
Citation: Mînzu, V.; Arama, I.;

Rusu, E. Machine Learning

Algorithms That Emulate Controllers

Based on Particle Swarm

Optimization—An Application to a

Photobioreactor for Algal Growth.

Processes 2024, 12, 991. https://

doi.org/10.3390/pr12050991

Academic Editor: Xiong Luo

Received: 21 April 2024

Revised: 8 May 2024

Accepted: 10 May 2024

Published: 13 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Machine Learning Algorithms That Emulate Controllers
Based on Particle Swarm Optimization—An Application
to a Photobioreactor for Algal Growth
Viorel Mînzu 1,* , Iulian Arama 2 and Eugen Rusu 3

1 Control and Electrical Engineering Department, “Dunarea de Jos” University, 800008 Galati, Romania
2 Informatics Department, “Danubius” University, 800654 Galati, Romania; iulian.arama@univ-danubius.ro
3 Mechanical Engineering Department, “Dunarea de Jos” University, 800008 Galati, Romania; eugen.rusu@ugal.ro
* Correspondence: viorel.minzu@ugal.ro

Abstract: Particle Swarm Optimization (PSO) algorithms within control structures are a realistic
approach; their task is often to predict the optimal control values working with a process model
(PM). Owing to numerous numerical integrations of the PM, there is a big computational effort
that leads to a large controller execution time. The main motivation of this work is to decrease
the computational effort and, consequently, the controller execution time. This paper proposes
to replace the PSO predictor with a machine learning model that has “learned” the quasi-optimal
behavior of the couple (PSO and PM); the training data are obtained through closed-loop simulations
over the control horizon. The new controller should preserve the process’s quasi-optimal control.
In identical conditions, the process evolutions must also be quasi-optimal. The multiple linear
regression and the regression neural networks were considered the predicting models. This paper
first proposes algorithms for collecting and aggregating data sets for the learning process. Algorithms
for constructing the machine learning models and implementing the controllers and closed-loop
simulations are also proposed. The simulations prove that the two machine learning predictors have
learned the PSO predictor’s behavior, such that the process evolves almost identically. The resulting
controllers’ execution time have decreased hundreds of times while keeping their optimality; the
performance index has even slightly increased.

Keywords: particle swarm optimization; machine learning; optimal control; simulation

1. Introduction

A common task in process engineering is to control processes whose quality is eval-
uated through a performance index. When the process model has certain mathematical
properties, theoretical control laws can be adopted for implementation; on the contrary,
when the process model is uncertain, incomplete, and imprecise or has profound nonlin-
earities, metaheuristic algorithms (MAs) like Evolutionary Algorithms, Particle Swarm
Optimization, etc., within a suitable control structure could be successfully used [1–3]. Con-
trol engineering has afforded numerous examples where metaheuristics were used [4–8]
owing to their robustness and capacity to deal with complex processes.

The role of an MA within a controller is usually to predict the optimal control values
within each sampling period, but first, it searches for the optimal value. For example, the
PSO algorithm follows its optimization mechanism using particles and the internal PM.

A control structure fitting this type of controller is Receding Horizon Control (RHC) [9–11].
This structure is suitable for implementing solutions to Optimal Control Problems (OCPs);
it includes an internal process model (PM) [8,12,13].

Another facet of the prediction process also used within a control problem is described,
for example, in [14]. The study proposes a physics-assisted transfer learning metamodeling

Processes 2024, 12, 991. https://doi.org/10.3390/pr12050991 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12050991
https://doi.org/10.3390/pr12050991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-2619-8169
https://orcid.org/0000-0002-6207-0886
https://orcid.org/0000-0001-6899-8442
https://doi.org/10.3390/pr12050991
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12050991?type=check_update&version=2


Processes 2024, 12, 991 2 of 28

framework to predict laser butt welding bead geometry and carbon emissions. This time,
the learning process updates the process model.

A predilect research topic for the authors was implementing the prediction module
within an RHC structure employing MAs. The results are partially reflected in previous
works [8,15,16]. The robustness, efficiency, and usability of MAs inside a controller have a
price to pay: the controller’s execution time. The optimization mechanism and the PM’s
numerous numerical integrations take a relatively long time to find the optimal value
after a convergence process. That is why this approach is mainly suitable for slow pro-
cesses when the predictions’ computation time is smaller than the sampling period [17,18].
Decreasing the predictor’s execution time is a challenge [15,16] because it could extend the
applicability of controllers using MAs. This work goes in the same direction but involves a
new technique: using machine learning (ML) to emulate predictors based on MAs. Recently,
we have proposed linear regression (LR) predictors that are “equivalent” in a certain sense
to predictors based on Evolutionary Algorithms (Eas) [19]. This paper deals with OCPs
having final costs and solutions involving PSO predictions.

For the reader, who is a newcomer equally in the fields of control systems, computa-
tional intelligence, and machine learning, we have to answer why our objective is to replace
the PSO predictor with an ML predictor (inside the RHC structure) when solving an OCP.

• The PSO predictor predicts an optimal control value, but first, it searches for the
optimal control sequence following its optimization mechanism using a swarm of
particles and the PM. That is why it takes a relatively long time to find this value after
a convergence process.

• The ML predictor (LR or RNN) predicts using an already-known regression function.
Being an ML model, it reproduces what it has learned, the PSO predictor’s behavior.
It does not search for anything. Moreover, it does not make numerical integrations of
the PM. That is why it takes a much shorter time to calculate the predicted value.

• The ML predictor replaces the PSO predictor only in execution when the controller
achieves the control action. Intrinsically, the solution is given by the PSO algorithm.
The solutions are “learned” by the ML predictor; that is, the ML model emulates the
PSO algorithm.

To continue the work presented in [19], we shall consider the equivalence mentioned
above and implement Regression Neural Network (RNN) predictors besides the LR ones.

Throughout this paper, we have recourse to a specific OCP to make the explanations
easy to follow for the reader. In [11], for the optimal control of a specific photobioreactor
(PBR) lighted for algal growth, we have presented a solution in the same context, RHC and
predictions based on PSO. We shall adopt the PSO predictor already constructed in [11];
by employing this one, we shall generate new ML predictors. The data generated by
simulation modules, already developed previously, are stored or recorded. These data will
be needed to train and test the ML models. Some results from [11] will be reported in this
paper for comparison (Section 7.1).

Section 2 recalls the general approach developed in previous work [8,20,21] to solve
such problems using PSO algorithms. Besides the recall of the PBR problem’s state-
ment, Section 2 also introduces the notations and formulas that keep the presentation
self-contained.

Section 3 answers the following two main questions:

• What data are needed to capture the optimal (quasi-optimal) behavior of the couple
(PSO and PM)?

• How are the data sets for the ML algorithms generated?

The PSO prediction module, included in the controller, is available from our previous
work, which has already solved the PBR problem. Section 3 presents an algorithm carrying
out the closed-loop simulation over the control horizon using the PSO predictor. A manda-
tory hypothesis is that the real process and the internal PM are considered identical because
the data recorded should capture only the behavior of the couple (PSO and PM).



Processes 2024, 12, 991 3 of 28

At the end of the simulation, the sequence of optimal control values (optimal control
profile) and the sequence of state variables (optimal trajectory) can be recorded. The optimal
CP and trajectory can be seen as the “signature” data of the optimal solution. Consider-
ing together the two sequences, we obtain a sequence of couples (state; control value),
one couple for each sampling period. The simulation program is executed M times (e.g.,
two hundred times); the two sequences are collected each time and aggregated into a data
structure. This data structure expresses the PSO predictor’s experience as a decision maker;
it will be used to obtain the ML models [22–26].

Section 4 presents the general approach to learning the optimal behavior of the couple
(PSO and MP). The learning process is split at the level of each sampling period, and conse-
quently, new data structures are derived for each of them. With each new data structure,
which is a collection of couples (state; control value), a generic regression function [22,27,28]
is associated. The latter is materialized through an ML regression model devoted to the
sampling period at hand, which must be capable of giving accurate predictions.

An ML controller’s systematic design procedure is also proposed. We have to em-
phasize that the entire design procedure of the ML controller needs only simulations and
offline program executions.

In this paper, we consider as regression models only two kinds of models: multiple
linear regression [29–31] and Regression Neural Network [22,32]. Other regression models
(trees, support vector machines, and Gaussian processes) were considered in our studies
as well. Still, only the models LR and RNN are relevant to this presentation. Implement-
ing an ML controller, in our context, involves determining a regression model for each
sampling period.

Section 5 deals with constructing a set of linear regression (LR) models [29,31] that are
trained with the data sets constructed in Section 4. A general construction algorithm using
the stepwise regression [30] strategy is proposed. A table with the regressions’ coefficients
is extracted from the models. The LR controller is implemented using the LR predictors; it
is also integrated into a proposed closed-loop simulation program, allowing us to evaluate
the entire approach. Some simulation results are given.

Section 6 proposes a general algorithm for constructing the models using Regression
Neural Networks [32]. The training and testing data sets are already determined in Section 4,
and they are saved in an external file. A specific closed-loop simulation program is also
proposed; it includes the RNN controller using the RNN predictors. The simulation results
are presented for further analysis.

The Discussion section first answers the following question: Did the two kinds of
predictors “learn” the behavior of the couple (PSO and PM), such that the new process’s
evolutions would also be quasi-optimal? To do this, we depict the new process’s evolutions
and display some numerical information using the closed-loop simulation programs pro-
posed in Sections 5 and 6. The simulation results are compared with those already available
concerning the PSO predictor. Owing to their generalization ability, both ML controllers
make accurate predictions of the control value sent to the process, and the state evolutions
are practically identical.

The second question that this section has to answer is as follows: Did the controller’s
execution time decrease significantly?

The positive answer to both questions proves that the ML controllers are an effective
way to avoid the large execution time of the controllers based on PSO while maintaining
the optimality of the control. This result is important because it extends the possibility of
using PSO (or other MA) controllers for processes with smaller time constants.

Special attention was paid to the implementation aspects such that the interested
reader could find support to understand and, eventually, reproduce parts of this work or
use it in their projects. With this aim in view, all algorithms used in this presentation are
implemented, the associated scripts are attached in the Supplementary Materials, and all of
the necessary details are given in the Appendices A–E.



Processes 2024, 12, 991 4 of 28

2. Controllers with Predictions Based on PSO: Connection with Machine
Learning Algorithms

Many controlled processes, such as biochemical processes, are repetitive, like those
organized in batches. For efficiency reasons, they generate Optimal Control Problems
involving three components:

• The process model can include nonlinearities, imprecise, incomplete, and uncertain
knowledge, correspond to a distributed-parameter system, etc.

• There are constraints, such as initial conditions, bound constraints, final constraints, etc.
• The cost function, which should be optimized, leads to a performance index.

To solve such a control problem, we need an adequate control structure which will
define the optimal controller. The latter includes a prediction module that calculates
the optimal control sequence and the optimal trajectory over the prediction horizon or
even until the end of the control horizon. For its work, the predictor uses the PM for a
huge number of numerical integrations. In this context, the predictor has a very complex
numerical task; that is why a metaheuristic algorithm is often a realistic solution to fulfil
this task.

The Receding Horizon Control (RHC) [8,10,11] is a very simple control strategy that
can easily integrate a metaheuristic algorithm as a predictor (Figure 1). The authors have
studied and simulated the RHC in solving different OCPs in conjunction with an EA or PSO.
The solutions are realistic, they can be used in real-time control, and several techniques
can be used to decrease the numerical complexity of the predictor. Nevertheless, the
inconvenience is that the control action takes up a big part of the sampling period.

Processes 2024, 12, x FOR PEER REVIEW 4 of 30 
 

 

Special attention was paid to the implementation aspects such that the interested 
reader could find support to understand and, eventually, reproduce parts of this work or 
use it in their projects. With this aim in view, all algorithms used in this presentation are 
implemented, the associated scripts are attached in the Supplementary Materials, and all 
of the necessary details are given in the Appendixes. 

