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Abstract: The implementation of CO2 huff-n-puff in unconventional oil reservoirs represents a green
development technology that integrates oil recovery and carbon storage, emphasizing both efficiency
and environmental protection. A rational well selection method is crucial for the success of CO2 huff-
n-puff development. This paper initially identifies eight parameters that influence the effectiveness
of CO2 huff-n-puff development and conducts a systematic analysis of the impact of each factor on
development effectiveness. A set of factors for well selection decisions is established with seven
successful CO2 huff-n-puff cases. Subsequently, the influencing factors are classified into positive,
inverse, and moderate indicators. By using an exponential formulation, a method for calculating
membership degrees is calculated to accurately represent the nonlinearity of each parameter’s
influence on development, resulting in a dimensionless fuzzy matrix. Furthermore, with the oil
exchange ratio serving as a pivotal parameter reflecting development effectiveness, recalibration of
weighting factors is performed in conjunction with the dimensionless fuzzy matrix. The hierarchical
order of weighting factors, from primary to secondary, is as follows: porosity, reservoir temperature,
water saturation, formation pressure, reservoir thickness, crude oil density, crude oil viscosity, and
permeability. The comprehensive decision factor and oil exchange ratio exhibit a positive correlation,
affirming the reliability of the weighting factors. Finally, utilizing parameters of the Ordos Basin as a
case study, the comprehensive decision factor is calculated, with a value of 0.617, and the oil exchange
ratio is predicted as 0.354 t/t, which falls between the Chattanooga and Eagle Ford reservoirs. This
approach, which incorporates exponential membership degrees and recalibrated weighting factors
derived from actual cases, breaks the limitations of linear membership calculation methods and
human factors in expert scoring methods utilized in existing decision-making methodologies. It
furnishes oilfield decision-makers with a swifter and more precise well selection method.

Keywords: unconventional oil reservoir; CO2 huff-n-puff; well selection; weighting factor; fuzzy
evaluation

1. Introduction

The increasing concentration of CO2, a predominant greenhouse gas, has directly
contributed to global warming and climate change, posing significant threats to human
survival. Research indicates that the continuous emission of CO2 from fossil fuel combus-
tion into the atmosphere will persist as a pressing issue [1,2], exacerbating the likelihood
of extreme heat events and significantly impacting the hydrological cycle [3]. Therefore,
reinjecting greenhouse gases into reservoirs offers a dual benefit of reducing CO2 emissions
and enhancing oil recovery. On the other hand, as conventional oil and gas resources
gradually enter their later stages, the exploitation of tight oil and gas resources with rich
geological reserves has emerged as a primary direction for future development [4,5]. How-
ever, due to the complexity of their pore structures, these resources exhibit poor production
performance and rapid decline in yields, with current recovery remaining low. Moreover,
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conventional methods such as water flooding make it difficult to replenish reservoir energy
due to the intricate pore structures.

The unique properties of supercritical CO2, such as its density approximation to liquid
and viscosity close to gas, along with its strong diffusivity, enable effective replenishment of
reservoir energy. It also exhibits multiple effects, including energy enhancement, viscosity
reduction, and phase mixing. Field trials have demonstrated that CO2 injection significantly
enhances oil recovery and reduces carbon emissions, making it the most promising and ef-
fective alternative development method for tight oil reservoirs [6]. Previous researchers [7]
began studying CO2 injection technology in the 1970s. Hawthorne S.B. [8] conducted CO2
injection experiments on Bakken tight reservoir rocks, verifying the feasibility of CO2 injec-
tion in increasing oil recovery. Ma J. et al. [9–12] conducted CO2 huff-n-puff experiments
on tight rock cores with an average permeability of 2.3 mD, showing that three cycles could
increase oil recovery to 30%.

