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Abstract: The precise control of a greenhouse environment is vital in production. Currently, envi-
ronmental control in traditional greenhouse production relies on experience, making it challenging
to accurately control it, leading to environmental stress, resource waste, and pollution. Hence, this
paper proposes a decision-making greenhouse environment control strategy that employs an existing
monitoring system and intelligent algorithms to enhance greenhouse productivity and reduce costs.
Specifically, a model library is created based on machine learning algorithms, and an intelligent opti-
mization algorithm is designed based on the Non-Dominated Sorting Genetic Algorithm III (NSGA-3)
and an expert experience knowledge base. Then, optimal environmental decision-making solutions
under different greenhouse environments are obtained by adjusting the greenhouse environmental
parameters. Our method’s effectiveness is verified through a simulated fertilization plan that was
simulated for a real greenhouse tomato environment. The proposed optimization solution can reduce
labor and time costs, enable accurate decision-making in the greenhouse environment, and enhance
agricultural production efficiency.

Keywords: greenhouse environment; precise decision-making; machine learning; model library;
tomato

1. Introduction

The continuous development of sensors for greenhouse agriculture allows for the
collection of valuable information, which, after analysis, can be employed to adjust the
relevant greenhouse parameters, thereby increasing crop yields, optimizing greenhouse
production processes, and reducing fertilizer waste in agricultural production. However, in
addition to the continuous efforts to improve the terminal equipment, greenhouse-related
intelligent algorithms must be developed to utilize the acquired data effectively. This has
become feasible with the gradual improvement in machine learning and optimization
algorithms in real-world applications. Precisely, combining different intelligent algorithms
to construct decision-making and optimization models for smart greenhouse environments
is possible.

This study develops an intelligent environmental decision-making optimization model
based on an empirical knowledge base, aiming to overcome the problems caused by the
difficulty in accurately controlling the crop growth environment in greenhouse agriculture.
The designed model combines empirical knowledge with advanced machine learning and
intelligent optimization algorithms and exploits technical guidance from different green-
house experts, thereby providing an intelligent environmental decision-making optimiza-
tion model. The proposed intelligent method helps improve greenhouse environmental
decision-making accuracy, maximize agricultural production efficiency, and reduce the risk
of resource waste and environmental pollution.
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Traditional agricultural production management problems are solved using special
equipment to collect data, e.g., combining remote sensing information with intelligent
algorithms to regulate wheat planting and enhance productivity and management effi-
ciency [1]. This study employed a fixed-wing UAV-based N-regulation algorithm to guide
the in-season variable N topdressing at a farm scale. Although this method is novel, the
UAV is limited by environmental conditions, such as strong winds, which may exceed its
capabilities. Highly technical greenhouse agricultural production facilities use Internet of
Things (IoT) devices to collect information to regulate crop planting and the production
environment. For instance, combining big data analysis based on IoT devices with machine
learning algorithms can improve the energy efficiency of pepper farms [2]. Specifically, the
proposed method predicts the peak temperature energy of a farm based on a random forest
(RF). Nevertheless, their work focuses on predicting the temperature rather than develop-
ing a complete control system. Additionally, external environmental factors and machine
learning models have been used to predict temperature changes in a greenhouse [3]. Still,
this study is limited in predicting indoor greenhouse temperature. Moreover, visual acquisi-
tion equipment can detect diseases in a greenhouse [4]. Although significant, automatically
detecting diseases in a greenhouse is only a part of the crop monitoring process. Moreover,
in [5], the authors develop a tomato maturity recognition model based on an improved You
Only Look Once (YOLO) v5s-tomato-based algorithm. Nevertheless, their technique does
not monitor any of the growth stages of the tomato. Thus, although this work is interesting,
it focuses on the last stage of tomato production. Moreover, utilizing robotic arms can
realize intelligent picking of fruits. Hence, collecting and analyzing greenhouse environ-
mental information, combined with intelligent algorithm optimization, can provide precise
environmental decision-making solutions to enhance efficiency and accuracy, promoting
the further development of greenhouse agriculture.