2. Controllers with Predictions Based on PSO: Connection with Machine Learning 
Algorithms 

Many controlled processes, such as biochemical processes, are repetitive, like those 
organized in batches. For efficiency reasons, they generate Optimal Control Problems in-
volving three components: 
• The process model can include nonlinearities, imprecise, incomplete, and uncertain 

knowledge, correspond to a distributed-parameter system, etc. 
• There are constraints, such as initial conditions, bound constraints, final constraints, 

etc. 
• The cost function, which should be optimized, leads to a performance index. 

To solve such a control problem, we need an adequate control structure which will 
define the optimal controller. The latter includes a prediction module that calculates the 
optimal control sequence and the optimal trajectory over the prediction horizon or even 
until the end of the control horizon. For its work, the predictor uses the PM for a huge 
number of numerical integrations. In this context, the predictor has a very complex nu-
merical task; that is why a metaheuristic algorithm is often a realistic solution to fulfil this 
task. 

The Receding Horizon Control (RHC) [8,10,11] is a very simple control strategy that 
can easily integrate a metaheuristic algorithm as a predictor (Figure 1). The authors have 
studied and simulated the RHC in solving different OCPs in conjunction with an EA or 
PSO. The solutions are realistic, they can be used in real-time control, and several tech-
niques can be used to decrease the numerical complexity of the predictor. Nevertheless, 
the inconvenience is that the control action takes up a big part of the sampling period. 

 
Figure 1. Receding Horizon Control using adaptive PSO algorithm. 

An interesting and practical approach, in this context, is to replace the predictor with 
a machine learning algorithm inside the controller. The ML algorithm must emulate the 

Figure 1. Receding Horizon Control using adaptive PSO algorithm.

An interesting and practical approach, in this context, is to replace the predictor with
a machine learning algorithm inside the controller. The ML algorithm must emulate the
predictor of the RHC structure following its training offline. To emphasize its role, we
shall refer to this algorithm as the ML controller. In this work, we have to answer the
following questions:

• What does it mean that the ML algorithm must emulate the predictor?
• What data sets are used in training the ML, and how are they obtained?
• What kind of ML model can be used to achieve an appropriate controller?



Processes 2024, 12, 991 5 of 28

In [11], we have presented the optimal control of a continuously stirred flat-plate
photobioreactor (PBR) lighted on a single side for algal growth in the same context: the
RHC that uses predictions based on PSO.

In this presentation, all of the essential tasks concerning the ML do not need the PM;
only the final simulations, which allow us to validate the entire approach, employ the
PM. That is why the reader can find in Appendix A the equations modeling the PBR, the
constraints, and the cost function of the OCP. The PBR is a distributed parameter system,
but the PM is converted through discretization into a lumped parameter process. We
have solved this problem in [11], adding the discretization constraint, which refers to the
input variables:

U(t) = U(kT) ∆
= U(k), for k · T ≤ t < (k + 1) · T; k = 0, · · · , H − 1.

where T is the sampling period, and the final time of the batch equals H·T. In our example,
the input vector has a single component, i.e.,

U(k) = q(k), k = 0, · · · , H − 1. (1)

The variable q(k) is the intensity of incident light throughout the kth sampling period.
At every moment 0 ≤ k < H − 1, the predictor calculates the optimal control se-

quence (1) using the usual version of the APSOA (adaptive PSO algorithm) and the PM,
which is integrated a large number of times. The optimal control sequence minimizes
the cost function J(k, X(k)) over the current prediction horizon [k, H]; in our example, the
following holds:

J(k, X(k)) = min
predicted sequence

{
w1 · A · C

H−1
∑

i=k
U(i) + w2 · [V · x1(H)−m0]

}
,

X(k) = [x1(k) x2(k)].

The vector X(k) is the current state of the process. A predicted sequence is a control
sequence with the following structure:

U(k) = ⟨U(k), . . . , U(H − 1)⟩, (2)

Using the PM and Equation (2), the APSOA calculates the corresponding state sequence.

X(k) = ⟨X(k), . . . , X(H)⟩.

The latter has H − k + 1 elements.
When the APSOA converges, it supplies the best sequence U(k) for the current predic-

tion horizon, denoted by V(k):

V(k) ≜ arg min
U(k)

J(U(k), X(k)) = ⟨V(k), . . . , V(H − 1)⟩ (3)

The controller’s best output, denoted by U∗(k), is the first value of this sequence, i.e.,

U∗(k) ≜ V(k). (4)

Applying Equations (3) and (4) is, in fact, the control strategy “Receding Horizon Control”.
A sequence of H control vectors, U(0), U(1), · · · , U(H − 1), will be referred to as a

“control profile” (CP). The latter will produce a state transition like in Figure 2.

Processes 2024, 12, x FOR PEER REVIEW 6 of 30 
 

 

The controller’s best output, denoted by *( )U k , is the first value of this sequence, 
i.e., 

*( ) ( )U k V k . (4)

Applying Equations (3) and (4) is, in fact, the control strategy “Receding Horizon 
Control”. 

A sequence of H control vectors, (0),  (1),   , ( 1)U U U H − , will be referred to as a 
“control profile” (CP). The latter will produce a state transition like in Figure 2. 

 
Figure 2. The state trajectory and its CP. 

Finally, the controller following the RHC strategy using predictions implemented by 
a PSO algorithm achieves the optimal CP for the given initial state and control horizon. 
The optimal CP denoted by ( )0XΩ , which represents our problem’s solution, is the con-

catenation of the optimal controls *( ),  0, , 1U k k H= − : 

( ) * **
0 (0),  (1 ), ( 1) ...,  X U U U H −Ω   (5)

Forced by this CP, the process will follow an “optimal trajectory” 0( )XΓ : 

.. *
0 ,* .0) , (1), ( )( X X X X HΓ  . (6)

A closed-loop simulation is the simulation of the controller, which includes the AP-
SOA and PM, connected to the (real) process (see Figure 1). Our study requires only the 
situation when the real process and the PM are identical. 

Remark 1. The two sequences (5) and (6) can fully characterize the process’s optimal behavior in 
the context of closed-loop simulation over the control horizon when the process and its model are 
identical. 

Supposing the convergence of the APSOA, the value 0 (0, (0))J J X=   theoretically 
equals the optimal cost function. Practically, at the end of a closed-loop simulation, the 
two values will be very close to each other, so Ω(X0) would be a quasi-optimal solution for 
the problem at hand. 

The predictor’s behavior depends on two factors: the metaheuristic algorithm (AP-
SOA) and the PM. In this work, the main objective is to capture the predictor’s behavior 
through an ML algorithm. Hence, the latter has to “learn” the optimal behavior of the 
couple (APSOA and PM). 

Remark 2. Our purpose is to capture the predictor’s behavior using an ML algorithm, that is, to 
“learn” the optimal behavior of the couple (APSOA and PM). The final objective is to replace the 
predictor with the new ML algorithm, such that the process’s state evolution and the performance 
index would be maintained. In this situation, we can state that the ML algorithm emulates the 
predictor. 

The two sequences ( ( )0XΩ  and 0 )(XΓ ) are the data results of a closed-loop simu-
lation and can be considered the “signature” data of the couple (APSOA and PM); there 

Figure 2. The state trajectory and its CP.

Finally, the controller following the RHC strategy using predictions implemented
by a PSO algorithm achieves the optimal CP for the given initial state and control hori-



Processes 2024, 12, 991 6 of 28

zon. The optimal CP denoted by Ω(X0), which represents our problem’s solution, is the
concatenation of the optimal controls U∗(k), k = 0, · · · , H − 1:

Ω(X0) ≜ ⟨U∗(0), U∗(1), . . . , U∗(H − 1)⟩ (5)

Forced by this CP, the process will follow an “optimal trajectory” Γ(X0):

Γ(X0) ≜ ⟨X0, X∗(1), . . . , X∗(H)⟩. (6)

A closed-loop simulation is the simulation of the controller, which includes the APSOA
and PM, connected to the (real) process (see Figure 1). Our study requires only the situation
when the real process and the PM are identical.

Remark 1. The two sequences (5) and (6) can fully characterize the process’s optimal behavior
in the context of closed-loop simulation over the control horizon when the process and its model
are identical.

Supposing the convergence of the APSOA, the value J0 = J(0, X(0)) theoretically
equals the optimal cost function. Practically, at the end of a closed-loop simulation, the two
values will be very close to each other, so Ω(X0) would be a quasi-optimal solution for the
problem at hand.

The predictor’s behavior depends on two factors: the metaheuristic algorithm (AP-
SOA) and the PM. In this work, the main objective is to capture the predictor’s behavior
through an ML algorithm. Hence, the latter has to “learn” the optimal behavior of the
couple (APSOA and PM).

Remark 2. Our purpose is to capture the predictor’s behavior using an ML algorithm, that is, to
“learn” the optimal behavior of the couple (APSOA and PM). The final objective is to replace the
predictor with the new ML algorithm, such that the process’s state evolution and the performance
index would be maintained. In this situation, we can state that the ML algorithm emulates
the predictor.

The two sequences (Ω(X0) and Γ(X0)) are the data results of a closed-loop simulation
and can be considered the “signature” data of the couple (APSOA and PM); there is a
correspondence between the values X∗(k) and U∗(k) signifying that “when the process is
in the state X∗(k) at the moment k, the APSOA will predict the best control value U∗(k)”.

So, the source of the data used in a potential learning process can be a closed-loop
simulation, considering the (real) process and the PM identical. Of course, the data pro-
duced by a single simulation over the entire control horizon cannot be sufficient for the
learning process.

3. Data Generation Using Closed-Loop Simulation over Control Horizon

For any OCP like the PBR problem, the designed controller must be validated by
closed-loop simulation, considering the (real) process and the PM identical. This validation
must be carried out before using the implemented controller in real time, connected to
the (real) process. Hence, we must have a simulation program that fulfils this task of
closed-loop simulating over the control horizon, with a given initial state, and considering
the process and the PM identical.

A simulation can be carried out in more realistic situations, for example, when the
process takes into consideration, besides the PM, unmodeled dynamics and noises. But we
do not need such simulations.

Remark 3. The fact that the process and the PM are identical is not a simplification to render our
study’s conclusion more favorable but is a necessity. The ML algorithm has to learn the behavior of
the couple (APSOA and PM); otherwise, it will “learn”, besides the APSOA and PM, the influence
of other perturbating factors.



Processes 2024, 12, 991 7 of 28

Figure 3 shows the closed-loop simulation program’s flowchart in the conditions
mentioned above. This program is generically called “ContrlLoop_PSO”. The function
“Predictor_PSO” returns the predicted sequence V(k), whose first element will give the
optimal control value U∗(k). Sending the latter value to the PM and integrating the process
over a sampling time, the function “ProcessStep” will determine the process’s next state,
that is, at the next moment, k + 1.

Processes 2024, 12, x FOR PEER REVIEW 8 of 30 
 

 

 
Figure 3. Closed-loop simulation using predictions based on adaptive PSO algorithm. 

When the controller designer decides to use an ML algorithm to replace the couple 
(APSOA and PM), the functions “Predictor_PSO” and “ProcessStep” are already written 
as a part of the PSO controller’s construction. This is also the case with the PBR problem; 
we have already accomplished the entire design procedure (for more details, see [11]). 

Figure 3. Closed-loop simulation using predictions based on adaptive PSO algorithm.



Processes 2024, 12, 991 8 of 28

When the controller designer decides to use an ML algorithm to replace the couple
(APSOA and PM), the functions “Predictor_PSO” and “ProcessStep” are already written as
a part of the PSO controller’s construction. This is also the case with the PBR problem; we
have already accomplished the entire design procedure (for more details, see [11]).

The reader can understand and execute the “ContrlLoop_PSO” program using the
script ControlLoop_PSO_RHC.m. Details are also given in Appendix B, concerning the
generic functions “Predictor_PSO” and “ProcessStep”.

