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Abstract: This study proposed a kind of optimization design for a reversible axial-flow pump based
on an ordinary one-way pump. Three-dimensional (3D) Reynolds-averaged Navier-Stokes (RANS)
equations was used to predict the pump performance, and the optimized design was validated by
an external characteristic test. Six main geometry parameters of an impeller and diffuser based on
an orthogonal experiment were set as design variables. The efficiency and head under forward
and reverse design conditions were set as the optimization objective. Based on 120 groups of
sample designs obtained from Latin hypercube sampling (LHS), a two-layer artificial neural network
(ANN) was used to build a non-linear function with high accuracy between the design variables
and optimization objective. The optimized design was obtained from 300 groups of Pareto-optimal
solutions using the non-dominated based genetic algorithm (NSGA) for multiobjective optimization.
After optimization, there was a slight decrease in the forward pump efficiency and head. The reverse
pump efficiency and head on the other hand was largely improved and the high efficiency range was
also widened.

Keywords: reversible axial-flow pump; computational fluid dynamics; surrogate model;
multiobjective optimization; two-layer ANN

1. Introduction

Axial-flow pump with reversible impeller can meet bidirectional pumping needs by varying
the direction of the rotation of the impeller, and this has widely been used in flood control and
drainage [1-3]. Due to the special blade airfoil, the flow characteristic in the reversible axial-flow
pump is different from that of the conventional axial-flow pump. Thus, providing a reliable and
efficient optimization design method especially for a reversible axial-flow pump is very necessary.
The key point of an optimization design is accurate prediction for pump performance. In recent years,
the application of computational fluid dynamics (CFD) in the research about pressure fluctuation [4,5],
cavitation performance [6,7] and hydraulic losses [8,9] in the different types of pump has proved
numerical simulation to be an efficient method for predicting pump performance. To improve pump
performance, researchers have applied the design of experiment (DOE) based on CFD for pump
optimization to reduce experiment cost and save time. Long et al. [10] applied the orthogonal test to
optimize the diffuser in the reactor coolant pump to improve pump performance. The optimized design
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was validated by an experiment. Liu et al. [11] used the optimal Latin hypercube sampling (LHS)
method in the multicondition optimization of a mixed-flow pump and the optimization objective was
chosen as weighted average efficiency at three flow rates. However, optimized design obtained from
DOE is the optimal solution within the discrete design domain. Combination of the approximation
model and intelligent algorithm can get the optimal solution within the continuous design domain.
An approximation model is therefore being to construct a function between design variables and
optimization objective. This function can then be solved by an optimization algorithm to obtain
optimal optimized solutions. Pei et al. [12] therefore combined LHS, the artificial neural network
(ANN) and modified particle swarm optimization (PSO) to obtain higher centrifugal pump efficiency
at three flowrates. Miao et al. [13] applied the combination of neural networks and modified PSO
algorithms to improve the pump efficiency and cavitation performance. Shim et al. [14,15] completed
the multiobjective optimization based on approximation model and non-dominated based genetic
algorithm (NSGA) to improve stability, efficiency and cavitation performance for different types of
centrifugal pump. Wang et al. [16,17] used different surrogate models to optimize the impeller and
diffuser of a centrifugal pump based on CFD. However, there is not much optimization design on a
reversible axial-flow pump.

The reversible axial blade pump generally has two-way impeller airfoils, which can be grouped
into an arc, S-shape and polynomial curve. The S-shaped impeller can obtain similar pump performance
under the forward and reverse condition. In some actual engineering, the pump operation time under
the forward condition is much longer than that under the reverse condition. To obtain high pump
efficiency under the forward condition and also to ensure that the pump meets a basic standard
under the reverse condition, the bidirectional impeller airfoils are chosen as an asymmetric arc or
polynomial curve. Ma [18,19] investigated the pressure fluctuation in a reversible axial-flow pump
with an S-shaped impeller, and compared the inner flow in an S-shaped and arc bidirectional impeller.
It provided some useful suggestions for hydraulic design of a reversible axial-flow pump. Jung [20]
combined an orthogonal experimental design, response surface model (RSM) and feasible direction
method to optimize the arc two-way impeller with a symmetric chord airfoil.