The success rate of field applications varies between 50% and 70%, with the primary
reason for failure being the blind well selection. Therefore, developing a rational evalu-
ation method before implementing CO2 injection in tight oil reservoirs is of significant
importance. The process of selecting wells for CO2 huff-n-puff among candidate wells
is complex, involving various factors influencing the effectiveness of CO2 injection and
experts from different backgrounds [13,14]. While pressure indices are commonly used in
chemical flooding to assess plugging effectiveness [15], the development modes of CO2
flooding and injection often rely on selecting blocks with strong adaptability based on
reasonable ranges of certain basic physical parameters. Xiong [16] and Yu [17] evaluated
the development effectiveness of the Mahu and Bakken oil fields based on their geological,
engineering, and production dynamics.

Due to the inherent uncertainty in well selection evaluation methods, fuzzy methods
are commonly employed to establish evaluation systems [18–20]. This involves normalizing
using membership functions and obtaining weighting factors for each influencing factor
through expert scoring. Subsequently, a comprehensive assessment factor for decision-
making is calculated, and the numerical ranking of this factor determines the order of
decision-making. However, this well selection method has certain limitations, primarily
concerning linear membership degrees and weight assignments. The establishment of mem-
bership functions often utilizes linear functions for normalization, which may have minimal
impact on conventional reservoirs but fail to capture the nonlinearity of factors affecting un-
conventional reservoir development. Moreover, weighting factors obtained through expert
scoring are significantly influenced by the composition of the expert pool and subjective
experiential biases, leading to instability and potential bias in the decision process.

This paper addresses the CO2 huff-n-puff development process in unconventional oil
reservoirs. Utilizing the widely applied fuzzy evaluation method, the nonlinear character-
istics of each influencing factor on development are considered. A set of exponential-based
membership degree expression models is established, which accurately improved fuzzy
methods. Based on examples of unconventional reservoir development, with the oil ex-
change ratio as the target parameter, linear regression is employed to quantify the impact
of various factors on CO2 huff-n-puff development effectiveness in a manner that is more
realistic and reduces subjective biases. This method facilitates the rapid calculation of prior-
ity for CO2 huff-n-puff wells based on rock and fluid properties and enables the prediction
of a relatively accurate oil exchange ratio. It effectively supports the implementation of
CO2 huff-n-puff development in unconventional oil reservoirs at field sites.

2. Evaluation of Individual Factors

The evaluation index system for CO2 huff-n-puff is established based on mechanisms
such as CO2, causing oil expansion, viscosity reduction, extraction of light components
from crude oil, improvement in the oil–water mobility ratio, and enhancement of reservoir
permeability, in conjunction with reservoir petrophysical and fluid properties [21–23]. The
evaluation factors for CO2 injection include reservoir thickness, formation pressure, reser-
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voir temperature, porosity, permeability, water saturation, crude oil viscosity, and crude
oil density. Subsequent production dynamics, including gas injection volume, injection
rate, injection pressure, and soaking time, are controllable factors. The objective of this
method is to screen wells suitable for CO2 huff-n-puff; we do not discuss time-varying
parameters such as water cut and gas–oil ratio within the scope of this paper. Therefore,
the aforementioned production dynamic parameters are not considered in this study.

(1) Reservoir Thickness (h)

Reservoirs with a thickness greater than 10 m demonstrate relatively higher success
rates for CO2 huff-n-puff. This is primarily attributed to the density and viscosity contrast
between CO2 and crude oil, resulting in CO2 inducing volumetric expansion of crude oil
while displacing it along with the overlying oil and water in the far zones of the well, thus
creating elastic gas drive energy accumulation. Therefore, increasing reservoir thickness
facilitates the occurrence of effective overlying action of CO2 in the near-well zone, thereby
aiding in carrying residual mobile oil during well production. Thinner reservoirs are less
prone to gas channeling, making it easier for CO2 to push residual oil toward the deeper
parts of the reservoir, affecting the efficiency of enhanced oil recovery by CO2 huff-n-puff.

On the other hand, thicker reservoirs exhibit a non-uniform vertical distribution of
CO2, leading to significant differences in CO2 dissolution concentrations within the fluid
in the operational range. Consequently, the overall dissolution and viscosity reduction
effects, as well as expansion capacity, tend to decrease with increasing reservoir thickness.
Therefore, excessively thick reservoirs are not favorable for CO2 huff-n-puff.