As we already mentioned, after the closed-loop simulation, the data generated are a
couple of sequences (Ω(X0) and Γ(X0)), which can be renamed (control profile—trajectory).
To prepare the data for the ML process, we shall repeat M times (e.g., M = 200) the closed-
loop simulation and produce M different quasi-optimal couples (CP—trajectory). There are
two reasons why data couples are different:

• The PSO has a stochastic character, and the convergence process is imperfect. So, the
optimal control values are different (and so are the state vector’s values), even if the
initial state is strictly the same.

• The initial state values are not the same. A standard initial state (of the standard
batch) could be perturbed to simulate different initial conditions (the standard ones
are imprecisely achieved).

The optimal control value and the optimal states are stored in the matrices uRHC
(H × m) and state (H + 1 × n), respectively, with their structure presented in Figure 4.

Processes 2024, 12, x FOR PEER REVIEW 9 of 30 
 

 

The reader can understand and execute the “ContrlLoop_PSO” program using the 
script ControlLoop_PSO_RHC.m. Details are also given in Appendix B, concerning the 
generic functions “Predictor_PSO” and “ProcessStep”. 

As we already mentioned, after the closed-loop simulation, the data generated are a 
couple of sequences ( ( )0XΩ  and 0 )(XΓ ), which can be renamed (control profile—tra-
jectory). To prepare the data for the ML process, we shall repeat M times (e.g., M = 200) 
the closed-loop simulation and produce M different quasi-optimal couples (CP—trajec-
tory). There are two reasons why data couples are different: 
• The PSO has a stochastic character, and the convergence process is imperfect. So, the 

optimal control values are different (and so are the state vector’s values), even if the 
initial state is strictly the same. 

• The initial state values are not the same. A standard initial state (of the standard 
batch) could be perturbed to simulate different initial conditions (the standard ones 
are imprecisely achieved). 
The optimal control value and the optimal states are stored in the matrices uRHC (H 

× m) and state (H + 1 × n), respectively, with their structure presented in Figure 4. 

state ( 1H n+ × )  uRHC ( H m× ) 

( )(0) TX   ( )*(0)
T

U  

( )*(1)
T

X   ( )*(1)
T

U  

    

( )*( 1)
T

X H −   ( )*( 1)
T

U H −  

( )*( )
T

X H    

Figure 4. The matrices that store the quasi-op-timal trajectory and its CP. 

Hence, the optimal CP and trajectory are described by the matrices uRHC and state, 
respectively, which are the images of ( )0XΩ  and 0 )(XΓ  sequences (see (5) and (6)). For 
each of the M simulations, the two matrices are saved in the cell array STATE and the 
matrix UstarRHC (M × H), as suggested in Figure A1 (Appendix B) for our case study. 

The script LOOP_M_ControlLoop_PSO.m collects the data from M executions of the 
closed-loop simulation. The data structures presented in Figure A1 are created and 
loaded. A concrete example of the data collected in the first simulation is given in Appen-
dix B. 

4. The ML Controller: The Design Procedure and the General Algorithm 
The M simulations can be collectively presented in Figure 5, where the state variables 

and control output are regrouped by sampling periods. 

Figure 4. The matrices that store the quasi-op-timal trajectory and its CP.

Hence, the optimal CP and trajectory are described by the matrices uRHC and state,
respectively, which are the images of Ω(X0) and Γ(X0) sequences (see (5) and (6)). For each
of the M simulations, the two matrices are saved in the cell array STATE and the matrix
UstarRHC (M × H), as suggested in Figure A1 (Appendix B) for our case study.

The script LOOP_M_ControlLoop_PSO.m collects the data from M executions of the
closed-loop simulation. The data structures presented in Figure A1 are created and loaded.
A concrete example of the data collected in the first simulation is given in Appendix B.

4. The ML Controller: The Design Procedure and the General Algorithm

The M simulations can be collectively presented in Figure 5, where the state variables
and control output are regrouped by sampling periods.

At each step k, 0 ≤ k ≤ H − 1, of the control horizon, the controller predicts the
optimal control output relying on the couple (APSOA and PM). The state vectors considered
at the same step have some common characteristics:

• The same PSO algorithm generates the M state inside a group.
• The M simulations work with the same PM.
• Each state Xi

∗(k), 1 ≤ i ≤ M, is transferred as the initial state to the predictor.
• The prediction horizon has H − k sampling periods.



Processes 2024, 12, 991 9 of 28Processes 2024, 12, x FOR PEER REVIEW 10 of 30 
 

 

 
Figure 5. The quasi-optimal trajectories produced by M executions of “ControlLoop_PSO.”. 

At each step ,  0 1k k H≤ ≤ − , of the control horizon, the controller predicts the opti-
mal control output relying on the couple (APSOA and PM). The state vectors considered 
at the same step have some common characteristics: 
• The same PSO algorithm generates the M state inside a group. 
• The M simulations work with the same PM. 
• Each state * ( ),  1iX k i M≤ ≤ , is transferred as the initial state to the predictor. 
• The prediction horizon has H k−  sampling periods. 

The APSOA calculates the prediction ( )V k , and the controller extracts only the op-
timal control values * ( ),  1iU k i M≤ ≤ . 

The simulation results for step k can be organized as a data set, and a table can be 
constructed, as shown below. 

We have considered, as usual, that the state and control vector are column vectors. In 
our case study, the state vector (n = 2) is generated like a line vector to avoid transposition. 

When M has a big enough value, the data set from Table 1 represents to some extent 
the ability of the couple (APSOA and PM) to predict optimal control values at step k. Our 
desideratum is to generalize this ability to predict the optimal control when the process 
accesses states other than those from Table 1; this can be achieved using a machine learn-
ing algorithm. 

Table 1. Data set for step k. 

XT UT 

( )*
1 ( )

T
X k  ( )*

1 ( )
T

U k  
…… …… 

( )*( )
T

MX k  ( )*( )
T

MU k  

Remark 4. The four characteristics enumerated before are the reasons making us adopt the hypoth-
esis that the examples (data points) of Table 1 belong to the same data-generating process; that is, 
they are independently identically distributed. 

With each group of states presented in Figure 5, equivalent to a table like Table 1, a 
regression function ( )kf X  can be associated: 

: n m
kf →R R , 0,  1, ,  1k H= − . 

Figure 5. The quasi-optimal trajectories produced by M executions of “ControlLoop_PSO.”.

The APSOA calculates the prediction V(k), and the controller extracts only the optimal
control values Ui

∗(k), 1 ≤ i ≤ M.
The simulation results for step k can be organized as a data set, and a table can be

constructed, as shown below.
We have considered, as usual, that the state and control vector are column vectors. In

our case study, the state vector (n = 2) is generated like a line vector to avoid transposition.
When M has a big enough value, the data set from Table 1 represents to some extent

the ability of the couple (APSOA and PM) to predict optimal control values at step k.
Our desideratum is to generalize this ability to predict the optimal control when the
process accesses states other than those from Table 1; this can be achieved using a machine
learning algorithm.

Table 1. Data set for step k.

XT UT

(X1
∗(k))T (U1

∗(k))T

. . . . . . . . . . . .
(XM

∗(k))T (UM
∗(k))T

Remark 4. The four characteristics enumerated before are the reasons making us adopt the hypothesis
that the examples (data points) of Table 1 belong to the same data-generating process; that is, they
are independently identically distributed.

With each group of states presented in Figure 5, equivalent to a table like Table 1, a
regression function fk(X) can be associated:

fk : Rn → Rm , k = 0, 1, . . . , H − 1.

When these functions exist, they can be used successively within the controller to
replace the predictor at each control step.

Remark 5. The regression function fk models how the APSOA determines the optimal prediction
at step k. The entire set of functions Φ = { fk|k = 0, 1, . . . , H − 1} is the couple (APSOA–PM)
machine learning model. The behavior of the PSO algorithm, which, in turn, depends on the PM, is
captured by the set of functions Φ.



Processes 2024, 12, 991 10 of 28

To be systematic, at this point of our presentation, we propose a design procedure for
the ML controller that the interested reader could use in their implementation.

Design Procedure

1. Write the “ControlLoop_PSO” program simulating the closed-loop functioning of the
controller based on the PSO algorithm over the control horizon. The output data are
the quasi-optimal trajectory and its associated control profile (Ω(X0) and Γ(X0)).

2. Repeat M times the “ControlLoop_PSO” program’s execution to produce the se-
quences (Ω(X0) and Γ(X0)) and save them in data structures similar to those in
Figure A1 (Appendix B).

3. For each sampling period k, derive data sets similar to those in Table 1 from the data
saved in step 2.

4. Determine the set of functions Φ using the data sets derived in step 3 and an ML
model; a function fk is associated with each sampling period k.

5. Implement the new controller based on the ML model, i.e., the set of functions Φ
determined in step 4.

6. Write the “CONTROL_loop” program to simulate the closed-loop functioning equipped
with the ML controller. The proposed method’s feasibility, performance index, solu-
tion quality, and execution time will be evaluated.

Remark 6. The entire design procedure of the ML controller needs only simulations and offline
program executions. The ML models for each sampling period are determined offline ahead of using
the ML controller in real time.

Steps 1–2 are already covered by the details given in the anterior section.
Step 3 Implementation
This step yields the data sets that the ML model would use for training and testing.

Remark 7. The controller’s optimal behavior is specific to each sampling period, whose predic-
tion horizon is specific to H − k. So, optimal behavioral learning will be performed for each
sampling period.

For each k, k = 0, · · · , H − 1, we construct a matrix SOCSK (M × (n + m)) (SOCSK
stands for “States and Optimal Control values concerning Step K”), which is Table 1’s
image. Line i, 1 ≤ i ≤ M, is devoted to experience i as follows:

SOCSKi ←
[
(Xi
∗(k))T(Ui

∗(k))T
]
.

Using the data structures proposed before, the following holds:

SOCSKi ← [STATEi(k, 1 : n) UstarRHC(i, k)].

STATEi is the ith element of the STATE cell array. In the PBR case (n = 2; m = 1), the
data set for the current step will be as follows:

SOCSK =


x1(k)

1 x2(k)
1 u(k)1

. . . . . . . . .
x1(k)

i x2(k)
i u(k)i

. . . . . . . . .
x1(k)

M x2(k)
M u(k)M

.

A fragment of the SOCSK matrix produced by a MATLAB script is presented in
Appendix C for step k = 1. Only when k = 0 does the value of x2(0) equal 0 for any
observation.



Processes 2024, 12, 991 11 of 28

Owing to Remark 7, step 3 should establish for each k the data sets for training and
testing; these sets are stored in the cell arrays DATAKTest and DATAKTrain. Table 2 presents
the pseudocode of the script preparing all of the sets needed by the learning algorithm.

Table 2. The pseudocode preparing the data sets for the ML models’ training and testing.

/*This pseudocode describes the construction of the data sets needed by the ML models at the
level of each sampling period*/
Inputs: cell array STATE, matrix UstarRHC;
Outputs: matrix SOCSK, table datak, cell arrays DATAKTest, DATAKTrain

1. #Load the file containing the data structure STATE and UstarRHC (Figure A1)

2. k← 0

3. while k≤H−1
4. for i = 1, ···, M

5. SOCSKi←[STATEi(k,1:n) UstarRHC(i,k)]

6. end

7. #Convert the matrix SOCSK into the table datak.

8. datakTest← lines #1—60 of datak

9. datakTrain← lines #61—120 of datak

10. DATAKTest{k }← datakTest

11. DATAKTrain{k }← datakTrain

12. k← k + 1

13. end

14. #Save the cell array DATAKTrain and DATAKTest in a file.

Step 4’s implementation will determine the set of ML models Φ = { fk|k = 0, 1, . . . , H− 1}
and will be addressed in the next section.

Step 5 aims to implement the ML controller. Once the set of regression models is
determined in step 4, the controller can be written following the algorithm in Table 3.

Table 3. The structure of the ML controller’s algorithm.