Current research mainly employs IoT devices to predict the trend in greenhouse en-
vironmental indicators or combines different data types and algorithms to predict the
elements required for plant growth, such as changes in leaf phosphorus concentration [6,7].
This work effectively estimates the P-concentration in rice leaves but is limited to the tiller-
ing stage of potted rice. Moreover, in [8], the authors identify the optimal environmental
parameters for crops under specific conditions during greenhouse production. Specifically,
they combine genetic algorithms with IoT devices to maximize crop yields while mini-
mizing energy consumption. Although interesting, this study focuses on optimizing the
setpoints of the proportional–integral–derivative (PID) controllers for energy efficiency
rather than presenting a complete monitoring system.

Spurred by the current trends presented above, the objectives of this study are the
following: (1) construct a precise decision-making model for the greenhouse environment,
(2) optimize and analyze greenhouse environmental data by using machine learning tech-
nology and algorithms, (3) predict the environmental control plan for greenhouses and the
growth status of crops, and (4) provide decision-making plans and control strategies to
improve energy utilization efficiency in the greenhouse and the growth efficiency of crops.
Moreover, the greenhouse environment decision-making model library and the crop preci-
sion decision-making optimization model constructed in this study rely on different data.
The model library is built based on different characteristics, such as lighting, temperature,
humidity, etc., and the knowledge base is established based on historical experience and
expert knowledge.

The remainder of this paper is organized as follows. Section 2 introduces the process
to collect and analyze greenhouse environmental information. Section 3 presents the
proposed greenhouse environment decision-making model library and the optimization
model. Section 4 verifies and analyzes the developed optimization model on tomato crops
as an example. Finally, Section 5 summarizes this work.
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2. Collection and Analysis of Greenhouse Environmental Information
2.1. Overview of Greenhouse Information

The experimental greenhouse used in this study is the solar greenhouse of the scien-
tific research base of the Jilin Institute of Agricultural Science and Technology (43◦96′ N,
126◦49′ E). The greenhouse has a span of 10 m, a ridge height of 5.5 m, and a length of
60 m. Its transparent covering material is polyolefin (PO) film, and a layer of quilt is used
for the external insulation cover. The northern wall is constructed from red brick, with
no heating equipment in winter. The experimental tomato variety is Jingcai No. 8 Straw-
berry Persimmon (Beijing, China), According to expert experience, greenhouse tomatoes
mainly undergo three growth stages: seedling stage, flowering and fruiting stage, and fruit
enlargement stage. This study collected sensor data and meteorological data from three
stages for a total of four months.

2.2. Data Collection and Analysis

The data collected by the sensors mainly include soil salinity, photosynthetically
active radiation, total radiation, leaf moisture, precipitation, greenhouse internal humidity,
soil temperature, greenhouse temperature, wind direction, and wind speed. Meanwhile,
day and night are included as an additional feature to consider the time factor more
comprehensively. The data collection sensors used mainly include the soil comprehensive
sensor model ZTS-3000-TR-* (Shandong, China), which has a soil temperature range of
−20–80 ◦C, a resolution of 0.01 ◦C, and an accuracy of ±0.5 ◦C. The soil moisture range
is of 0–100%, with a resolution of 0.01% and an accuracy of ±2%. The soil pH range is
of 0–14 pH, with a resolution of 0.01 pH and an accuracy of ±0.3 pH. The soil N/P/K
range is of 0–1999 mg/kg%, resolution 0.1 mg/kg%, accuracy ±2%. The air temperature
and humidity sensor EXTECH HT30 (Shanghai, China) has a humidity range of 0~RH,
temperature range of 0~50 ◦C, resolution 0.1% RH, 0.1 ◦C. The photosynthetic effective
radiation sensor LI-190R (Beijing, China) has a range of 400–700 nm, an accuracy of ±5%,
and a resolution of 0.1%.

The data types are represented as floating point numbers, with an accuracy of two dec-
imal places. Day and night information is identified as 0 and 1, respectively, and the growth
stages are marked with integers. Table 1 presents some data samples. Overall, the data
involve twelve features, which provide rich information and help develop comprehensive
and accurate intelligent models for strategic plan prediction and optimization.