(2) Reservoir Temperature (T)

Lower reservoir temperatures pose challenges for CO2 in achieving phase mixing with
formation fluids. Conversely, higher reservoir temperatures facilitate CO2 expansion upon
injection, enhancing its dissolution gas drive effect and improving the effectiveness of CO2
huff-n-puff in enhanced oil recovery.

(3) Formation Pressure (P)

CO2 effectively induces crude oil flow primarily due to factors such as viscosity re-
duction, light component extraction, and expansion to increase oil mobility. For a given
reservoir temperature, higher pressure results in greater CO2 solubility and a closer ap-
proach to phase mixing. Phase mixing enhances the mobility of reservoir oil and allows
CO2 to penetrate deeper into the reservoir, expanding the affected volume. However, exces-
sively high formation pressure can lead to effective conventional depletion, diminishing the
incremental production effect of CO2 huff-n-puff. Therefore, the effectiveness of CO2 huff-n-
puff-enhanced production weakens as formation pressure continues to rise, and reasonable
formation pressure should be maintained near the minimum miscibility pressure.

(4) Porosity (Φ)

The success rate of CO2 injection is highest when reservoir porosity is within the range
of 10–20%. Excessive porosity can lead to CO2 channeling and bypassing, reducing the
efficiency of carrying residual oil during CO2 huff-n-puff.

(5) Permeability (k)

The oil exchange ratio exhibits a logarithmic relationship with reservoir permeability
levels. For ultra-low permeability reservoirs (permeability less than 1 × 10−3 µm2), perme-
ability significantly influences the oil exchange ratio, with increasing permeability leading
to a noticeable increase in oil recovery. However, for very low permeability reservoirs
(permeability greater than 1 × 10−3 µm2 but less than 10 × 10−3 µm2), the influence of
permeability on the oil exchange ratio is relatively minor. Excessively high permeability
is susceptible to gas channeling, resulting in rapid gas diffusion to the far reaches of the
reservoir, significantly reducing oil recovery efficiency. This is the primary reason why
high-permeability reservoirs are not suitable for CO2 huff-n-puff in enhanced oil recovery.
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(6) Water Saturation (Sw)

Higher water saturation leads to lower oil and gas production rates and a higher water
cut, which is unfavorable for CO2 huff-n-puff development. Excessive water saturation
hinders the formation of continuous oil bands during displacement, thus failing to achieve
the expected CO2 injection effect. Lower water saturation is more conducive to CO2
huff-n-puff development.

(7) Crude Oil Density (ρ)

Crude oil density typically falls below 0.86 g·cm−3. Generally, lower crude oil density
results in higher cumulative oil production. However, for CO2 huff-n-puff, the enhanced
oil recovery compared to conventional depletion tends to decrease with lower crude oil
density. This is because higher crude oil density, indicating higher heavy component content,
enhances the CO2 extraction effect, resulting in better overall CO2 huff-n-puff effectiveness.

(8) Crude Oil Viscosity (µ)

Similarly, higher crude oil viscosity leads to better CO2 huff-n-puff development
effectiveness. The viscosity reduction during CO2 injection depends on CO2 solubility in
crude oil. Higher crude oil viscosity enhances the dissolution and viscosity reduction effect
of CO2, thereby increasing CO2 huff-n-puff effectiveness.

3. Dimensionless Processing

Based on the analysis of the eight influencing factors discussed in Section 2, the factor
set Ui for evaluating the i-th well can be established as follows:

Ui = {u1, u2, u3, . . . , um} (1)

The factor set U can be represented as a matrix of m × n, where m is the number of
influencing factors, and n represents the number of wells to be evaluated.