The General Algorithm of the ML Controller

/*The controller program is called at each sampling period, k */

1 Get the current value of the state vector, X(k); /* Initialize k and X(k)*/

2 Predict the optimal control value U ∗ (k) using the regression model fk(X(k))
/* whatever is the regression model’s type */

3 Send the optimal control value U ∗ (k) towards the process.

4 Wait for the next sampling period.

Notice that the cumulative effect of calling the controller at each sampling period is to
achieve the following sequence of predictions using the regression models and the current
states that the process accesses:

U1
∗ = f0(X0); U2

∗ = f1(X1); . . . UH−1
∗ = (XH−1).

In the sequel, the controllers based on ML models will be called LR controller (from
linear regression) or RNN controller (from Regression Neural Network).



Processes 2024, 12, 991 12 of 28

5. Linear Regression Controller
5.1. General Algorithm

The first approach that the authors considered was to use multiple linear regression for
the function set Φ. Such a model contains an intercept, linear terms for each state variable,
squared terms, products of features (interactions), etc. Hence, as functions of state variables,
the regression functions could be nonlinear.

For our example, the stepwise regression strategy [30], which adds or removes terms
starting from a constant model, was also applied. We consider in this presentation only
models with an intercept, linear terms, and an interaction:

fk(X(k)) = Ck
0 + Ck

1 · x1(k) + Ck
2 · x2(k) + Ck

12 · x1(k) · x2(k). (7)

Remark 8. Our goal is not to find the best sequence of linear regression models but to validate
our approach, i.e., the ML model can successfully replace the couple (APSOA and PM) inside a
new controller.

As we shall see, the model (7) is largely sufficient for our goal.
Table 4 presents the construction of the H models representing linear regressions in a

general manner, that is, not only for our example. This pseudocode describes the linear
models’ training and testing using the sets generated in step 3.

Table 4. The pseudocode of the linear regressions’ construction.

Construction of the linear regression models
Input: cell arrays DATAKTrain, DATAKTest
Output: matrix KOEF (H × (n + 1)), /* the regression coefficients for each

sampling period */
cell array MODELSW {H × 1} /* cell array storing objects that are the

linear models fk */

1 for k = 0. . .H-1.

2 datakTrain← DATAKTrain{k};
/* Recover the data set for training */

3 datakTest← DATAKTest{k};
/* Recover the data set for testing */

4 mdlsw←fitting_to_data(datakTrain);
/* Training the linear regression */

5 #display mdlsw;
/* mdlsw is the linear regression model */

6 coef(:)←get_the_coefficients(mdl)

7 KOEF(k,:) ←coef(:);
/* The kth line of KOEF receives the coefficients */

8 MODELSWP{k,1}←mdlsw;

9 uPred←fpredict(mdlsw, datakTest)
/* The vector uPred stores the predicted control values */

10 # Make the comparison between uPred and the real control values;

11 end.

The script in Table 4 uses the generic functions fitting_to_data, get_the_coefficients, and
fpredict, which make actions suggested by the comments.

The implementation of this algorithm is included in the script GENERATE_ModelSW;
some details are given in Appendix D.



Processes 2024, 12, 991 13 of 28

5.2. Simulation Results

Although we have determined the usual linear regressions that contain the two linear
terms (for x1 and x2) and an intercept, we present hereafter the stepwise version as it
is implemented in the MATLAB system. Table 5 displays a listing’s fragment obtained
during the script GENERATE_ModelSW’s execution; this one presents the model for a single
sampling period.

Table 5. The actions and results of the stepwise linear regression for the 14th sampling period.

&&&&kp1 = 14

1. Adding x1, FStat = 12.7755, p Value = 0.000484491

Linear regression model:
u ~ 1 + x1

Estimated Coefficients:
Estimate SE tStat p Value

(Intercept) −985.91 437.95 −2.2512 0.025952
x1 2147.7 600.87 3.5743 0.00048449

Number of observations: 140; Error degrees of freedom: 138
Root mean square error: 117
R-squared: 0.0847; Adjusted R-squared: 0.0781
F-statistic vs. constant model: 12.8; p-value = 0.000484

The procedure begins with only an intercept, and after that, it tries and succeeds in
adding the term corresponding to x1. Statistical parameters do not allow us to add another
term. So, the prediction (control value) will be f13([x1, x2]) = −985.91 + 2147.7 · x1.

We notice that the training time for all 120 linear regressions is 6.166654 s.
Following the algorithm presented before, the resulting coefficients of the H regression

are given in Table 6.

Table 6. The coefficients of the H linear regressions determined with a stepwise strategy.

k C0 C1 C2

0 564.18 0
1 585.53 0 0
2 −20.368 1441.5 0
: : : :
9 591.85 0 0
10 119.74 0 620.84
11 591.48 0 0
12 590.95 0 0
13 −985.91 2147.7 0
14 −328.16 1205.6 0
: : : :

111 4055.1 −1476.6 0
112 5482.6 −2067.6 0
113 597.8 0 0
114 3300.2 0 −308.67
115 587.66 0 0
116 6446.3 −2451.2 0
117 7144 −2732.8 0
118 4410.7 0 −419.32
119 565.2 0 0



Processes 2024, 12, 991 14 of 28

There are sampling periods for which the regression model has only the intercept C0;
this situation will be discussed in Section 7. These coefficients will be used directly by the
controller as a control law.

The comparison achieved in lines #9-10 of the construction algorithm is summarized
in Figure 6.

Processes 2024, 12, x FOR PEER REVIEW 15 of 30 
 

 

13 −985.91 2147.7 0 
14 −328.16 1205.6 0 
:      :      :      : 

111  4055.1 −1476.6 0 
112  5482.6 −2067.6 0 
113   597.8 0 0 
114  3300.2 0 −308.67 
115  587.66 0 0 
116  6446.3 −2451.2 0 
117  7144 −2732.8 0 
118  4410.7 0 −419.32 
119   565.2 0 0 

There are sampling periods for which the regression model has only the intercept C0; 
this situation will be discussed in Section 7. These coefficients will be used directly by the 
controller as a control law. 

The comparison achieved in lines #9-10 of the construction algorithm is summarized 
in Figure 6. 

 
Figure 6. Comparison: predicted versus real control values for specific sampling period. 

We have to mention that the predicted values were calculated directly using the for-
mulas, not using the generic function fpredict. The table datakTest supplied the 60 ex-
amples, states—control value, for testing the linear regressions. 

The quality of the predictions will be evaluated at the time of using the regression 
models within the controller, that is, inside the closed-loop simulation. The ultimate eval-
uation of predictions would be the optimality of the process evolution. 

To prepare this evaluation, we need the simulation program for the control loop 
working with the LR controller. The flowchart in Figure 7 describes this program, CON-
TROL_loopLINREG, which is step #6 of the design procedure. 

Figure 6. Comparison: predicted versus real control values for specific sampling period.

We have to mention that the predicted values were calculated directly using the formu-
las, not using the generic function fpredict. The table datakTest supplied the 60 examples,
states—control value, for testing the linear regressions.

The quality of the predictions will be evaluated at the time of using the regression
models within the controller, that is, inside the closed-loop simulation. The ultimate
evaluation of predictions would be the optimality of the process evolution.

To prepare this evaluation, we need the simulation program for the control loop
working with the LR controller. The flowchart in Figure 7 describes this program, CON-
TROL_loopLINREG, which is step #6 of the design procedure.

Although there are similarities with Figure 3, there actually are big differences
in execution:

• The state variable has two elements.
• The coefficients’ matrix must be loaded from an existing file.
• The gray instructions make the predictions, avoiding any numerical integration.
• The green instruction updates the next state, which has two components. The amount

of light irradiated in the current sampling period is added to x2(k).

Only the orange column of the flowchart has big similarities because it is about the
simulation results needed to depict the process evolution and the performance index.

The script CONTROL_loopLINREG.m included in the attached folder implements the
presented algorithm.

The closed-loop simulation program produces a listing, a fragment of which is pre-
sented in Figure A3 (Appendix D), and two drawings reproduced in Section 7.

We notice the very short time period used to control the process over the entire
control horizon, 0.6401 s (the simulation processor is Intel(R) Core(TM) i7-6700HQ CPU
@ 2.60 GHz).



Processes 2024, 12, 991 15 of 28
Processes 2024, 12, x FOR PEER REVIEW 16 of 30 
 

 

 
Figure 7. The simulation program for the ML controller based on linear regression models. 

Although there are similarities with Figure 3, there actually are big differences in ex-
ecution: 
• The state variable has two elements. 
• The coefficients’ matrix must be loaded from an existing file. 
• The gray instructions make the predictions, avoiding any numerical integration. 
• The green instruction updates the next state, which has two components. The amount 

of light irradiated in the current sampling period is added to x2(k). 
Only the orange column of the flowchart has big similarities because it is about the 

simulation results needed to depict the process evolution and the performance index. 

Figure 7. The simulation program for the ML controller based on linear regression models.

6. Controller Based on Regression Neural Networks
6.1. General Approach

Because the linear regression could seem much too simple, we have studied other
types of models (trees, support vector machines, and Gaussian processes) trying to improve
capturing the optimality of the couple (APSOA and PM), the final target being that the
designed ML controller would better approach the optimal behavior. The obtained models
have performances weaker than those of the LR and RNN models.

Better predictions than those obtained with other types of ML models are produced
by Regression Neural Networks (RNNs), of course, with a possible penalty concerning the
model’s size. The decision to choose between these models and the linear regressions in
implementing the controller will be analyzed in Section 7.



Processes 2024, 12, 991 16 of 28

As in the case of linear regressions, the RNN models must be obtained offline, and
their construction must be organized in a loop because the number of sampling periods
could be large, like in our case. The pseudocode of the RNNs’ construction is presented in
Table 7.

Table 7. The pseudocode of the regression NNs’ construction.

Construction of the RNN models
Input: cell arrays DATAKTrain, DATAKTest
Output: cell array MODELNN {H × 1}
/* cell array storing objects that are RNN */

1 for k = 0. . .H-1.

2 datakTrain← DATAKTrain{k, 1};
/* Recover the data set for training */

3 datakTest← DATAKTest{k, 1};
/* Recover the data set for testing */

4 mdlNN←trainRegNN(datakTrain); /* Training the RNN */

5 MODELNN{k,1}←mdlNN
/* Store the object mdlNN into the cell array MODELNN */

6 predictionNN←mdlNN.predictFcn(datakTest)
/* Make predictions and store them into the table predictionNN */

7 # Comparison between predictionNN and datakTest

8 end

In our case study, for k = 0, i.e., the first sampling period, we have a special situation
because x2 ≡ 0 (the light amount equals 0 through initialization) for all examples. Hence,
this variable cannot be a prediction variable. For this situation, the tables datakTrain and
datakTest have different structures, and the RNN model has a single predictor variable x1.
To maintain the general structure of the algorithm in Table 7, we did not treat the first
sampling period distinctly.

Most data structures were presented before, except for the cell array MODELNN that
collects the model for each sampling period, called “mdlNN”. The function trainRegNN
trains the current RNN using its specific data set [32].

In line #6, the predictions made by the method “mdlNN.predictFcn” are stored in the lo-
cal table predictionNN, which can be compared to datakTest or saved for further utilization.

The implementation of this algorithm is achieved by the script GENERATE_ModelNN;
some details are given in Appendix E.

6.2. Simulation Results

The execution of the script GENERATE_ModelNN gives us an indication of the RNNs’
construction complexity (training and testing). A fragment of its listing is given in Table 8.

The RMSEValid is the root mean square error (RMSE) between the predictions and
datakTest vectors. The vrmse value is the RMSE calculated in the training process (the
phase of validation). The program displays the k value, the prediction uNNn, and the control
value (valreal) for the states included in record #10 of the data set (as an example).