In this study, the one-way axial-flow pump was selected as the basis of combination optimization
design for a two-way impeller and diffuser. The optimization objective was to improve the reverse pump
performance and maintain forward pump performance at a certain level. The 3D Reynolds-averaged
Navier-Stokes (RANS) equation was solved to predict pump performance and six geometry parameters
of the impeller and diffuser were set as the design variables based on an orthogonal experimental
design. The relationship between design variables and optimization objective was constructed with
120 groups of sample points using LHS and two-layer ANN. Finally, the optimized design was obtained
based on 300 groups of Pareto-optimal solutions by using NSGA, and the external characteristic
experiment of optimized design was performed to verify the optimization results.

2. Numerical Method

2.1. Computational Model and Mesh

The original design is a one-way pump, which consists of a straight pipe, a bidirectional impeller,
a diffuser and an elbow as shown in Figure 1. The optimized pump is a reversible axial-flow pump
consisting of a straight pipe, a two-way impeller, a diffuser and an elbow. The main design parameters
of the original design are listed in Table 1, and the specific speed can be calculated by Equation (1).

~ 3.65NQ"°
ST Ho75

)

where #; is the specific speed, N is rotational speed, Q is the volume flow rate and H is the head.
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Figure 1. 3D model of the original design.
Table 1. Main parameters of the original design.
Design Parameters
Rated flow rate (m?/s) 0.4 Rotational speed (r/min) 1450
Head on rated flow rate (m) 3.87 Specific speed 1213.1
Geometry Parameters
Impeller blade number 3 Diffuser blade number 5
Impeller diameter (mm) 300 Outlet diameter of diffuser (mm) 312.8
Optimization Parameters

Forward design flow rate (m?/s) 0.36 Efficiency on forward design flow rate (%) 78.0
Reverse design flow rate (m3/s) 0.3 Efficiency on reverse design flow rate (%) 51.91

The straight pipe and elbow were set as an inflow pipe and outflow pipe respectively, under the
forward operation. In the reverse operation, the straight pipe and elbow were set as the outlet pipe and
inlet pipe respectively. Figure 2 shows the mesh of the entire computational domain. The hexahedral
mesh of the impeller and diffuser was generated by TurboGrid. The hexahedral mesh of the other
components was obtained by preprocessing software of computer aided engineering (CAE), ICEM
CFD, which is a module in the commercial software ANASYS. This software can generate a hexahedral
mesh semi-automatically and generate a tetrahedral mesh automatically. Figure 3 shows the grid
independence analysis of the original design for the impeller and diffuser. In this figure, 177 stands for
pump efficiency under a forward design flow rate, 11, stands for pump efficiency under a reverse design
flow rate. Figure 3a,b shows the tendency of 171 and 1, with a grid number of the impeller increasing.
The maximum relative deviation was smaller than 0.08% when the grid number was greater than
1.25 x 10°. Figure 3c,d shows the tendency of 1 and 1, with a grid number of the diffuser increasing.
The maximum relative deviation was smaller than 0.16% when the grid number was greater than
1.47 x 10°. Hence, the number of nodes of the inlet section, impeller, diffuser and outlet section were
finally chosen as approximately 0.74 x 10°, 1.25 x 10°, 1.47 x 10° and 0.95 x 10° respectively. Y+ is a
dimensionless number and it can define the distance from the wall to the first node. The average Y+
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of any component can be obtained by calculating the mean Y+ values from each node on all walls.
The average Y+ of the straight pipe without the inlet section, impeller, diffuser and elbow pipe without
the outlet section were 21.8, 24.3, 13.52 and 45.4 respectively.

Diffuser

Impeller

Straight
pipe

Elbow
pipe

L — — —

Figure 2. Mesh of the original design.
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Figure 3. Grid independence of the original design for the (a) impeller under a forward design
flowrate, (b) impeller under a reverse design flow rate, (c) diffuser under a forward design flowrate
and (d) diffuser under a reverse design flow rate.