Table 1. Data samples.
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16.98 0.76 19 0.2 15.1 1 0 91.1 21.3 15 78.8 0.53 3 0
16.98 0.76 19 0.2 15.1 1 0 91.3 21.2 14.8 78.8 0.32 3 0
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It is important to analyze whether the feature data have a practical impact on the
model, enhancing its prediction accuracy. Thus, a feature permutation strategy randomly
arranges the features and observes the changes in model performance. The advantage of
this strategy is that the feature importance does not depend on the selected fitting model,
demonstrating the relationship between the fitting target and the features.

The results in Table 2 highlight that four features affect the prediction results, and the
most important feature is temperature, i.e., soil and greenhouse temperatures. Wind speed
and total radiation are less important features, posing an inferior impact on the prediction
results than temperature-related features. Therefore, for the following model setup, we
discard the features of wind direction, precipitation, humidity inside the greenhouse, and
temperature outside the greenhouse. The remaining eight features for the subsequent
modeling include soil temperature, greenhouse temperature, photosynthetically active
radiation, leaf moisture, soil salinity, wind speed, total radiation, and time (day or night).

Table 2. Results on the feature importance ranking.
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3. Construction and Optimization of Greenhouse Environmental
Decision-Making Model
3.1. Construction of Model Library Based on Machine Learning

Constructing an environmental prediction model for detecting crop growth stages can
help optimize agricultural production. However, quantifying crop growth intuitively is
challenging; therefore, this study uses a dataset on plant growth stages for modeling. The
dataset is collected in the field and comprises plant growth stages annotated by experts.
Although the proposed model is trained on that dataset, it can adapt to different crops and
environmental conditions by configuring the parameters of the different crop growth stages,
improving the model’s versatility. Figure 1 illustrates the model construction process.

Figure 1. Schematic diagram of model construction.

This study employs several machine learning algorithms to construct a model library,
which is then used to establish the prediction model. Different models are trained for
the same task to obtain better prediction results, and the one performing best on the test
set is selected as the prediction model. Constructing a model library involves presetting
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several machine learning algorithms as models trained on the actual greenhouse environ-
mental data, setting several evaluation indicators for each model based on the accumulated
collected data, and adaptively selecting the most suitable model as the learning model.

To satisfy the computing resource requirements of the model library, this study in-
creases the update interval of the calculations when updating the model. In actual green-
house environment production, computing resources are idle in most cases. Thus, several
models are calculated and evaluated during the idle periods to exploit these computing
resources, thereby improving their utilization. The model is constructed using Pandas,
a popular data processing library in the Python language, and Scikit-learn, a machine
learning library.

Several machine learning models are evaluated as model libraries through simulation
and comparison on the dataset, including three support vector machine models (SVM [9],
linear-SVM [10], and nu-SVM [11]), two tree models (gradient boosting tree model [12]
and decision tree model [13]), and three linear models (Bayes Ridge regression model [14],
logistic regression model [15], and gradient descent model [16]).

The main reason for choosing these models is that they represent the classic models
used in the current machine learning research. First, for the SVM model, it can distinguish
different types of data by finding the hyperplane between the data. This method is also
commonly used in the modeling process of agricultural machine learning models. In
addition, the model also chooses two types of tree models, because these tree models have
a good effect when addressing problems with complex features. The main principle of
the algorithm is to use the tree structure to establish the interval parameters of different
features. We chose two decision trees representing the model based on this idea and the
optimized version of GDBT. In order to further enrich the model, we also chose some more
classic regression models, including Bayesian Ridge regression model based on Bayesian
thought, which can handle unbalanced data well. As a basic model for statistical calculation,
the logistic model is also included in the model base. In addition, the linear regression
model based on gradient decline is also used, which mainly uses gradient decline to
optimize model parameters, These different models are currently widely used in the field
of agricultural applications, but there is a lack of algorithms to optimize and combine these
different models in an effective way. Therefore, this article integrates these different models
using a model library to establish a greenhouse agriculture parameter prediction model for
our method.

In terms of model parameter settings, the two SVM models use a penalty term pa-
rameter of 1.0, and it is obvious that the two models use different kernel functions; one
is a linear kernel and the other is a nu kernel. The use of two types of kernels allows the
model to encompass the learning ability of two different types of kernels. In the parameter
settings of the two tree models, the minimum parameter splitting feature number is set to
2, and the minimum leaf feature number is set to 1 to ensure that each feature can be well
learned. The learning rate of GDBT is set to 0.1, and in other settings such as linear model
parameters and model parameter settings not mentioned, it is ensured that it is consistent
with the parameter settings of classical models.