We notice that all 120 RNNs are trained in 233 s (offline, as we mentioned before).
The comparison mentioned in line #7 of the algorithm can be achieved by calculating

the root mean square error (RMSE) between the predicted and observed values. For graphi-
cal analysis, Figure 8 plots the predicted values yielded by the RNN model versus the real
control values from the datakTest table.



Processes 2024, 12, 991 17 of 28

Table 8. The execution of RNN training (a fragment of the listing).

>> GENERATE_ModelNN

&&& vrmse = 108.4187 RMSEValid = 111.9601
kplus1 = 1 uNN = 564.1789 valreal = 487.0276

&&& vrmse = 104.5341 RMSEValid = 130.6362
kplus1 = 2 uNN = 574.4657 valreal = 672.5530

&&& vrmse = 106.0061 RMSEValid = 127.3596
kplus1 = 3 uNN = 559.1601 valreal = 676.6160
----------------------
&&& vrmse = 112.0696 RMSEValid = 91.4825
kplus1 = 119 uNN = 588.0487 valreal = 634.9497

&&& vrmse=130.1694 RMSEValid = 125.2698
kplus1 = 120 uNN = 576.2782 valreal = 714.3906

Elapsed time is 232.829571 s.

Processes 2024, 12, x FOR PEER REVIEW 19 of 30 
 

 

 
Figure 8. The predicted values yielded by the RNN model versus the real control values for a specific 
sampling period. 

As in Section 5.2, to evaluate the controller’s performances, we need the simulation 
program for the closed-loop functioning with the RNN models. Its algorithm’s flowchart 
would be very similar to that of Figure 7, except for two instructions. That is why we do 
not redraw the flowchart, as we are content with indicating only the changes. 

The gray instruction 
                           uML(k) ← C11 + X0(1)·C12 + X0(2)·C13 

will be replaced by this block 

 
This block means that the neural network model mdlNN is selected as the current 

RNN from the cell array of objects MODELNN. Its method predictFcn will calculate the 
predicted control value as a function of the current state. 

The second change is inside the block “Initializations”. Instead of loading the coeffi-
cients’ table, C, it will load the cell array MODELNN; the latter is already saved in a file 
created by the script constructing the RNN models (see GENERATE_ModelNN.m). 

The script CONTROL_loopNN.m included in the attached folder implements the 
above algorithm. 

The simulation program CONTROL_loopNN produces a listing, a fragment of which 
is presented in Figure A4 (Appendix E), and two drawings, presented in Section 7. 

We notice, as in the case of the linear regression controller, the very short time period 
used to control the process over the entire control horizon, 1.35 s. 

7. Discussion 
7.1. Comparison between PSO and ML Predictors 

In this section, we have to answer the following questions: 

mdlNN ← MODELNN{k} 
uML(k) ← mdlNN.predictFcn(X0) 

Figure 8. The predicted values yielded by the RNN model versus the real control values for a specific
sampling period.

As in Section 5.2, to evaluate the controller’s performances, we need the simulation
program for the closed-loop functioning with the RNN models. Its algorithm’s flowchart
would be very similar to that of Figure 7, except for two instructions. That is why we do
not redraw the flowchart, as we are content with indicating only the changes.

The gray instruction

Processes 2024, 12, x FOR PEER REVIEW 19 of 30 

Figure 8. The predicted values yielded by the RNN model versus the real control values for a specific 
sampling period. 

As in Section 5.2, to evaluate the controller’s performances, we need the simulation 
program for the closed-loop functioning with the RNN models. Its algorithm’s flowchart 
would be very similar to that of Figure 7, except for two instructions. That is why we do 
not redraw the flowchart, as we are content with indicating only the changes. 

 uML(k) ← C11 + X0(1)·C12 + X0(2)·C13 
 

will be replaced by this block 

This block means that the neural network model mdlNN is selected as the current 
RNN from the cell array of objects MODELNN. Its method predictFcn will calculate the 
predicted control value as a function of the current state. 

The second change is inside the block “Initializations”. Instead of loading the coeffi-
cients’ table, C, it will load the cell array MODELNN; the latter is already saved in a file 
created by the script constructing the RNN models (see GENERATE_ModelNN.m). 

The script CONTROL_loopNN.m included in the attached folder implements the 
above algorithm. 

The simulation program CONTROL_loopNN produces a listing, a fragment of which 
is presented in Figure A4 (Appendix E), and two drawings, presented in Section 7. 

We notice, as in the case of the linear regression controller, the very short time period 
used to control the process over the entire control horizon, 1.35 s. 

7. Discussion
7.1. Comparison between PSO and ML Predictors

In this section, we have to answer the following questions: 

mdlNN ← MODELNN{k} 
uML(k) ← mdlNN.predictFcn(X0) 



Processes 2024, 12, 991 18 of 28

This block means that the neural network model mdlNN is selected as the current RNN
from the cell array of objects MODELNN. Its method predictFcn will calculate the predicted
control value as a function of the current state.

The second change is inside the block “Initializations”. Instead of loading the coeffi-
cients’ table, C, it will load the cell array MODELNN; the latter is already saved in a file created
by the script constructing the RNN models (see GENERATE_ModelNN.m).

The script CONTROL_loopNN.m included in the attached folder implements the
above algorithm.

The simulation program CONTROL_loopNN produces a listing, a fragment of which is
presented in Figure A4 (Appendix E), and two drawings, presented in Section 7.

We notice, as in the case of the linear regression controller, the very short time period
used to control the process over the entire control horizon, 1.35 s.

7. Discussion
7.1. Comparison between PSO and ML Predictors

In this section, we have to answer the following questions:

• Did the ML predictors succeed in “learning” the behavior of the couple (APSOA and
PM), such that the process’s evolution would be quasi-optimal?

• Did the controller’s execution time decrease significantly?

As we mentioned, we have already solved the PBR problem using RHC and a pre-
dictor based on PSO. For the sake of simplicity, we shall refer to its controller as the PSO
Controller. Using the ControlLoop_PSO script, the closed-loop simulation produces the
typical evolution depicted in Figure 9. This simulation is one among the M = 200 evolutions
that contributed to our big data set with CPs and trajectories. The final lines of the simulation’s
listing summarize its performances, as given in Table 9.

Processes 2024, 12, x FOR PEER REVIEW 20 of 30 
 

 

• Did the ML predictors succeed in “learning” the behavior of the couple (APSOA and 
PM), such that the process’s evolution would be quasi-optimal? 

• Did the controller’s execution time decrease significantly? 
As we mentioned, we have already solved the PBR problem using RHC and a pre-

dictor based on PSO. For the sake of simplicity, we shall refer to its controller as the PSO 
Controller. Using the ControlLoop_PSO script, the closed-loop simulation produces the 
typical evolution depicted in Figure 9. This simulation is one among the M = 200 evolutions 
that contributed to our big data set with CPs and trajectories. The final lines of the simulation’s 
listing summarize its performances, as given in Table 9. 

Table 9. Execution of closed-loop simulation program (ControlLoop_PSO). 

>>ControlLoop_PSO_RHC 
x00 = 0.3660 
Yield mass = 3.0000 
Light = 9.2474 
Perf index = 9.2474 
Elapsed time is 447.281879 s. 

 

  
(a) (b) 

Figure 9. Closed-loop evolution with the PSO controller. (a) The control output values over the con-
trol horizon; (b) the process and the biomass evolution. 

The simulation programs CONTROL_loopLINREG and CONTROL_loopNN produce, 
besides the data in Figures A3 and A4, the evolutions depicted in Figures 10 and 11, re-
spectively. 

Remark 9. The state evolutions ( 1x  and 2x ) and the evolution of the biomass, which can be con-
sidered the output of the process, are practically identical. Hence, both ML controllers emulate the 
PSO controller. 

The LR controller and the RNN controller are facing situations when the current state 
is totally new (states unobserved in the training or testing data sets). In this situation, the 
generalization ability of the ML model is exploited but also verified. That is why the sim-
ulation programs are adequate tests for the predictions’ testing. 

Figure 9. Closed-loop evolution with the PSO controller. (a) The control output values over the
control horizon; (b) the process and the biomass evolution.

The simulation programs CONTROL_loopLINREG and CONTROL_loopNN produce, be-
sides the data in Figures A3 and A4, the evolutions depicted in Figures 10 and 11, respectively.



Processes 2024, 12, 991 19 of 28

Table 9. Execution of closed-loop simulation program (ControlLoop_PSO).

>>ControlLoop_PSO_RHC

x00 = 0.3660

Yield mass = 3.0000

Light = 9.2474

Perf index = 9.2474

Elapsed time is 447.281879 s.

Processes 2024, 12, x FOR PEER REVIEW 21 of 30 
 

 

Remark 10. Using the controller inside a closed-loop simulation program over the control horizon 
will be a test in which the predictor experiences new process states unobserved in the training and 
testing phase of the ML model’s construction. 

  
(a) (b) 

Figure 10. Closed-loop evolution with the linear regression controller. (a) The control output values 
over the control horizon; (b) the process and the biomass evolution. The mass m0 labels the dotted 
line, the final value of the green curve.  

  
(a) (b) 

Figure 11. Closed-loop evolution with the Regression Neural Network controller. (a) The control 
output values over the control horizon; (b) the process and the biomass evolution. The mass m0 
labels the dotted line, the final value of the green curve. 

The fact that Figures 9a, 10a and 11a, describing the control value’s evolution, are 
very different has no relevance to the matter at hand; the following aspects uphold this: 
• The similarity at this level would imply the same sequences of states, but we just 

stated that the ML controllers could experience new unobserved states. So, the three 

Figure 10. Closed-loop evolution with the linear regression controller. (a) The control output values
over the control horizon; (b) the process and the biomass evolution. The mass m0 labels the dotted
line, the final value of the green curve.

Processes 2024, 12, x FOR PEER REVIEW 21 of 30 
 

 

Remark 10. Using the controller inside a closed-loop simulation program over the control horizon 
will be a test in which the predictor experiences new process states unobserved in the training and 
testing phase of the ML model’s construction. 

  
(a) (b) 

Figure 10. Closed-loop evolution with the linear regression controller. (a) The control output values 
over the control horizon; (b) the process and the biomass evolution. The mass m0 labels the dotted 
line, the final value of the green curve.  

  
(a) (b) 

Figure 11. Closed-loop evolution with the Regression Neural Network controller. (a) The control 
output values over the control horizon; (b) the process and the biomass evolution. The mass m0 
labels the dotted line, the final value of the green curve. 

The fact that Figures 9a, 10a and 11a, describing the control value’s evolution, are 
very different has no relevance to the matter at hand; the following aspects uphold this: 
• The similarity at this level would imply the same sequences of states, but we just 

stated that the ML controllers could experience new unobserved states. So, the three 

Figure 11. Closed-loop evolution with the Regression Neural Network controller. (a) The control
output values over the control horizon; (b) the process and the biomass evolution. The mass m0

labels the dotted line, the final value of the green curve.



Processes 2024, 12, 991 20 of 28

Remark 9. The state evolutions (x1 and x2) and the evolution of the biomass, which can be
considered the output of the process, are practically identical. Hence, both ML controllers emulate
the PSO controller.

The LR controller and the RNN controller are facing situations when the current state
is totally new (states unobserved in the training or testing data sets). In this situation,
the generalization ability of the ML model is exploited but also verified. That is why the
simulation programs are adequate tests for the predictions’ testing.

Remark 10. Using the controller inside a closed-loop simulation program over the control horizon
will be a test in which the predictor experiences new process states unobserved in the training and
testing phase of the ML model’s construction.

The fact that Figures 9a, 10a and 11a, describing the control value’s evolution, are very
different has no relevance to the matter at hand; the following aspects uphold this:

• The similarity at this level would imply the same sequences of states, but we just
stated that the ML controllers could experience new unobserved states. So, the three
processes do not pass through the same set of states (the sets of accessible states
are different).

• The learning is made at the level of each sampling period and the model “learns”
couples (state; control value), not globally, but at the control profile level; our method
is not based on learning CPs. On the other hand, the PSO predictor is very “noisy”
due to its stochastic character and produces outliers among the 200 control values
from time to time.