2.2. Numerical Setup

The k-w formulation has good performance near the wall treatment for low Reynolds number
computations, so it was applied widely in the numerical simulation [21] in the pump. In addition,
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the k-w based Shear-Stress-Transport (SST) model with an automatic wall treatment can present a
smooth transition from a low-Reynolds number form to a wall function formulation, which shows less
sensitivity to Y+ [22]. So, it was used to solve a steady 3D RANS equation in this study. The governing
equation was defined as:

Jv;

&Xi =0 (2)

apm) Nevd) o, g —
TS —‘a—m+gj<#a—xj-wzv])+pﬁ ®)

where v is the time-average speed and p is the time-average pressure. p is the fluid density. u stands
for the dynamic viscosity and pv’;v’; represents the Reynolds stress. pf; is the source item.

The reference pressure is 1 atm. The inlet boundary condition was set as the ‘Mass Flow Rate
under a forward operation. The outlet boundary condition was set as ‘Static Pressure’ and the outlet
static pressure was initially specified as 0. In the reverse operation, the inlet boundary condition was
also set as the ‘Mass Flow Rate’. However, the outlet boundary condition was set as the ‘Opening’
due to flow recirculation and the opening pressure was initially specified as 0. The interface condition
between the impeller and stator was set as a ‘Frozen rotor’ (the relative position of the impeller and
stator across the interface was fixed through calculation). The interface condition between stators was
set as ‘None’. The wall boundary condition was considered as smooth with no slip. The convergence
criteria and advection scheme were set as 1 x 10* and 1st-order upwind respectively. The numerical
calculation was to be stopped when it achieved convergence criteria or periodic stability (few calculated
results shown periodic oscillations, but the amplitude of efficiency is less than 0.5%.).

7

3. Optimization Procedure

The optimization procedure for the improvement of pump efficiency and the head is shown in
Figure 4. Firstly, the shape of the impeller blade and diffuser blade was controlled by the airfoil section.
The main geometric parameters of the airfoil section were set as design variables and described in detail
in Section 3.2. In order to reduce the design variables of the diffuser to improve the optimization speed,
the orthogonal experimental design was applied to obtain the effect of main geometric parameters on
the optimization objective. Thirdly, LHS was used to construct 120 groups of sample designs in design
space. The CFD results of the optimization objective were obtained by CFX automatically executed by
MATLAB as shown in Figure 5. A two-layer ANN was designed to construct the non-linear function
between the design variables and optimization objective. Finally, the 300 groups of Pareto-optimal
solutions were obtained by NSGA. Optimized design was based on one of these solutions and verified
by experiment data.

Orthogonal test of Combination optimization
diffuser of diffuser and impeller

i— i ro T T T T T T T T T T T
: Orthogonal test : : :
Choose design : design : : LHS Rt NSGA :
variables of impeller [ | I | I
and diffuser | + | _Reduc.e | |
: | design variables | \ |
| ofdiffuser | |
[ Database of [ [ Database - . [
_>: sample designs I|—>|| sample points Optimized design :
| | I |
: + [ | \ |
Determine | : : y Verity with :
optimization ~ | | | || erify wit I
objectives : Range analysis : : Two-layer ANN experiment data :
l [ | |
l [ | |
| . . R D == —_

Figure 4. The optimization procedure of the reversible axial-flow pump.
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Figure 5. Optimization flow chart in the ANSYS Workbench.
3.1. Optimization Functions

According to engineering requirements, the forward design flow rate was chosen as 0.36 m3/s and the
reverse design flow rate was chosen as 0.3 m3/s. The optimization objectives can be described as follow:

Minimum : Z(x) = {Z1(x), Z3(x), Z5(x)} 4)

where x is a vector of design variables. Z stands for a vector of three optimization objectives Z;, Z,
and Zs.

In this study, three optimization objectives need be minimized to improve hydraulic performance
to meet the engineering requirement. The first optimization objective Z; is the negative hydraulic
efficiency under the forward design flow rate. The second optimization objective Z, is the negative
hydraulic efficiency under the reverse design flow rate. The third optimization objective Z3 is the
negative sum of the head under a forward design flow rate and head under a reverse design flow rate.
Three objective functions were defined as:

Zy=-m )
Zz = -2 (6)
Z3 = —H3 = —(H; + H>) )

where 17 and Hj are hydraulic efficiency and a head under the forward design flow rate. 1, and Hj are
hydraulic efficiency and the head under the reverse design flow rate. H3 is the sum of H; and Hj.
The hydraulic efficiency 1 and head H can be calculated by the equations as follow:

_ (Pout_Pin)Q
=N ®)
Pout — Piy
H = -t = Cin 9
o7 )

where P, is the total pressure in the outlet section, P;, is the total pressure in the inlet section. Q is the
volume flow rate. T is the torque on the pump shaft during pump operation. N is the forward rotation
speed of the pump shaft. p is the fluid density and g is the gravitational acceleration.