Previous studies have traditionally categorized factors into positive and inverse cor-
relations and often employed linear processing models. However, the impact of some
factors on development exhibits nonlinear characteristics. For instance, increasing purity
from 90% to 90.1% is relatively easy, but further improving purity from 99% becomes
exceedingly difficult. Moreover, linear membership calculation methods commonly set
the fuzzy value of the minimum to 0, eliminating the influence of this factor on the object.
This approach is questionable, as shown in Appendix A. Thus, this study considers the
nonlinear nature of factors affecting development effectiveness and employs exponential
functions to normalize the factor set. It also retains the impact of each factor’s minimum
value on development, even though it may be relatively minor. The influencing factors are
categorized into positive, inverse, and moderate indicators.

(1) Positive indicator

Positive indicators correspond to factors that are more favorable for CO2 huff-n-puff as
their values increase. These include permeability, reservoir temperature, crude oil density,
and crude oil viscosity, totaling four parameters. A fuzzy quantification model for these
indicators is established using exponential functions as follows:

fP,i = e
xi−xi,min

xi,max−xi,min
−1

(2)

In the equation, xi represents the parameter value of the i-th indicator, xi,min denotes the
minimum value of the indicator, and xi,max represents the maximum value of the indicator.

(2) Inverse indicator

Inverse indicators require lower values for better CO2 huff-n-puff development ef-
fectiveness, contrasting with positive indicators. As the values decrease, they become
more beneficial for CO2 huff-n-puff development. This category includes two parameters:
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porosity and water saturation. The fuzzy quantification model for inverse indicators is
defined as follows:

fN,i = e
xi,max−xi

xi,max−xi,min
−1

(3)

(3) Moderate indicator

In contrast to positive and inverse indicators, when a factor has an optimal value,
it exhibits characteristics of both positive and inverse indicators. Specifically, when the
indicator value is less than the optimal value, it aligns with positive indicator characteristics,
while it aligns with inverse indicator characteristics when the value exceeds the optimal
value. This category includes two parameters: formation pressure and reservoir thickness.
The fuzzy quantification model for moderate indicators can be expressed as

fM,i =

e
xi−xi,min
xoi−xi,min

−1
xi,min ≺ xi ≤ xoi

e
xi,max−xi
xi,max−xoi

−1
xoi ≺ xi ≤ xi,max

(4)

We calculate the membership degree of each factor for each well. This entails identify-
ing the distribution type of each factor (positive, inverse, and moderate indicators). Then,
the factor set U (a matrix of m × n) of the evaluation objects is normalized and transformed
into a fuzzy comprehensive judgment matrix R(ri,j).

R =


r1,1 r2,1 · · · rm,1
r1,2 r2,2 · · · rm,2

...
...

. . .
...

r1,n r2,n · · · rm,n

 (5)

where rij represents the dimensionless coefficient of the i-th influencing factor for the j-th
well, ranging from 0 to 1. A higher value indicates greater suitability for CO2 huff-n-
puff development.

4. Inverse Calculation of the Weighting Factors

The impact of various factors on development effectiveness varies, with some param-
eters having a greater effect while others have a lesser impact. Therefore, it is necessary
to allocate weight coefficients to each factor. The widely used method for determining
weight coefficients is the expert scoring method, where multiple experts anonymously
score the factors to calculate their weight coefficients. However, this method is significantly
influenced by the composition of the experts and subjective biases, making it difficult to
accurately reflect the actual development outcomes.

This study investigated some reported practical cases to collect data reflecting the CO2
flooding development effectiveness, particularly focusing on the oil exchange ratio as an
indicator. Based on the oil exchange ratio, combined with the factor set U, weighting factors
are calculated. Firstly, the oil exchange ratios of practical cases are statistically analyzed to
establish the judgment set vector V, such as Equation (5).

V = {v1, v2, v3, . . . , vn} (6)

Subsequently, a set of weighting factors, denoted as w, is established for each corre-
sponding influencing factor.

w = {w1, w2, w3, . . . , wm} (7)

The multiplication of the fuzzy comprehensive judgment matrix R and the weighting
factors yields a vector of n elements, representing the comprehensive decision factor C
reflecting the CO2 huff-n-puff development effectiveness of each well.