To make a quantitative comparison among the three controllers, Table 10 displays
some pieces of information from Figures A3 and A4, and Table 9.

Table 10. Quantitative comparison among the three controllers.

PSO Controller LR Controller RNN Controller

x00 0.360 0.360 0.360

Yield mass 3.0000 3.0282 3.0249

Light 9.2474 9.3166 9.3115

Perf index 9.2474 9.5981 9.5604
Control time [s] 447.28 0.64 1.35
Training time [s] - 5.4 232.83

Model size - 3 kB 17 kB

Root mean square error
(RMSE for k = 10) - 113.73 116.63

The first four lines of Table 10 are evidence that the three controllers can be considered
equally performant, although the ML controllers have slightly better parameters. However,
the time devoted to controlling the process over the control horizon (all of the H sampling
period) has values much inferior to that of the PSO controller (hundreds of times smaller).
This analysis and Remark 9 allow us to state the following conclusions:

• The two ML controllers have predictors that have learned the behavior of the cou-
ple (APSOA and PM), such that in closed-loop functioning, the process evolves
almost identically.

• The resulting controllers have execution times hundreds of times smaller than that of the
PSO Controller.



Processes 2024, 12, 991 21 of 28

7.2. Comparison between the LR and RNN Controllers

In Table 10, all of the parameters in the second column are superior to those in the third
column. The differences are not relevant for some of them, but the control time, training
time, and model size make the LR controller preferable to the RNN controller. However,
we have trained all its RNNs using hyperparameter optimization.

The usual comparison between the predicted and real (observed) values is illustrated
in Figures 6 and 8 for the LR and RNN predictors, respectively. This comparison is made
for k = 10 (as an example) and its testing table datakTest. For the other values of k, the
situation is the same.

At first sight, both predictors seem to be similar, but the values of RMSE from Table 10
show that the LR predictor is slightly better than the RNN predictor. This remark goes in
the same direction as the superiority of the LR controller. However, because the tatakTest
has 60 data points, we can consider the difference between RMSEs irrelevant and that they
are similar from an accuracy point of view.

Considering Remark 6, the time to train offline 120 RNNs (for the RNN controller) of
4 min is absolutely acceptable. So, even this controller can be considered a good solution
for the PBR problem or another OCP.

For the reader, who is a newcomer equally in the fields of control systems, computa-
tional intelligence, and machine learning, we must compare the role of the PSO predictor
versus the role of the ML predictor when solving an OCP.

• The ML predictor replaces the PSO predictor only in execution when the controller achieves
the control action. So, the controller’s execution time is hundreds of times smaller
compared to initially. That was our desideratum.

• When we solve a new OCP, sometimes we need a metaheuristic (PSO, EA, etc.) that
searches for the optimal solution inside of a control structure. If the controller’s
execution time is not acceptable, we can use the approach presented in this paper
to create an ML controller. However, initially, we need the MA to search for the
optimal solution.

8. Conclusions

In this paper, we have proposed two ML controllers (LR controller and RNN controller),
including the linear regression and Regression Neural Network predictors, that can replace
the controller using a PSO algorithm; the optimal control structure works with an internal
process model.

The main conclusions are given as follows:

• The machine learning models succeed in “learning” the quasi-optimal behavior of
the couple (PSO and PM) using data capturing the PSO predictor’s behavior. The
training data are the optimal control profiles and trajectories recorded during M offline
simulations of the closed-loop over the control horizon.

• The current paper proposes algorithms for collecting data and aggregating data sets
for the learning process. The learning process is split according to the level of each
sampling period so that a predictor model is trained for each one. The multiple linear
regression and the Regression Neural Networks are considered the predicting models.

• For each case, we propose algorithms for constructing the set of ML models and the
controller (LR or RNN controller). Algorithms for the closed-loop simulations using
the two controllers are also proposed; they allow us to compare the process evolutions
involved by the three controllers, the PSO, LR, and RNN controllers.

• The final simulations show that the new controllers preserve the quasi-optimality of the
process evolution. In the same conditions, the process evolutions are almost identical.

• An advantage of our approach refers to data collection, data set preparation for the
training process, and the construction of ML models; all of these activities need only
simulations (using the PSO controller) and offline program executions (Remark 6).
The ML models for each sampling period are determined offline ahead of using the
ML controller in real time.



Processes 2024, 12, 991 22 of 28

• We emphasize that during the final closed-loop simulations, the ML controller encounters new
process states unobserved in the training and testing of its predictor (Remark 10). Owing to
its generalization ability, the controller makes accurate predictions of the control value
sent to the process.

The PSO predictor first searches for the optimal control value, following its optimiza-
tion mechanism using particles and the PM, before predicting it. This search sometimes
means a big computational effort and a large controller execution time. The ML controller
(LR or RNN) predicts using an already-known regression function, which can emulate the
PSO predictor. In other words, the ML predictor replaces the PSO predictor only in execution
when the controller achieves the control action. That is why the controller’s execution time
decreases drastically. However, the solution belongs intrinsically to the PSO predictor.

When we solve a new OCP, sometimes, for different reasons, we shall need a meta-
heuristic (PSO, EA, etc.) searching for the optimal solution inside of a control structure.
Finally, the implemented controller integrated into the control structure can be one of the
two ML controllers.

In our opinion, this work goes beyond the controller’s execution time decrease and
opens a perspective to emulate and replace in a general manner optimization structures.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pr12050991/s1, File S1: The archive “Processes_PSO_ML.zip”
contains the files mentioned in Appendices A–E.

Author Contributions: Conceptualization, V.M.; methodology, V.M.; software, V.M. and I.A.; vali-
dation, V.M. and E.R.; formal analysis, V.M.; investigation, I.A.; resources, E.R.; data curation, I.A.;
writing—original draft preparation, V.M.; writing—review and editing, V.M. and E.R.; visualization,
E.R.; supervision, I.A.; project administration, I.A.; funding acquisition, E.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research study was funded by the Executive Agency for Higher Education, Research,
Development and Innovation Funding (UEFISCDI—Roumania), project code COFUND-LEAP-RE-
D3T4H2S; Europe Horizon—LEAP-RE program. The APC received no external funding.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: This study benefited from the administrative support of the Doctoral School of
“Dunarea de Jos” University of Galati, Romania.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The controlled physical system is a flat-plate photobioreactor (PBR) lighted on a single
side for algal growth. The constructive and physical parameters are presented in Table A1.
Their definitions are irrelevant to this work.

The PBR is a distributed parameter system because the light is attenuated inside.
To convert it into a lumped-parameter system, its depth, L = 0.04 m, is discretized in
kL = 100 points equally spaced ( zi ∈ [0, L]. After discretization, the process model (PM) is
as follows:

.
x1(t) =

µmax ·
1

100
·

100

∑
i=1

Gi(t)

kS + Gi(t) + 1
kI
· Gi(t)

2 − µd

 · x1(t)

.
x2(t) = A · C · q(t)

Gi(t) = q(t) · ki
x1(t), i = 1, . . . , kL

ki = e−
1+α
2α ·Ea ·zi ; i = 1, . . . , kL

https://www.mdpi.com/article/10.3390/pr12050991/s1


Processes 2024, 12, 991 23 of 28

m(t) = V · x1(t)

The control input u(t) is considered the intensity of incident light:

u(t) = q(t).

The state variables are as follows:
x1(t): the biomass concentration (in g/L);
x2(t): the light amount which, up to moment t, has illuminated the PBR (in µmol/m2/s).

Table A1. The constants of the PBR model.

Ea = 172 m2·kg−1 absorption coefficient

Es = 870 m2·kg−1 scattering coefficient

b = 0.0008 backward scattering fraction

µmax = 0.16 h−1 specific growth rate

µd = 0.013 h−1 specific decay rate

KS = 120 µmol·m−2·s−1 saturation constant

KI = 2500 µmol·m−2·s−1 inhibition constant

V = 1.45·10−3 m3 volume of PBR

L = 0.04 m depth of PBR

A = 3.75·10−2 m2 lighted surface

x0= 0.36 g/L initial biomass concentration

C =3600·10−2 light-intensity conversion constant

kL = 100 number of discretization points

qm = 50 µmol/m2/s lower technological light intensity

qM = 2000 µmol/m2/s upper technological light intensity

m0 = 3 g. minimal final biomass

tfinal = 120 h control horizon

T = 1 h sampling period

The output variable, the biomass m(t) calculated by Equation (A1), is the PBR’s product.
As a productivity constraint, it must hold that

m(t f ) ≥ m0. (A1)

The cost function (A2) represents the amount of light used for the current batch
while constraint (A1) is fulfilled. The two weight factors (w1 and w2) are established
through simulation.

J(q(·), x0) = w1 ·
∫ t f

t0

q(t) · dt + w2

(
m(t f )−m0

)
. (A2)

Appendix B

Our implementations are based on the MATLAB system and language. The reader can
find inside the folder Processes_PSO_ML, supplied in the Supplementary Materials, the
guide “READ ME.txt”. The following scripts can be used to carry out the closed-loop simulation:

• ControlLoop_PSO_RHC.m that implements the “ControlLoop_PSO” program;
• INV_PSO_Predictor1.m that implements the “Predictor_PSO” function;
• INV_RealProcessStep.m that implements the “ProcessStep” function.

The functions called recursively are also present inside the folder.



Processes 2024, 12, 991 24 of 28
Processes 2024, 12, x FOR PEER REVIEW 26 of 30 
 

 

 
Figure A1. The data collected following M executions of the closed-loop simulation. 

The script LOOP_M_ControlLoop_PSO.m, also included in the Supplementary Ma-
terials, gathers data from all of the 200 simulations and saves them in the file 
WS_data200.mat. 

A fragment of the matrices describing the closed-loop simulation’s data, that is, the 
quasi-optimal evolution, is given in Figure A2. Notice that we have a single control varia-
ble and the 121st state is the final one. 

state1(H + 1, n)   uRHC 

k x1 x2   u*(k) 

0  0.3502 0 
  

  702.62 

1  0.3783 0.0948 
  

  612.65 

2  0.4060  0.1775 
  

  359.55 

3  0.4281   0.2261 
  

  535.81 

    
  

  

117 2.3947  9.0497 
  

  436.61 

118 2.3988   9.1087 
  

  618.68 

119 2.4083   9.1922 
  

  680.81 

120 2.4192   9.2841 
  

- 
 

Figure A2. The matrices for the optimal trajectory and its CP (first simulation). 

  

Figure A1. The data collected following M executions of the closed-loop simulation.

The script LOOP_M_ControlLoop_PSO.m, also included in the Supplementary Materials,
gathers data from all of the 200 simulations and saves them in the file WS_data200.mat.

A fragment of the matrices describing the closed-loop simulation’s data, that is, the
quasi-optimal evolution, is given in Figure A2. Notice that we have a single control variable
and the 121st state is the final one.

Processes 2024, 12, x FOR PEER REVIEW 26 of 30 
 

 

 
Figure A1. The data collected following M executions of the closed-loop simulation. 

The script LOOP_M_ControlLoop_PSO.m, also included in the Supplementary Ma-
terials, gathers data from all of the 200 simulations and saves them in the file 
WS_data200.mat. 

A fragment of the matrices describing the closed-loop simulation’s data, that is, the 
quasi-optimal evolution, is given in Figure A2. Notice that we have a single control varia-
ble and the 121st state is the final one. 

state1(H + 1, n)   uRHC 

k x1 x2   u*(k) 

0  0.3502 0 
  

  702.62 

1  0.3783 0.0948 
  

  612.65 

2  0.4060  0.1775 
  

  359.55 

3  0.4281   0.2261 
  

  535.81 

    
  

  

117 2.3947  9.0497 
  

  436.61 

118 2.3988   9.1087 
  

  618.68 

119 2.4083   9.1922 
  

  680.81 

120 2.4192   9.2841 
  

- 
 

Figure A2. The matrices for the optimal trajectory and its CP (first simulation). 