The parallel processing mechanism of Python is exploited for multi-threaded calcu-
lations to fully utilize computing resources and complete the management of different
models. Meanwhile, the model library is abstracted into a Python class to write the corre-
sponding functions to provide the corresponding responses, such as prediction, evaluation,
and data processing (in Figure 2). Specifically, the collected feature data are first processed
using Pandas and sent to the model library when the subsequent training process starts.
The model library divides the feature data into a test set and a training set at a ratio of
2:8. Once training is completed, the trained models are evaluated using seven evaluation
indicators implemented in Python, i.e., maximum error, mean absolute error, mean square
error, root mean square error, mean square logarithmic error, median absolute error, and
coefficient of determination. These indicators evaluate the model’s prediction effect or
quality, and the smaller the indicator value, the better the prediction effect. Then, by taking
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these indicators as evaluation criteria, different models are voted on, and the model with
the most votes is selected as the crop growth prediction model. Meanwhile, the model with
the lowest training error is selected as optimal. When the performance of several models is
relatively balanced, the coefficient of determination is taken as the reference index.

Figure 2. Model selection and prediction in the model library.

3.2. Construction of Greenhouse Decision-Making Optimization Model

The main method to investigate the intelligent decision-making process employs
a crop growth prediction model and an intelligent optimization algorithm as the basic
algorithm. It utilizes past experts’ experience and knowledge as the intelligent algorithm’s
inspiration seeds. This strategy incorporates a precise decision-making optimization model
based on the optimization algorithm for the greenhouse environment.

By continuously accumulating agricultural production knowledge, a suitable range
of environmental parameters for different crop growth stages is obtained based on the
growth and planting of crops. These parameters are summarized in the library presented
in Table 3.

Table 3. Example of the empirical knowledge base.

Growth Stages Daytime
Temperature (◦C)

Nighttime
Temperature (◦C)

Air Humidity
(%)

Soil Moisture
(%) N/(mg·L−1) P/(mg·L−1) K/(mg·L−1)

Seedling growth stage 25–30 12–16 50–65 60–85 110–130 100–150 120–150
Flowering and fruit

setting stage 25–28 12–18 60–65 70–80 120–130 70–90 140–230

Fruit expansion stage 28–30 16–20 70–75 80–90 120–180 60–80 170–220

Six parameters, including temperature, soil moisture, air humidity, nitrogen, phos-
phorus, and potassium, are divided based on some upper and lower limits, leading to
12 parameters in total. Meanwhile, a day and night mechanism is added. Then, the
model library is used for prediction learning on the compiled parameters and the collected
greenhouse environment information (Table 4).

Table 4. Example of a compiled knowledge base.
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Based on the same evaluation method, different machine learning algorithms are eval-
uated and voted on seven evaluation indicators to determine the optimal model that can
effectively learn the appropriate indicators corresponding to environmental information, such
as temperature, and realize accurate prediction and adjustment of the growth environment.

For the optimization model, the decision function is based on the prediction model
of the six indicators obtained after training using the model library. The upper and lower
limits of the various indicators in the knowledge base are used as the upper and lower
limits of the decision variables. The main goal of optimization is to control the greenhouse
environment based on reasonable decision-making solutions. Using nitrogen, phosphorus,
and potassium as examples, the optimization goal is to minimize the soil’s nitrogen, phos-
phorus, and potassium contents. For this approach, a multi-objective optimization problem
with a minimization objective of constrained continuous decision variables is employed,
formulated as follows:

min{z1 = f (x), z2 = f (x), · · · zr = f (x)}
s.t. gi(x) ≤ 0, i = 1, 2, · · · , m,

where fk(x), k = 1, 2, · · · , r represents the prediction function of different indicators ob-
tained by learning the machine learning model, used as the objective function of the
optimization problem. Zk is the predicted indicator, the value of r is determined by the
number of indicators in the knowledge base used, gi(x) denotes the upper and lower
limits after transformation from the indicators in the knowledge base, and m represents the
number of corresponding constraints in the knowledge base. Then, the optimization model
is used to optimize and solve this problem.