3.2. Geometry Variables

Figure 6a shows the impeller shape was defined by five airfoil sections (I-I, II-II, III-1II, IV-IV and
V-V) obtained by radial equidistant division. The main geometry parameters of every airfoil section
are the length of the chord line L, blade angle (angle between the chord line and horizontal line) 6,
deformation of the mean line (midpoint connection of the local geometric thickness of the airfoil section
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along chord line) and thickness distribution along the chord line, as shown in Figure 6b. In this study,
every airfoil section was designed based on the NACA 65 series. So, the deformation of the mean line
in every section could calculate the form lift coefficient o, which was obtained from the camber angle
@. The definition of ® was shown in Figure 6c and the deformation function of the mean line was

described in detail as follows [23]:
27 (o}

o= Mtanz (10)
d=A-¢ (11)
gl 2]

where o is the theoretical lift coefficient of the airfoil, ® is the camber angle. A and ¢ are the inlet angle
and outlet angle of the skeleton line. y, is the ordinate of the airfoil profile (direction perpendicular to
chord line). x, is the abscissa of the airfoil profile (direction parallel to the chord line).

Equivalent circular

skeleton line Tangent to the

skeleton line

1" Tangentto the
”;»! skeleton line

(b) (c)

Figure 6. The definition of the main geometry variables of the impeller: (a) definition of the airfoil
section, (b) main geometry variables of the airfoil and (c) the rest of the geometry variables.

In this hydraulic design, the thickness distribution and blade angle 6 were predetermined, so the
shape of the airfoil section was controlled by the length of the chord line L and camber ®. In order to
improve the optimization speed, the design variables of the impeller was only chosen from the chord
length and camber angle in section I-I and section V-V: L1, Ls, ®; and ®5. The L and & in the rest
sections were determined by the equation as follow:

Ls-L
LK:(54—1)><1<+L1 (13)

@K:@xwg (14)
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where, « is the section number of the impeller. ®; and ®5 are the camber angle in section I-I and
section V-V. L; and Ls are the length of the chord line in section I-I and section V-V.

Figure 7a shows the diffuser shape was defined by five airfoil sections (I-I, II-1I, III-1II, IV-1V and
V-V) obtained by radial equidistant division. Figure 7b shows that every airfoil section was defined by
the inlet angle «, outlet angle f3, blade height  and wrap angle ¢. In this study, the outlet angle § and
blade height C were predetermined based on previous engineering research. Only the wrap angle ¢
and inlet angle « in section I-I and section V-V were set as geometry variables. The ¢ and « in the rest
of the sections were calculated as follow:

@g:MXcﬂm (15)

(a5 —a1)
4

where, ¢ is the section number of the diffuser. @5 is the wrap angle in section V-V and ¢ is the wrap

angle in section I-I. a5 is the inlet angle in section V-V and a; is the inlet angle in section I-I.

ac = Xc+ay (16)

Outfolw

v I

v Inflow
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Mean line Rotation

: enter
(Bezier I > /C
curve g, N
Y~

Y\ - —
\A’a Trailing edge
Tangent to
the mean
line

Leading edge

In view of
diffuser outlet

(b)
Figure 7. The definition of the main geometry variables of the diffuser: (a) definition of the airfoil
section and (b) main geometry variables of the airfoil.

3.3. Orthogonal Test Design of Diffuser

According to Section 3.1, the impeller shape was controlled by L1, Ls, ®; and ®s5, and the diffuser
shape was controlled by @1, ¢s5, @1 and as. The focus was to optimize the impeller and diffuser
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at the same time in this study. However, if all these eight geometry variables were set as design
variables, the computing resource consumption would increase and optimization speed would decline.
So, the number of design variables had to be reduced. Considering the importance of impellers for
hydraulic performance, the total number of design variables should be reduced by reducing geometry
variables of the diffuser.