  

Figure A2. The matrices for the optimal trajectory and its CP (first simulation).

Appendix C

A fragment of the SOCSK matrix produced by a MATLAB script is presented hereafter.
The matrices like this one, presented in Table A2, are the data sets that allow for the

construction of the ML models for each sampling period.



Processes 2024, 12, 991 25 of 28

Table A2. The matrix SOCSK for the second sampling period (k = 1).

x1 x2 u

i = 1 0.37831 0.094853 612.65
i = 2 0.40708 0.077925 557.37
i = 3 0.40122 0.066811 802.69
i = 4 0.40359 0.079127 387.99
i = 5 0.37865 0.078882 560.77
i = 6 0.37801 0.079205 510.57
. . . . . . . . . . . .
. . . . . . . . . . . .

i = 197 0.40607 0.074351 547.26
i = 198 0.39419 0.069684 485.64
i = 199 0.38625 0.082921 558.9
i = 200 0.39531 0.071325 539.92

Appendix D

The Linear Regression Models’ Construction

This construction of the H = 120 linear regressions is achieved by using the script
GENERATE_ModelSW. The latter opens the file WS_Modelsv1.mat (see below) to load the
needed data sets.

The generic functions fitting_to_data and get_the_coefficients from Table 4 correspond to
MATLAB functions stepwiselm and mdlsw.Coefficients.Estimate. The fpredict function
is directly implemented using the regression formula and the coefficients.

The reader can also examine the script Model_ConstructionLINREG.m, which does
not use the stepwise regression strategy; the regression models contain only the two linear
terms and an intercept. The coefficients for all 120 regression functions are stored in the
file WS_3coeff.mat. The cell arrays, MODEL—which stores the 120 objects of type linear
regression—DATAKTest, and DATAKTrain, are saved in the file WS_Modelsv1.mat.

In every step, the current state, the predicted control value uML, and the process’s
next state are displayed. The final lines display the biomass produced, ∆m = 3.0282 g, and
the performance index J = 9.5981.

Processes 2024, 12, x FOR PEER REVIEW 27 of 30 
 

 

Appendix C 
A fragment of the SOCSK matrix produced by a MATLAB script is presented hereaf-

ter. 
The matrices like this one, presented in Table A2, are the data sets that allow for the 

construction of the ML models for each sampling period. 

Table A2. The matrix SOCSK for the second sampling period (k = 1). 

 x1 x1 x1 
i = 1 0.37831 0.094853 612.65 
i = 2 0.40708 0.077925 557.37 
i = 3 0.40122 0.066811 802.69 
i = 4 0.40359 0.079127 387.99 
i = 5 0.37865 0.078882 560.77 
i = 6 0.37801 0.079205 510.57 

... ... ... ... 

... ... ... ... 
i = 197 0.40607 0.074351 547.26 
i = 198 0.39419 0.069684 485.64 
i = 199 0.38625 0.082921 558.9 
i = 200 0.39531 0.071325 539.92 

Appendix D 
The Linear Regression Models’ Construction 

This construction of the H = 120 linear regressions is achieved by using the script 
GENERATE_ModelSW. The latter opens the file WS_Modelsv1.mat (see below) to load 
the needed data sets. 

The generic functions fitting_to_data and get_the_coefficients from Table 4 correspond 
to MATLAB functions stepwiselm and mdlsw.Coefficients.Estimate. The fpre-
dict function is directly implemented using the regression formula and the coefficients. 

The reader can also examine the script Model_ConstructionLINREG.m, which 
does not use the stepwise regression strategy; the regression models contain only the two 
linear terms and an intercept. The coefficients for all 120 regression functions are stored 
in the file WS_3coeff.mat. The cell arrays, MODEL—which stores the 120 objects of type 
linear regression—DATAKTest, and DATAKTrain, are saved in the file WS_Mod-
elsv1.mat. 

>> CONTROL_loopLINREG 

k=   1  x1= 0.3600 x2= 0.0000 uML= 564.1787  

           next state X01= 0.3863 X02= 0.0762 

 

k=   2  x1= 0.3863 x2= 0.0762 uML= 585.5286  

           next state X01= 0.4138 X02= 0.1552 

                  


                



 

k= 118  x1= 2.4269 x2= 9.0945 uML= 511.6694  

       2.4269       9.0945 

           next state X01= 2.4331 X02= 9.1636 

 

k= 119  x1= 2.4331 x2= 9.1636 uML= 568.2736  

Figure A3. Cont.



Processes 2024, 12, 991 26 of 28Processes 2024, 12, x FOR PEER REVIEW 28 of 30 
 

 

       2.4331       9.1636 

           next state X01= 2.4408 X02= 9.2403 

 

k= 120  x1= 2.4408 x2= 9.2403 uML= 565.2016  

       2.4408       9.2403 

           next state X01= 2.4484 X02= 9.3166 

############################################# 

final state: 

       2.4484       9.3166 

&&&  x00= 0.3600 yield mass= 3.0282  Light= 9.3166  Perf Index= 9.5981 

Elapsed time is 0.640188 seconds. 

 

Figure A3. Execution of the closed-loop simulation program (CONTROL_loopLINREG). 

In every step, the current state, the predicted control value uML, and the process’s 
next state are displayed. The final lines display the biomass produced, 3.0282mΔ = g, and 
the performance index J = 9.5981. 

Appendix E 
The script GENERATE_ModelNN.m implements the algorithm presented in Table 7. 

We recall that it is carried out offline in step 5 of the design procedure. 
The function trainRegNN is implemented in two versions by the script trainReg-

NNK0.m for the first sampling period and trainRegNN.m for the others; it trains the RNN 
and can be generated automatically using the regression application (eventually with hy-
perparameter optimization) or written ad hoc using another training function. As an ori-
entation, we give here a few RNN parameters: 

RNN = fitrnet(predictors, response…, 
    ‘LayerSizes’, [14 1 7], ... 
    ‘Activations’, ‘none’, ... 
    ‘Lambda’, 0.00015, ... 
    ‘IterationLimit’, 1000, ... 
    ‘Standardize’, true); 

(see [32]). 

>> CONTROL_loopNN 

kplus1=   1  x1= 0.3600 x2= 0.0000 uML= 564.1785  

  Next state:         X01= 0.3863 X02= 0.0762 

 

kplus1=   2  x1= 0.3863 x2= 0.0762 uML= 585.6589  

  Next state:         X01= 0.4138 X02= 0.1552 

                  


                



 

kplus1= 118  x1= 2.4247 x2= 9.0902 uML= 533.8785  

  Next state:         X01= 2.4316 X02= 9.1622 

 

kplus1= 119  x1= 2.4316 x2= 9.1622 uML= 546.2667  

  Next state:         X01= 2.4387 X02= 9.2360 

 

Figure A3. Execution of the closed-loop simulation program (CONTROL_loopLINREG).

Appendix E

The script GENERATE_ModelNN.m implements the algorithm presented in Table 7.
We recall that it is carried out offline in step 5 of the design procedure.

The function trainRegNN is implemented in two versions by the script trainRegNNK0.m
for the first sampling period and trainRegNN.m for the others; it trains the RNN and can be
generated automatically using the regression application (eventually with hyperparameter
optimization) or written ad hoc using another training function. As an orientation, we give
here a few RNN parameters:

RNN = fitrnet(predictors, response. . .,
‘LayerSizes’, [14 1 7], . . .
‘Activations’, ‘none’, . . .
‘Lambda’, 0.00015, . . .
‘IterationLimit’, 1000, . . .
‘Standardize’, true);

(see [32]).

Processes 2024, 12, x FOR PEER REVIEW 28 of 30 
 

 

       2.4331       9.1636 

           next state X01= 2.4408 X02= 9.2403 

 

k= 120  x1= 2.4408 x2= 9.2403 uML= 565.2016  

       2.4408       9.2403 

           next state X01= 2.4484 X02= 9.3166 

############################################# 

final state: 

       2.4484       9.3166 

&&&  x00= 0.3600 yield mass= 3.0282  Light= 9.3166  Perf Index= 9.5981 

Elapsed time is 0.640188 seconds. 

 

Figure A3. Execution of the closed-loop simulation program (CONTROL_loopLINREG). 

In every step, the current state, the predicted control value uML, and the process’s 
next state are displayed. The final lines display the biomass produced, 3.0282mΔ = g, and 
the performance index J = 9.5981. 

Appendix E 
The script GENERATE_ModelNN.m implements the algorithm presented in Table 7. 

We recall that it is carried out offline in step 5 of the design procedure. 
The function trainRegNN is implemented in two versions by the script trainReg-

NNK0.m for the first sampling period and trainRegNN.m for the others; it trains the RNN 
and can be generated automatically using the regression application (eventually with hy-
perparameter optimization) or written ad hoc using another training function. As an ori-
entation, we give here a few RNN parameters: 

RNN = fitrnet(predictors, response…, 
    ‘LayerSizes’, [14 1 7], ... 
    ‘Activations’, ‘none’, ... 
    ‘Lambda’, 0.00015, ... 
    ‘IterationLimit’, 1000, ... 
    ‘Standardize’, true); 

(see [32]). 

>> CONTROL_loopNN 

kplus1=   1  x1= 0.3600 x2= 0.0000 uML= 564.1785  

  Next state:         X01= 0.3863 X02= 0.0762 

 

kplus1=   2  x1= 0.3863 x2= 0.0762 uML= 585.6589  

  Next state:         X01= 0.4138 X02= 0.1552 

                  


                



 

kplus1= 118  x1= 2.4247 x2= 9.0902 uML= 533.8785  

  Next state:         X01= 2.4316 X02= 9.1622 

 

kplus1= 119  x1= 2.4316 x2= 9.1622 uML= 546.2667  

  Next state:         X01= 2.4387 X02= 9.2360 

 

Figure A4. Cont.



Processes 2024, 12, 991 27 of 28Processes 2024, 12, x FOR PEER REVIEW 29 of 30 
 

 

kplus1= 120  x1= 2.4387 x2= 9.2360 uML= 559.4318  

  Next state:         X01= 2.4461 X02= 9.3115 

 

Elapsed time is 1.349449 seconds. 

####################################################### 

final state: 

       2.4461       9.3115 

&&&  x00= 0.3600 yield mass= 3.0249  Light= 9.3115  Perf Index= 9.5604 

 

Figure A4. Execution of the closed-loop simulation program (CONTROL_loopNN). 

In every step, the current state, the predicted control value uML, and the process’s 
next state are displayed. The final lines of Figure A4 display the biomass produced, 

3.0249mΔ = g, and the performance index J = 9.5604. 

References 
1. Siarry, P. Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-45403-0. 
2. Talbi, E.G. Metaheuristics—From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-27858-1. 
3. Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. Computational Intelligence—A Methodological Introduction, 2nd 

ed.; Springer: Berlin/Heidelberg, Germany, 2016. https://doi.org/10.1007/978-1-7296-3. 
4. Tian, G.; Zhang, L.; Fathollahi-Fard, A.M.; Kang, Q.; Li, Z.; Wong, K.Y. Addressing a Collaborative Maintenance Planning Using 

Multiple Operators by a Multi-Objective Metaheuristic Algorithm. IEEE Trans. Autom. Sci. Eng. 2023, 7 1–13. 
https://doi.org/10.1109/TASE.2023.3269059. 

5. Onwubolu, G.; Babu, B.V. New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2004. 
6. Valadi, J.; Siarry, P. Applications of Metaheuristics in Process Engineering; Springer International Publishing: Berlin/Heidelberg, 

Germany, 2014; pp. 1–39. https://doi.org/10.1007/978-3-319-06508-3. 
7. Abraham, A.; Jain, L.; Goldberg, R. Evolutionary Multi-objective Optimization—Theoretical Advances and Applications; Springer: 

Berlin/Heidelberg, Germany, 2005; ISBN 1-85233-787-7. 
8. Minzu, V.; Serbencu, A. Systematic procedure for optimal controller implementation using metaheuristic algorithms. Intell. 