This article establishes a multi-objective optimization problem to minimize greenhouse
input, which includes several indicators, shown in Table 3, except for the growth stage.
The changes in these indicators in the knowledge base determine the main cost of plant
growth, and the changes in these indicators require different cost inputs, such as increasing
the heat source in the greenhouse and increasing fertilizer application, which will cause
cost increases. At the same time, due to the mutual influence of greenhouse factors, such
as humidity affecting fertility, different factors need to be comprehensively considered.
Based on the knowledge base for learning modeling, the first step is to enable the predic-
tion model to provide the optimal value of a single indicator in the current greenhouse
environment. At this time, the correlation between different indicators is not considered.
Using the optimization model based on the single indicator prediction model can obtain
its global optimum, that is, considering the optimal solution of different greenhouse indi-
cators. Obviously, using the optimization model can further help decision-making in the
greenhouse environment rather than local adjustment of a certain indicator. Therefore, the
target variable for modeling this optimization model is the optimal indicator summarized
from prior experience in the knowledge base, which means that the optimal corresponding
indicator under the current parameters can be obtained.

This study compares four optimization models from the intelligent optimization field,
namely the Non-Dominated Sorting Genetic Algorithm II (NSGA-2) [17], NSGA-3 [18],
push and pull search Multi-Objective Evolutionary Optimization Decomposition (PPS
MOEAD DE) [19], and Reference Vector-Guided Evolutionary Algorithm (RVEA) [20], and
the most appropriate is selected as the appropriate model for solving the above problems.
Before deploying the intelligent decision-making model, the corresponding optimization
model parameters must be adjusted on the collected data. Considering the equipment’s
performance limit, the number of populations and the maximum number of optimization
iterations are set to 50 and 2000, respectively.
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4. Verification and Analysis
4.1. Tomato Greenhouse Environmental Data Processing and Analysis

The collected dataset contains 23,432 records, covering four months. It has six duplicate
data records, and proportionally negligible data are available. Figure 3 depicts the variation
curves of each feature over time.

Figure 3. Variation in different features over time: (a) soil moisture, (b) soil salinity, (c) photosyn-
thetically active radiation, (d) total radiation, (e) humidity inside the greenhouse, (f) leaf dampness,
(g) wind speed, and (h) wind direction.

Figure 3 highlights that the greenhouse environmental data exhibit certain patterns
over time, with one data type presenting similar changing trends. For instance, the changing
trends of soil moisture and salinity are similar. This characteristic change is consistent
with the general understanding that salt concentration is lower when there is a significant
amount of water in the soil. This is closely related to the concentration of salts required by
plants. Therefore, it indicates that these two factors play an important role in regulating
basic elements for plant growth.

Another data type presents periodic changes, e.g., radiation, humidity, and wind
speed, which similarly change over time in small periods but have differences in long
ones. This suggests that this data type is sensitive to the trend of time changes. The main
reason for this periodic change is that light heavily affects this factor, as, during the day,
light intensity and temperature are high, leading to more water vapor evaporation. In
contrast, the temperature decreases at night due to the decline in light, leading to a decline
in temperature and humidity. These findings prove the necessity of adding the time factor
(day and night) to the parameter prediction model as it improves the fitting ability of the
prediction model to identify features.

Figure 4 reveals that the data distribution has three common chrematistics: normal,
multimodal, and long tail. Moreover, different feature data types lead to different data
amplitudes. For example, the data range of effective light radiation ranges from 18 to
1592 µmol/m2s, whereas the humidity ranges from 9.4 to 24.04 vol%. A typical solution to
eliminate this difference is normalizing the data. After experimental comparison, it was
found that the data training results after normalization were almost consistent with those
without normalization. It should be noted that this study does not adopt normalization
processing to reduce the consumption of computing resources.
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Figure 4. Data distribution histogram: (a) soil moisture, (b) salinity, (c) temperature inside the
greenhouse, (d) wind direction, (e) internal temperature of equipment, (f) soil temperature, (g) wind
speed, (h) humidity inside the greenhouse, (i) photosynthetically active radiation, (j) total radiation,
and (k) leaf dampness.