Orthogonal test design [24] is a kind of economical and fast design method, which was used
for a multi factor with a different level. Some representative designs with evenly dispersed and
comparable were selected. Then the range analysis based on these representative designs was obtained
to evaluate the qualitative contribution of each geometry variables on the optimization objective.
Finally, the geometry variables that were influential on the optimization objective were selected as
design variables.

3.3.1. Orthogonal Test Scheme

Table 2 shows that @1, @5, @1 and as were set as factor A, B, C and D respectively. Each of these
factors was considered at five levels in the orthogonal test. Table 3 shows the orthogonal test scheme,
and the correspondence between the serial number of the factor and geometric parameters. Three
optimization objectives under the orthogonal test scheme were obtained by numerical simulation.

Table 2. Level of the orthogonal factor.

Factor

Level A B C D
as 23] @5 P1

Level 1 70 85 26 45
Level 2 65 80 30 6.5
Level 3 60 75 34 8.5
Level 4 55 70 38 10.5
Level 5 50 65 42 12.5

Table 3. Orthogonal test scheme.

Test Factor Corresponding Parameter =~ Optimization Objective
Number A B c D as a Ps e1 m/(%)  12/(%) Hs/(m)

1 A, B, C D 70 8 26 45 7362 5404 730
2 A, B, C D, 70 8 30 65 7543 5330 721
3 A, By C D3 70 75 34 85 7686 5230 712
4 A, By C Dy 70 70 38 105 7785 5112 699
5 A; Bs C; Ds 70 65 42 125 7890 4969  6.88
6 A, B C D3 65 8 30 85 7598 5252 717
7 Ay, By, C Dy 65 80 34 105 7737 5152 7.6
8 Ay, By C4 Ds 6 75 38 125 7879 5031 698
9 Ay, By C3 Dy 6 70 42 45 7775 5123 699
10 Ay, Bs C Dy 6 65 26 65 7732 5196  7.03
11 A, By C; Ds 60 8 34 125 7774 5073 7.0
12 Ay, By, C Dy 60 80 38 45 7643 5175  7.03
13 Ay By Cs Dy 60 75 42 65 7822 5053 694
14 A, By C Dy 60 70 26 85 7792 5134 701
15 Ay Bs C Dy 60 65 30 105 7938 4985 692
16 Ay, B, C Dy 55 8 38 65 7696 5095 698
17 Ay By, C; Dy 55 80 42 85 7845 4966 687
18 Ay, By C Dy 55 75 26 105 7854 5045 696
19 Ay, By C Ds 55 70 30 125 7982 4890  6.85
20 Ay, Bs C; Dy 55 65 34 45 7764 4981 679
21 As By Cs Dy 50 8 42 105 7877 4856  6.80
2 As By, C; Ds 50 80 26 125 7906 4967 691
23 As By C Dy 50 75 30 45 7719 5054 687
24 As By C3 Dy 50 70 34 65 7847 4907 676
25 As Bs C4 Dy 50 65 38 85 8034 4707  6.69
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3.3.2. Range Analysis

K;, K; and R were set as the evaluation index of the range analysis. K; is the sum value of each
level for a certain factor. K; is the average value of K;, which can reflect the optimal levels of a certain
factor for nq, 172 and Hs.

R stands for the maximum range that the optimization objective changes as the factor changes.
The larger the range size, the greater the qualitative contribution of the factor to the optimization
objective. These evaluation indexes can be calculated as follows:

5
K; = Z Yij (17)
j=1
— 1 5
Ki=z Z Yij (18)
=1
R= maX(K1/K2/K3/K4/E5) - min(E1/K2/ EC’;/K‘I/ES) (19)

where Y;; stands for the optimization objective of the i factor in level j. K; is the sum value of each level
for a certain factor. K; is the average value of K;.