Processes 2024, 12, 958 6 of 12

Cj =
m

∑
i=1

wi × rij (8)

The comprehensive decision factor Cj for the j-th well is obtained by summing the
products of all factors and their corresponding weighting factors for that well. Since both
the decision factor and the oil exchange ratio can reflect the effectiveness of CO2 huff-n-puff
development, we reverse the process by using the statistically obtained oil exchange ratio
parameters and the fuzzy comprehensive judgment matrix R to calculate the combined
weighting factors. This is expressed as

w = V · R−1 (9)

Furthermore, the calculated set of weighting factors is adjusted to ensure that the sum
of them equals 1.

m

∑
i=1

wi = 1 (10)

The weighting factors derived from actual production parameters eliminate or reduce
human factors and have a certain theoretical basis. In the subsequent CO2 huff-n-puff well
selection work, these weighting factors can be directly utilized as the basis for identification.

Finally, based on Equation (8), the comprehensive decision factor is calculated. The
calculated decision factor represents the evaluation results of each factor and serves as
the basis for well selection and prioritization for CO2 huff-n-puff operations. A higher
numerical value indicates a higher priority for CO2 huff-n-puff operations. The specific
calculation process is shown in Figure 1.
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5. Case Analysis

Due to the predominant use of depletion-driven development in unconventional
reservoirs, there are limited cases of CO2 huff-n-puff, and they have not generally reached
a significant scale. This study systematically surveyed and compiled data on eight key
parameters and oil exchange ratios (Roe) from seven successful cases, establishing a set of
factors for CO2 huff-n-puff well selection, as presented in Table 1.
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Table 1. Statistical table of parameters for each typical block.

Block k P h T ρ Φ Sw µ Roe

Bakken [24] 0.5 27.7 10 75 0.79 7.5 30 2.5 0.3595
Eagle Ford [25] 0.01 32 40 80 0.82 7 35 3.2 0.3537

Chattanooga [26] 0.25 30 13 40 0.83 5.5 27 2.5 0.348
Appalachian [27] 10 6.89 12 20 0.86 15 35 3.6 0.304
Lost Soldier [27] 0.6 18.4 56 82 0.85 5.4 20 1.26 0.383

Fuyu [28] 1.54 16.9 13 79 0.8 14.2 46 2 0.39
Mahu [29] 0.1 38.11 20 81 0.82 8.03 32 15 0.33

The table includes permeability, temperature, crude oil density, and crude oil viscosity,
where higher values are considered more favorable, while porosity and water saturation
are optimal at lower values. Reservoir thickness and formation pressure are considered
suitability indicators with optimal values. The membership degrees for each factor are
calculated separately, transforming the table into a fuzzy matrix, as shown in Table 2. The
optimal values for formation pressure and reservoir thickness are taken as 25 MPa and 20 m,
respectively. We mainly emphasize this method, and the selection of the optimal value
is not representative. The determination of optimal values necessitates careful analysis
in conjunction with specific issues encountered in indoor experimental setups or field
applications within mines.

Table 2. Dimensionless fuzzy matrix.

Block k P h T ρ Φ Sw µ

Bakken 0.386 0.513 0.368 0.893 0.368 0.804 0.681 0.403
Eagle Ford 0.368 0.447 0.521 0.968 0.565 0.846 0.562 0.424

Chattanooga 0.377 0.477 0.393 0.508 0.651 0.990 0.764 0.403
Appalachian 1 0.368 0.384 0.368 1 0.368 0.562 0.436
Lost Soldier 0.390 0.532 0.368 1 0.867 1 1 0.368

Fuyu 0.429 0.507 0.393 0.953 0.424 0.400 0.368 0.388
Mahu 0.371 0.368 0.457 0.984 0.565 0.760 0.630 1

Using the statistically obtained oil exchange ratios as the target parameter and the
parameters of seven blocks, namely Bakken, Eagle Ford, Chattanooga, Appalachian, Lost
Soldier, Fuyu, and Mahu, and based on the literature survey-derived oil exchange rate
parameters, the weighting factors are calculated in reverse, as shown in Table 3.

