and rotation invariance, flipping and random rotation were introduced in the
data augmentation step with the probabilities of 0.2 and 0.3, respectively. The lost pixels
during these operations were filled with zeroes to maintain an unchanged picture size.

Table 1. Activation probabilities of data augmentation operations.

Data Augmentation
Operations Horizontal Flip Vertical Flip Cropping Color

Dithering
Random
Rotation

Gaussian
Noise

Activation probabilities 0.2 0.2 0.3 0.5 0.3 0.4

The HOG feature extraction corresponding parameters in the SVM model and the
hyper parameters of SE-ResNet were set as in Table 2. Since the HOG features of wildfire
smoke images are usually non-linear and extremely large in quantity, the RBF kernel
function was used in SVM construction to search the optimal hyperplane under the curse of
dimensionality. As for the SE-ResNet model, we made use of the cross-entropy loss function
to guide the deep model learning process since wildfire smoke detection is essentially a
binary classification problem. Given that the quantity of smoke pictures is relatively smaller
than the quantity of non-smoke pictures, and given that this class imbalance may lead to
a small contribution to the loss function value in the case of a positive label, this paper
introduced a weight variable to adjust the loss function value of sample learning. The
weighted cross-entropy loss function is presented as Equation (20).

Loss = −βy log ŷ − (1 − y) log(1 − ŷ) (20)

where β represents the weight of the positive label; y depicts the sample label; and ŷ
represents the output value of the positive sample.
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Table 2. Parameters of HOG extraction and SE-ResNet model.

HOG Parameter Value Hyper Parameters Value

gradient filter sobel initial learning rate 0.01
cell size 8 × 8 epochs 50

block size 16 × 16 batch size 4
bin number 9 momentum 0.9

normalization L2-Norm

A momentum-based gradient descent algorithm was used to improve possible oscil-
lation phenomena during SE-ResNet model parameter updates and the momentum was
assigned as 0.9. The testing datasets were enhanced using the data augmentation tricks
mentioned above to validate the effectiveness and robustness of the proposed approach.
All testing pictures were classified into smoke and non-smoke and the smoke detection
results were evaluated via accuracy, precision, recall and F1-score, which are derived from
the confusion matrix. The indices are calculated as Equations (21)–(24).

Accuracy =
TP + TN

N
(21)

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F1 − score =
2 · Recall · Precision
Recall + Precision

(24)

where TP represents the number of positive samples correctly classified; TN means the cor-
rectly classified negative samples; FP describes the negative samples incorrectly marked as
positive; FN depicts the positive samples incorrectly marked as negative; and N represents
the total number of testing samples.

The smoke detection results of the proposed hybrid model are shown in Table 3 row
two. In order to illustrate the advantages of the hybrid model, the performance of classical
deep learning architectures on the testing datasets are also presented in this paper and the
key indices are listed in Table 3. All calculations were performed on a computer workstation
with Ubuntu18.04, GeForce RTX 2080 Ti, CUDA 10.2 and GPU driver of NVIDIA 450.36.06.

Table 3. Performance of hybrid model and classical deep learning architectures.

Model Accuracy Precision F1-Score Running Time

Hybrid Model 98.99% 98.04% 0.99 3.2779
AlexNet 87.88% 80.65% 0.89 0.0997
VGG-16 90.91% 85.96% 0.92 0.3132

GoogleNet 94.95% 90.91% 0.95 0.1515
SE-ResNet 87.88% 80.65% 0.89 2.1495

SVM 90.91% 84.75% 0.92 1.1480

Conventional deep learning methods exhibit unsatisfactory performance and relatively
higher false alarm rates on wildfire smoke detection under the interference of smoke-like
objects, where the largest false warning rate was 19.35% as for the AlexNet-based model,
and even for the GoogleNet model, which is thought of as one of the most promising
deep learning architectures, the false warning rate was still 9.09%. This high false warning
rate clearly prohibits the computer vision-based wildfire early warning approach from
being widely used in the real world. On the contrary, the hybrid model shows a good
performance in natural environment wildfire smoke detection even with the interference of
clouds and water mist, with an accuracy, precision and F1-score of 98.99%, 98.04% and 0.99,
respectively. Compared with AlexNet, VGG-16 and GoogleNet, the accuracy of the hybrid
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model increased by 11.11%, 8.08% and 4.04%, respectively. Further analyzing the model
performance by combining multiple indices, it can be noted that the improvements of the
hybrid model mainly contributed to the superior performance on the index of precision,
which was increased by 17.39% compared to the AlexNet-based model. This improvement
shows that the proposed hybrid model has favorable performance on correctly identifying
the wildfire smoke against smoke-like objects interference by making use of smoke static
and dynamic features, which obviously improves the application potential of computer
vision-based wildfire early warning in practice. In addition, column 5 in Table 3 presents
the running times for each detection. The AlexNet model has the fastest monitoring speed
(i.e., 0.0997 s for each picture) due to the simple model architecture. On the other hand,
the proposed hybrid model has two classifiers, i.e., SE-ResNet as a primary classifier and
SVM as a secondary one, so it takes more time for wildfire detection compared with other
models, i.e., 3.2779 s for each picture. Although the model takes more time, it is acceptable
in real-world practice.