Autom. Soft Comput. 2020, 26, 663–677, https://doi.org/10.32604/iasc.2020.010101. 
9. Hu, X.B.; Chen, W.H. Genetic algorithm based on receding horizon control for arrival sequencing and scheduling. Eng. Appl. 

Artif. Intell. 2005, 18, 633–642. 
10. Mayne, D.Q.; Michalska, H. Receding Horizon Control of Nonlinear Systems. IEEE Trans. Autom. Control. 1990, 35, 814–824. 
11. Mînzu, V.; Rusu, E.; Arama, I. Execution Time Decrease for Controllers Based on Adaptive Particle Swarm Optimization. Inven-

tions 2023, 8, 9. https://doi.org/10.3390/inventions8010009. 
12. Goggos, V.; King, R.; Evolutionary predictive control. Comput. Chem. Eng. 1996, 20 (Suppl. S2), S817–S822. 
13. Chiang, P.-K.; Willems, P. Combine Evolutionary Optimization with Model Predictive Control in Real-time Flood Control of a 

River System. Water Resour. Manag. 2015, 29, 2527–2542. 
14. Wu, J.; Zhang, C.; Giam, A.; Chia, H.Y.; Cao, H.; Ge, W.; Yan, W. Physics-assisted transfer learning metamodels to predict bead 

geometry and carbon emission in laser butt welding. Appl. Energy 2024, 359, 122682. https://doi.org/10.1016/j.apen-
ergy.2024.122682. 

15. Minzu, V.; Riahi, S.; Rusu, E. Implementation aspects regarding closed-loop control systems using evolutionary algorithms. 
Inventions 2021, 6, 53, https://doi.org/10.3390/inventions6030053. 

16. Minzu, V.; Georgescu, L.; Rusu, E. Predictions Based on Evolutionary Algorithms Using Predefined Control Profiles. Electronics 
2022, 11, 1682. https://doi.org/10.3390/electronics11111682. 

17. Banga, J.R.; Balsa-Canto, E.; Moles, C.G.; Alonso, A. Dynamic optimization of bioprocesses: Efficient and robust numerical strat-
egies. J. Biotechnol. 2005, 117, 407–419. 

18. Balsa-Canto, E.; Banga, J.R.; Aloso, A.V. Vassiliadis. Dynamic optimization of chemical and biochemical processes using re-
stricted second-order information 2001. Comput. Chem. Eng. 2001, 25, 539–546. 

19. Mînzu, V.; Arama, I. A Machine Learning Algorithm That Experiences the Evolutionary Algorithm’s Predictions—An Applica-
tion to Optimal Control. Mathematics 2024, 12, 187. https://doi.org/10.3390/math12020187. 

20. Minzu, V.; Riahi, S.; Rusu, E. Optimal control of an ultraviolet water disinfection system. Appl. Sci. 2021, 11, 2638, 
https://doi.org/10.3390/app11062638. 

Figure A4. Execution of the closed-loop simulation program (CONTROL_loopNN).

In every step, the current state, the predicted control value uML, and the process’s
next state are displayed. The final lines of Figure A4 display the biomass produced,
∆m = 3.0249 g, and the performance index J = 9.5604.

References
1. Siarry, P. Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-45403-0.
2. Talbi, E.G. Metaheuristics—From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-27858-1.
3. Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. Computational Intelligence—A Methodological Introduction,

2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016.
4. Tian, G.; Zhang, L.; Fathollahi-Fard, A.M.; Kang, Q.; Li, Z.; Wong, K.Y. Addressing a Collaborative Maintenance Planning Using

Multiple Operators by a Multi-Objective Metaheuristic Algorithm. IEEE Trans. Autom. Sci. Eng. 2023, 7, 1–13. [CrossRef]
5. Onwubolu, G.; Babu, B.V. New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2004.
6. Valadi, J.; Siarry, P. Applications of Metaheuristics in Process Engineering; Springer International Publishing: Berlin/Heidelberg,

Germany, 2014; pp. 1–39. [CrossRef]
7. Abraham, A.; Jain, L.; Goldberg, R. Evolutionary Multi-objective Optimization—Theoretical Advances and Applications; Springer:

Berlin/Heidelberg, Germany, 2005; ISBN 1-85233-787-7.
8. Minzu, V.; Serbencu, A. Systematic procedure for optimal controller implementation using metaheuristic algorithms. Intell.

Autom. Soft Comput. 2020, 26, 663–677. [CrossRef]
9. Hu, X.B.; Chen, W.H. Genetic algorithm based on receding horizon control for arrival sequencing and scheduling. Eng. Appl.

Artif. Intell. 2005, 18, 633–642. [CrossRef]
10. Mayne, D.Q.; Michalska, H. Receding Horizon Control of Nonlinear Systems. IEEE Trans. Autom. Control 1990, 35, 814–824.

[CrossRef]
11. Mînzu, V.; Rusu, E.; Arama, I. Execution Time Decrease for Controllers Based on Adaptive Particle Swarm Optimization.

Inventions 2023, 8, 9. [CrossRef]
12. Goggos, V.; King, R. Evolutionary predictive control. Comput. Chem. Eng. 1996, 20 (Suppl. S2), S817–S822. [CrossRef]
13. Chiang, P.-K.; Willems, P. Combine Evolutionary Optimization with Model Predictive Control in Real-time Flood Control of a

River System. Water Resour. Manag. 2015, 29, 2527–2542. [CrossRef]
14. Wu, J.; Zhang, C.; Giam, A.; Chia, H.Y.; Cao, H.; Ge, W.; Yan, W. Physics-assisted transfer learning metamodels to predict bead

geometry and carbon emission in laser butt welding. Appl. Energy 2024, 359, 122682. [CrossRef]
15. Minzu, V.; Riahi, S.; Rusu, E. Implementation aspects regarding closed-loop control systems using evolutionary algorithms.

Inventions 2021, 6, 53. [CrossRef]
16. Minzu, V.; Georgescu, L.; Rusu, E. Predictions Based on Evolutionary Algorithms Using Predefined Control Profiles. Electronics

2022, 11, 1682. [CrossRef]
17. Banga, J.R.; Balsa-Canto, E.; Moles, C.G.; Alonso, A. Dynamic optimization of bioprocesses: Efficient and robust numerical

strategies. J. Biotechnol. 2005, 117, 407–419. [CrossRef] [PubMed]
18. Balsa-Canto, E.; Banga, J.R.; Aloso, A.V. Vassiliadis. Dynamic optimization of chemical and biochemical processes using restricted

second-order information 2001. Comput. Chem. Eng. 2001, 25, 539–546. [CrossRef]
19. Mînzu, V.; Arama, I. A Machine Learning Algorithm That Experiences the Evolutionary Algorithm’s Predictions—An Application

to Optimal Control. Mathematics 2024, 12, 187. [CrossRef]
20. Minzu, V.; Riahi, S.; Rusu, E. Optimal control of an ultraviolet water disinfection system. Appl. Sci. 2021, 11, 2638. [CrossRef]
21. Minzu, V.; Ifrim, G.; Arama, I. Control of Microalgae Growth in Artificially Lighted Photobioreactors Using Metaheuristic-Based

Predictions. Sensors 2021, 21, 8065. [CrossRef] [PubMed]

https://doi.org/10.1109/TASE.2023.3269059
https://doi.org/10.1007/978-3-319-06508-3
https://doi.org/10.32604/iasc.2020.010101
https://doi.org/10.1016/j.engappai.2004.11.012
https://doi.org/10.1109/9.57020
https://doi.org/10.3390/inventions8010009
https://doi.org/10.1016/0098-1354(96)00144-5
https://doi.org/10.1007/s11269-015-0955-5
https://doi.org/10.1016/j.apenergy.2024.122682
https://doi.org/10.3390/inventions6030053
https://doi.org/10.3390/electronics11111682
https://doi.org/10.1016/j.jbiotec.2005.02.013
https://www.ncbi.nlm.nih.gov/pubmed/15888349
https://doi.org/10.1016/S0098-1354(01)00633-0
https://doi.org/10.3390/math12020187
https://doi.org/10.3390/app11062638
https://doi.org/10.3390/s21238065
https://www.ncbi.nlm.nih.gov/pubmed/34884070


Processes 2024, 12, 991 28 of 28

22. Goodfellow, I.; Bengio, Y.; Courville, A. Machine Learning Basics. In Deep Learning; The MIT Press: Cambridge, MA, USA, 2016;
pp. 95–161. ISBN 978-0262035613.

23. Zou, S.; Chu, C.; Shen, N.; Ren, J. Healthcare Cost Prediction Based on Hybrid Machine Learning Algorithms. Mathematics 2023,
11, 4778. [CrossRef]

24. Cuadrado, D.; Valls, A.; Riaño, D. Predicting Intensive Care Unit Patients’ Discharge Date with a Hybrid Machine Learning
Model That Combines Length of Stay and Days to Discharge. Mathematics 2023, 11, 4773. [CrossRef]

25. Albahli, S.; Irtaza, A.; Nazir, T.; Mehmood, A.; Alkhalifah, A.; Albattah, W. A Machine Learning Method for Prediction of Stock
Market Using Real-Time Twitter Data. Electronics 2022, 11, 3414. [CrossRef]

26. Wilson, C.; Marchetti, F.; Di Carlo, M.; Riccardi, A.; Minisci, E. Classifying Intelligence in Machines: A Taxonomy of Intelligent
Control. Robotics 2020, 9, 64. [CrossRef]

27. Alatefi, S.; Abdel Azim, R.; Alkouh, A.; Hamada, G. Integration of Multiple Bayesian Optimized Machine Learning Techniques
and Conventional Well Logs for Accurate Prediction of Porosity in Carbonate Reservoirs. Processes 2023, 11, 1339. [CrossRef]

28. Guo, R.; Zhao, Z.; Huo, S.; Jin, Z.; Zhao, J.; Gao, D. Research on State Recognition and Failure Prediction of Axial Piston Pump
Based on Performance Degradation Data. Processes 2020, 8, 609. [CrossRef]

29. Newbold, P.; Carlson, W.L.; Thorne, B. Multiple Regression. In Statistics for Business and Economics, 6th ed.; Pfaltzgraff, M.,
Bradley, A., Eds.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2007; pp. 454–537.

30. The MathWorks Inc. Stepwise Regression Toolbox Documentation; The MathWorks Inc.: Natick, MA, USA, 2024; Available online:
https://www.mathworks.com/help/stats/stepwise-regression.html (accessed on 2 September 2023).

31. Goodfellow, I.; Bengio, Y.; Courville, A. Example: Linear Regression. In Deep Learning; The MIT Press: Cambridge, MA, USA, 2016;
pp. 104–113. ISBN 978-0262035613.

32. The MathWorks Inc. Regression Neural Network Toolbox Documentation; The MathWorks Inc.: Natick, MA, USA, 2024; Available
online: https://www.mathworks.com/help/stats/regressionneuralnetwork.html (accessed on 2 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math11234778
https://doi.org/10.3390/math11234773
https://doi.org/10.3390/electronics11203414
https://doi.org/10.3390/robotics9030064
https://doi.org/10.3390/pr11051339
https://doi.org/10.3390/pr8050609
https://www.mathworks.com/help/stats/stepwise-regression.html
https://www.mathworks.com/help/stats/regressionneuralnetwork.html

	Introduction 
	Controllers with Predictions Based on PSO: Connection with Machine Learning Algorithms 
	Data Generation Using Closed-Loop Simulation over Control Horizon 
	The ML Controller: The Design Procedure and the General Algorithm 
	Linear Regression Controller 
	General Algorithm 
	Simulation Results 

	Controller Based on Regression Neural Networks 
	General Approach 
	Simulation Results 

	Discussion 
	Comparison between PSO and ML Predictors 
	Comparison between the LR and RNN Controllers 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