Table 3. Weighting factors by inverse calculation.

Parameter Weighting Factor

Permeability 0.092
Formation pressure 0.137
Reservoir thickness 0.108

Reservoir temperature 0.150
Crude oil density 0.102

Porosity 0.171
Water saturation 0.147

Crude oil viscosity 0.093

The weighting factors also reflect the relative importance of each factor in influencing
the effectiveness of CO2 huff-n-puff development. The priority order of the weighting
factors is porosity, reservoir temperature, water saturation, formation pressure, reservoir
thickness, crude oil density, crude oil viscosity, and permeability. By incorporating the
weighting factors and the fuzzy evaluation matrix into Equation (8), the comprehensive
decision factors are calculated, as shown in Table 4.
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Table 4. Comprehensive decision factors.

Block Comprehensive Decision Factors

Bakken 0.592
Eagle Ford 0.621

Chattanooga 0.604
Appalachian 0.527
Lost Soldier 0.739

Fuyu 0.496
Mahu 0.655

The relationship between the oil exchange ratio response and the comprehensive well
selection decision factors is plotted in Figure 2. It is evident that the oil exchange ratios
of the seven blocks exhibit a clear positive correlation with the comprehensive decision
factors, validating the accuracy of the weighting factors. The well selection decision method
established in this study accurately reflects the effectiveness of CO2 huff-n-puff.
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Figure 2. Corresponding relationship between oil exchange ratio and comprehensive decision factors.

In the practical application of this method, the relevant parameters of the target wells
can first be statistically gathered, as shown in Table 1. Using the membership degree
calculation method, the data from Table 1 can be transformed into dimensionless data in
Table 2. Subsequently, the comprehensive decision factors for each well are calculated based
on the weighting factors we have determined, representing the priority of CO2 huff-n-puff.
The wells are then prioritized for CO2 injection operations based on the magnitude of these
factors. By considering the linear relationship between the comprehensive decision factors
and the oil exchange ratio, the oil exchange ratio of this scheme can be predicted based
on actual data. Taking the tight oil reservoirs in the Ordos Basin as an example, the basic
model parameters are presented in Table 5.
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Table 5. Parameters of tight oil reservoirs in the Ordos Basin [30].

Parameter Value

Permeability 0.1 × 10−3 µm2

Formation pressure 15 MPa
Reservoir thickness 15 m

Reservoir temperature 70 ◦C
Crude oil density 0.85 × 103 kg·m−3

Porosity 10%
Water saturation 30%

Crude oil viscosity 1.27 mPa·s

Utilizing the nonlinear membership degree calculation method, each parameter is
separately made dimensionless, and the parameter matrix is transformed into a fuzzy
matrix. Among them, the maximum and minimum values of each parameter are based on
the data in Table 1.

Substituting the coefficients from Table 6 and the weighting factors into Equation (8)
yields the comprehensive decision factor for CO2 huff-n-puff of the tight oil reservoirs in
the Ordos Basin, with a value of 0.617. From the data in Table 4, this value falls between
the Chattanooga and Eagle Ford reservoirs. Using the linear trend line in Figure 1, it can be
predicted that the oil exchange rate of CO2 huff-n-puff in Ordos Basin is approximately
0.354 t/t.

Table 6. Dimensionless fuzzy matrix in the Ordos Basin.

Parameter Fuzzy Value

Permeability 0.371
Initial reservoir pressure 0.477

Effective thickness 0.607
Temperature 0.824
Oil density 0.867

Porosity 0.619
Initial water saturation 0.681

Oil viscosity 0.368

6. Conclusions

Effective well selection is imperative for the successful implementation of CO2 huff-
n-puff techniques in unconventional oil reservoirs. This study introduces an improved
decision-making framework, building upon fuzzy evaluation methodologies to address
the deficiencies of existing approaches. In doing so, it furnishes oilfield decision-makers
with a more expedient and precise means of well selection. The following conclusions
are delineated:

(1) Eight key parameters influencing CO2 huff-n-puff are identified: formation pressure,
reservoir thickness, reservoir temperature, porosity, permeability, water saturation,
crude oil density, and crude oil viscosity. These influential factors are classified into
positive, negative, and moderate indicators. To surmount the limitations associated
with linear membership degrees in prevailing decision-making methodologies, a method
for computing membership degrees utilizing exponential functions is established.