4.2. Tomato Growth Environment Prediction Model and Verification

As mentioned in Section 3, the model will first learn and predict the growth stages of
different crop labels. Then, the predicted growth stages of this model will be associated
with the knowledge base information that also includes the growth stages to establish a
connection between the model and the knowledge base. Then, the data will be learned from
the associated knowledge base model to achieve the adaptation parameter prediction model
from the machine learning model to the knowledge base in the greenhouse environment.
Then, NSGA-3 will be used to optimize the multi-objective solving problem established.
As multiple knowledge base parameters are considered in this optimization problem, a
recommended decision indicator for greenhouse environment regulation can be obtained.
The following first evaluates the results of the prediction model on tomato greenhouse data
to demonstrate its actual effectiveness.

Once the collected greenhouse data are processed and analyzed, they are inputted into
the model library to construct a tomato growth environment prediction model, where the
model input data of different algorithms in the model library are the same. The optimal
prediction model is then selected by comparing the learning capabilities of different models
under different environmental parameters. Taking the model learning results of soil
moisture and temperature as examples, the two indicators obtained the best values on
the gradient boosting tree model and the decision tree model, respectively. Meanwhile,
to demonstrate the learning and process of the model, a five-fold cross-validation of the
model effect is conducted. Next, the soil moisture and temperature factors are taken as
examples to present the five-fold cross-validation results of the model.
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As listed in Table 5, the model exhibits different cross-validation effects on different
data after using cross-validation to divide the learning data. However, the results are
relatively close. Therefore, it is considered that the model obtains more accurate learning re-
sults for different data and better results on various indicators for subsequent optimization
model modeling.

Table 5. Five-fold cross-validation results of the soil moisture factor on the gradient boosting
tree model.

Fitting Time (s) Prediction Time (s) max_Error mae mse rmse r2 mgd mape

2.634 0.014 2.369 0.579 0.675 0.821 0.892 0.003 0.042
2.908 0.01 1.26 0.485 0.323 0.569 0.975 0.002 0.034
2.676 0.01 2.399 0.339 0.221 0.47 0.902 0.001 0.017
2.938 0.01 2.291 0.516 0.459 0.678 0.903 0.002 0.033
2.861 0.009 2.162 0.568 0.475 0.689 0.836 0.001 0.03

As shown in Figure 5, the comparison between the model prediction results and the ac-
tual values reveals that the model prediction values are relatively close to the actual values,
except for a few points. Meanwhile, the residual diagram reveals no evident morphological
result between the model prediction results and the residual values, indicating that the
model completes the prediction well.

Figure 5. (a) Predicted and true soil moisture values and (b) comparison of predicted values and
residuals.

Similar to the soil moisture factor test results, the cross-validation results present
certain differences but are still relatively close (Table 6). Therefore, the learning results
of the model for different segmented data are more accurate, and the results for each
indicator are better. Hence, the model obtained by learning the temperature factor can also
be used for subsequent optimization model modeling. The comparison results in Figure 6
demonstrate that the model has achieved good predictions.

Table 6. Five-fold cross-validation results of the temperature factor on the decision tree.

Fitting Time (s) Prediction Time (s) max_Error Mae mse rmse r2 mgd mape

0.118 0.005 5.5 0.768 0.991 0.995 0.974 0.002 0.033
0.115 0.005 10.2 0.958 1.909 1.381 0.951 0.004 0.043
0.14 0.005 8.9 1.037 2.435 1.56 0.898 0.006 0.054
0.121 0.005 6.9 1.056 2.395 1.547 0.823 0.006 0.062
0.12 0.005 8.8 1.187 2.965 1.722 0.929 0.005 0.051
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Figure 6. (a) Predicted and true values of the temperature factor and (b) comparison of predicted
values and residuals.

The appropriate model is selected as the greenhouse environment feature prediction
model by comprehensively considering various indicators. Different models show different
effects on different features. Thus, we can determine the appropriate model for greenhouse
environmental data prediction by comparing these combinations. Table 7 reports the
experimental results during the model selection process.

Table 7. Model selection after comparison of cross-validation results.