In order to illustrate the necessity and advantages of combining the SE-ResNet and
SVM models, we also tested the SE-ResNet and SVM models separately on the USTC
datasets and the results are presented in Table 3, row 6 and row 7. The performances of
both the SE-ResNet and SVM models were unsatisfactory, especially for SE-ResNet with
an accuracy of 87.88%. This is because the SE-ResNet identifies the whole image based on
the class label of every pixel. Figure 7 shows the image segmentation results on wildfire
smoke and water mists and clouds. It can be noted that although the SE-ResNet model can
accurately identify and locate smoke regions in a whole image, some pixels of water mists
and clouds may be mistakenly recognized as smoke due to the similar image features and
therefore causes a false warning. We could assign a relatively high threshold to avoid the
false warning; this strategy, however, would make smoke from a small fire unrecognizable,
which thus leads to a time delay in reporting fire incidents and deviates from the original
purpose of wildfire early warning. The SVM was used as secondary detector in the hybrid
model, which avoids the false warning given by SE-ResNet and comprehensively improves
the performance for smoke detection and anti-interference capacity.
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5.3. Discussion

We propose a novel hybrid wildfire smoke detection approach combining deep learn-
ing architectures and conventional machine learning, i.e., SE-ResNet and SVM. The hy-
brid model shows excellent performance on the datasets. However, this experiment still
has potential drawbacks or areas for further improvement, mainly focusing on the accu-
racy and speed of the detection model. The potential future improvements can be listed
as follows.
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(1) The hybrid model will have more accuracy if a self-attention mechanism is added,
which can enable the model to capture dependencies at a distance in an image by
assigning different weights to features.

(2) Wildfire detection requires smaller models with faster monitoring for real-time moni-
toring. Methods such as quantization, weight sharing, knowledge distillation, etc.,
can reduce the size of the model to increase the speed of the model. This is vital for
wildfire detection.

(3) While some datasets are well-constructed and publicly available, they may lack the
scale, richness, and unified format required for comprehensive model evaluation. This
lack of standardized datasets can limit the comparability and reliability of different
detection models’ performance evaluations. It is necessary to establish a standard
database for smoke detection models.

6. Conclusions

Wildfire is one of the most serious worldwide natural disasters which leads to huge
life and economy loss every year. Computer vision technology, with its characteristics of
non-contact and rapid response, facilitates the real-time accurate early warning of wildfire.
The primary purpose of this paper was to develop a practice-oriented intelligent identifi-
cation approach for wildfire smoke and smoke-like objects, to decrease the false warning
rate in real-world practice. For this purpose, we investigated the characteristics of deep
learning- and conventional machine learning-based wildfire early warning approaches,
and proposed a hybrid wildfire smoke detection methodology by combining ResNet with
an SVM model. The ResNet model was improved by an SE block and fully convolutional
network to quantify the relationships between multiple extracted features. The advantages
of the hybrid model are illustrated via open wildfire datasets, for which the accuracy was
improved by 11.11%, 8.08% and 4.04%, respectively, compared with Alexnet, VGG-16 and
GoogleNet. The comparisons show the proposed approach can effectively address the low
accuracy of existing models in recognizing smoke-like objects, i.e., cloud and water mists,
which presents the practicability in real-world cases.

Furthermore, the accuracy of the hybrid model was increased to 98.99% from 87.88%
and 90.91% compared with the single models of SE-ResNet-50 and SVM. The improvements
reveal that the hybrid model comprehensively captures the dynamic and static features
of wildfire smoke, avoiding the limitations of incomplete feature extraction in the case of
single deep learning models.
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