(2) Through an examination of seven successful CO2 huff-n-puff cases, with the oil ex-
change rate as the targeted parameter, and employing dimensionless fuzzy matrix
calculations to derive weighting factors, a positive correlation between the com-
puted comprehensive decision factors and oil exchange rates is discerned. This
substantiates the reliability of the weighting factors and circumvents the constraints
of current decision-making methodologies that rely on expert scoring for weighting
factor determination.
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(3) Utilizing the computed weighting factors, the primary and secondary influence of
each factor on the effectiveness of CO2 huff-n-puff development can be preliminarily
assessed. The hierarchical order of weighting factors, from primary to secondary,
is as follows: porosity, reservoir temperature, water saturation, formation pressure,
reservoir thickness, crude oil density, crude oil viscosity, and permeability.

(4) Employing the tight oil reservoir in the Ordos Basin as a case study and leveraging the
collection of fundamental reservoir parameters, an enhanced fuzzy method is utilized
to compute its comprehensive decision factor. Based on the statistical correlation
between oil exchange rates and the comprehensive decision factor, the predicted oil
exchange rate for CO2 huff and puff in the Ordos Basin is determined to be 0.354,
falling within the range of Chattanooga and Eagle Ford reservoirs.
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Appendix A

Based on the data in Table 1, a linear equation is used to calculate the membership
degree of each parameter. The equation is divided into three categories: positive indicator,
inverse indicator, and moderate indicator. Among them, the dimensionless calculation
model of the positive is

fp,i =
xi − xi,min

xi,max − xi,min
(A1)

The dimensionless calculation model of the inverse indicator is

fN,i =
xi,max − xi

xi,max − xi,min
(A2)

Similarly, we write the moderate indicator as

fM,i =


xi−xi,min
xoi−xi,min

xi,min ≺ xi ≤ xoi
xi,max−xi
xi,max−xoi

xoi ≺ xi ≤ xi,max
(A3)

Still, using the classification of the three indicators in the article, the dimensionless
fuzzy matrix based on the linear model can be calculated, as shown in Table A1.

Table A1. Dimensionless fuzzy matrix based on the linear model.

Block k P h T ρ Φ Sw µ

Bakken 0.049 0.794 0 0.887 0 0.781 0.615 0.09
Eagle Ford 0 0.466 0.444 0.968 0.429 0.833 0.423 0.141

Chattanooga 0.024 0.619 0.3 0.323 0.571 0.99 0.731 0.09
Appalachian 1 0 0.2 0 1 0 0.423 0.17
Lost Soldier 0.059 0.636 0 1 0.857 1 1 0

Fuyu 0.153 0.553 0. 0.952 0.143 0.083 0 0.054
Mahu 0.009 0 1 0.984 0.429 0.726 0.538 1



Processes 2024, 12, 958 11 of 12

It can be seen from Table A1 that each parameter in the dimensionless fuzzy matrix
calculated by the linear equation contains 0, and there are generally two 0 s in the moderate
index, which will lose the influence of this parameter on the well selection decision. The
exponential form chosen in this article will retain the impact of these parameters on the
final decision, using a small value to reflect this impact instead of 0, as shown in Table 2.

By multiplying the fuzzy matrix calculated by this linear model and the weight
coefficient, the comprehensive decision factor can be obtained. In Figure A1, we compare
this method with the original method. It can be clearly seen that the linear trend of the
original method is obviously not as good as the proposed method in this paper. In the
improved fuzzy method, the original method will have a large error in the oil change
rate prediction.
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