Features Models

Growth stage Gradient boosting tree
Temperature Gradient boosting tree
Soil moisture Decision tree
Air humidity Decision tree

N Decision tree
P Decision tree
K Gradient boosting tree

Conductivity Decision tree
Note: N, P, K represent N fertilizer, P fertilizer and K fertilizer, respectively.

There are two main greenhouse environmental feature prediction models: the decision
tree model and the gradient boosting tree model. These two models are similar as they are
based on tree models. Compared with the decision tree model, the gradient boosting tree
integrates the prediction results of data on multiple small partitioned datasets. Meanwhile,
according to the above data analysis, the greenhouse environmental data exhibit certain
characteristics of cyclical changes over time. In contrast, the tree model can find the dividing
points of the data features. Therefore, the performance of these two models makes them
more advantageous than other models. Moreover, the five-fold cross-validation results of
the temperature factor and soil moisture factor mentioned above reveal that the results of
the two models are similar and consistent with the analysis results.

From the results, it can be seen that the models trained through the model library
mainly use GDBT and decision tree models in processing greenhouse tomato environmental
data. This indicates that, for different features, suitable models are different. Although
in the same environment, compared to traditional manual experimental decision-making,
using the model library can help select the most suitable model in real time based on the
data changes corresponding to environmental changes. This enables the modeling process
to use real-time detection data, eliminating the dependence on pre-collected data and the
time cost required for selecting different models, and can ensure that its prediction results
are always in an optimal state at the model end. This is what traditional machine learning
tasks lack in the modeling process.
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4.3. Tomato Environmental Decision-Making Optimization Model and Analysis

Generally, the greater the population iterations, the more representative the optimiza-
tion results. However, there is a trade-off between the number of populations and the
number of iterations. To guarantee that the model optimization structure is sufficiently
representative and considering the model effect, training time, and equipment perfor-
mance limitations, the number of populations is set to 50, and the maximum number of
optimization iterations is 2000.

Moreover, to better initialize the model, we employ a value within the data range
of the empirical knowledge base. As shown in Table 8, this is because combining expert
knowledge and historical experience helps improve the performance and convergence
speed of the model and can guide the model to find the optimal solution.

Table 8. Initial values of the model.

Features Temperature (◦C) Soil Moisture (%) Air Humidity (%) N/(mg·L−1) P/(mg·L−1) K/(mg·L−1) Conductivity/(ms·cm−1)

Values 25 60 80 120 90 140 1.5

Taking the fertilization decision-making objective as an example to construct an opti-
mization model, and given the constraints and objective function of the greenhouse envi-
ronment decision-making optimization model, Figure 7 illustrates the number of Pareto
solutions obtained by executing the model using NSGA-2, NSGA-3, and PPS MOEAD DE,
demonstrating similar results. Although the values of the first five variables differ, they
have a similar trend. Meanwhile, consistent results are obtained for the remaining factors
across the three models. Comparing the optimization results of the RVEA model reveals
large differences among the results, and the optimization results are rather different from
those of the other models.

Figure 7. Horizontal comparison of the number of Pareto solutions of the four models. Different
horizontal lines represent different Pareto solutions. (a) NSGA-2, (b) NSGA-3, (c) PPS MOEAD DE,
and (d) RVEA.
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Figure 8 infers that, as the number of iterations evolves, the average value of the
NSGA-3 model target space decreases rapidly, then increases, and stabilizes with gradual
fluctuations. According to these results, the decision-making results of the greenhouse
environment optimization decision-making model gradually stabilize, and the results of
the NSGA-3 optimization model converge. However, the results of the other three models
still fluctuate in the later stages of evolution. This analysis indicates that the optimization
results of the NSGA-3 model on greenhouse environmental features can fully represent the
optimal decision-making results in the greenhouse environment.

Figure 8. Changes in the target space value with the increase in the number of iterations (a) NSGA-2,
(b) NSGA-3, (c) PPS MOEAD DE, and (d) RVEA.

After several experiments, the average optimization time of the model is 2 min and
31 s, with a model time complexity of O

(
MN2

)
, where M = 12 based on the number of

objective functions. Since the greenhouse environment in which the model is evaluated
is adjusted periodically and the optimal solution is obtained through optimization, the
execution speed meets the needs of greenhouse environment optimization decisions.

Although there are certain differences in the optimization parameters of different opti-
mization models, it can be seen that the overall results obtained by different optimization
models are relatively similar. This means that different methods have been used to find
more approximate solutions, indicating that the similarity of the results obtained by using
the model library to learn real-time data and the optimization model for the optimization
process is relatively robust. At the same time, in this section, by comparing various cutting-
edge optimization methods, it is ensured that the optimization model chosen in the end can
effectively solve the optimization decision of tomato greenhouse environmental parameters
in this paper.

5. Discussion and Conclusions

This study utilizes real-time multi-node distributed sensor data to monitor and col-
lect greenhouse environmental data. The processing and analysis of the collected feature
information provide an accurate basis for precise decision-making in the greenhouse en-
vironment, enhancing greenhouse productivity while reducing costs. Meanwhile, this
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study searched relevant textbooks and the literature, collected historical production data,
conducted expert consultation, and performed regression analysis on relevant data. Based
on this, a knowledge base of characteristic parameter ranges in a standard growth environ-
ment was designed for greenhouse crops (such as tomatoes) during each growth period.
Then, the knowledge base and greenhouse environmental data were integrated to predict
decision-making solutions, allowing the model to be widely applied to the environmental
decision-making needs of different greenhouse crops. This provides an effective data basis
and a direction for optimization of the decision-making solution for the prediction model.

The main feature factors of greenhouse crop growth are determined through correla-
tion feature analysis, and a greenhouse crop environmental decision-making model library
is constructed based on the data. Combined with the knowledge base parameters of various
crops at different growth stages, the model library can be applied to different crops and
select the optimal prediction model. The model obtains appealing results in predicting
greenhouse environmental changes under different influencing parameters. Based on this
model, intelligent parameter decision-making suggestions can be provided for greenhouses
to improve the efficiency of greenhouse energy utilization and crop growth. The closeness
between the predicted and real values validates the model’s robustness, and its precise
decision-making plan is implemented and verified in an actual production environment.
Moreover, based on the model library, an intelligent optimization model is constructed
by taking the fertilization decision-making target as an example. The model can utilize
local experience data as initial values for optimization. By comparing different models and
value changes in the target space, NSGA-3 is determined as the greenhouse fertilization
decision-making optimization model. It should be noted that the optimization results are
consistent with the experience results, indicating that the model can meet the needs of
intelligent optimization decision-making.

The model established in this article can adaptively select machine learning models
in tomato greenhouses based on real-time monitoring data, learn changes in greenhouse
environment data, and use the model obtained in this way as a component of the optimiza-
tion method objective function. Combined with the knowledge base established through
expert prior knowledge to obtain the optimal greenhouse environment parameter settings
in the current environment, the cost of building machine learning models in tomato green-
house agriculture can be reduced, and the corresponding adaptive ability of the model
can be improved. At the same time, this model base, real-time data, knowledge base, and
optimization methods combined in multiple aspects can evidently be generalized to differ-
ent forms of agricultural planting, providing a paradigm for modeling other greenhouse
crop environments.

Meanwhile, during the research process, we found that the proposed model still has
certain shortcomings. For example, in the process of optimizing greenhouse parameters, the
prediction model and optimization model have a high dependence on the expert knowledge
base. If the parameters of the knowledge base cannot represent the corresponding indicators
required for different planting stages of crops well, such as ammonia nitrogen concentration,
the suggested parameter results will also have deviations. Therefore, in future research,
further optimization processing of the knowledge base information will be carried out to
improve the robustness of the integrated knowledge base model proposed in this paper.

This study successfully constructs a greenhouse crop environmental decision-making
model library and an intelligent decision-making optimization model for greenhouse
fertilization. These models can provide effective decision support for the environmental
management of smart greenhouses. Considering the complex coupling relationships
of various environmental characteristics in the greenhouse environment, future work
will combine the coupling relationships of various environmental characteristics of the
greenhouse, such as the mutual effects of light, temperature, and humidity, and accumulate
various greenhouse crop growth data and environmental data to enrich the knowledge
base. Meanwhile, we will focus on connecting with intelligent greenhouse environmental
control equipment and verifying and continuously improving precise decision-making
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plans in the actual production environment, further enhancing the model’s practicality
and reliability.
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