Table 4 shows the range analysis of the pump efficiency under a forward design condition.
The qualitative contribution of the factor to 17 according to R was arranged from high to low: D, A, B
and C. Table 5 shows the range analysis of the pump efficiency under the reverse design condition.
The qualitative contribution of the factor to 1, according to R was arranged from high to low: A, B, D
and C. Table 6 shows the range analysis of the sum of the head under the forward design condition
and the head under the reverse design condition. The R was so little from the range analysis of H3. So,
the qualitative contribution of the factor to H3 was not obvious. In summary, factor D (p1) and A (a5)
had the most important influence on 1; and 1, based on R. So, ¢1 and a5 were set as design variables
in the next combination optimization of the impeller and diffuser.

Table 4. Range analysis of 1;

Test Indices D A B C
K 382.63 382.66 383.08 386.45
K, 386.41 387.21 386.73 387.81
K3 389.54 389.70 389.60 388.08
Ky 391.90 391.41 391.81 390.37
Ks 394.32 393.83 393.59 392.10
K 76.53 76.53 76.62 77.29
K> 77.28 77.44 77.35 77.56
K3 77.91 77.94 77.92 77.62
Ky 78.38 78.28 78.36 78.07
Ks 78.86 78.77 78.72 78.42
R 2.34 223 2.10 1.13

Table 5. Range analysis of 1,

Test Indices A B D C
Ky 260.45 256.80 257.38 257.45
Ky 257.55 255.90 255.81 255.10
K3 254.20 254.14 252.88 253.44
Ky 249.76 251.65 251.50 251.21
K 24491 248.38 249.30 249.68
K 52.09 51.36 51.48 51.49
K> 51.51 51.18 51.16 51.02
K3 50.84 50.83 50.58 50.69
Ky 49.95 50.33 50.30 50.24
Ks 48.98 49.68 49.86 49.94

R 3.11 1.68 1.62 1.55
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Table 6. Range analysis of H3

Test Indices A B C D
Ky 35.51 35.25 35.22 34.98
Ky 35.24 35.09 35.03 34.93
K3 34.90 34.87 34.72 34.85
Ky 34.45 34.60 34.67 34.73
Ks 34.03 34.31 34.49 34.62
K 7.10 7.05 7.04 7.00
K, 7.05 7.02 7.01 6.99
K3 6.98 6.97 6.94 6.97
Ky 6.89 6.92 6.93 6.95
Ks 6.81 6.86 6.90 6.92
R 0.30 0.19 0.14 0.07

3.4. Latin Hypercube Sampling

LHS [25] is a method of approximately random sampling. This method can divide the sampling
unit into different layers and randomly sample from different parts based on a certain ratio. In this
study LHS was applied to obtain design points to construct the surrogate model. A lack of enough
design points can result in losing some regions of space design since large sample properties of
simulations are required during LHS. So, the LHS was used to generate 120 groups of design points to
ensure a full display of the design space. Among these sample points, 90 groups of design points were
selected as training data and 30 groups of design points were used as test data.

3.5. Multilayer Artificial Neural Networks

The approximation model can build the function between the design variables and optimization
objective based on the design points obtained from DOE. The optimization objective can be predicted
by this function. Common approximation models include RSM [26], Kriging Model [27], radial basis
function (RBF) [28] and ANN [29].

ANN is a kind of computing system inspired by the biological neural networks. It can be
divided into several layers and the function between inputs and outputs can be constructed through
layer-by-layer mapping. As shown in Figure 8, the first layer is called the input layer and the last layer
is called the output layer. Layers between the input layer and output layer are collectively called the
hidden layers. The mapping relationship between layers is called the transfer function. The multilayer
ANN with more than one hidden layer can build a strong non-linear function between inputs and
outputs. The kind of ANN can be divided into a feedforward neural network and cascade-forward neural
network [30]. In this study, the multilayer cascade-forward ANN was applied as shown in Figure 6.
The quantity of neurons in the first and second hidden layers is 6 and 6 respectively. In addition,
the transfer function between the input layer and hidden layer and that between the hidden layer and
output layer are the tansig function and purlin function respectively, which was defined as follows:

y? = purlin( Z w5 X tan mg[Z wl]ul + bl] + b (20)
tansig(x) = 2 __ (21)

B T e
purlin(x) = ax+d (22)

where, superscript 1 and 2 stands for the coefficients from the first and second hidden layer. w and b
mean the weight and biases for every neuron respectively. a and d is the constant coefficient.
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Input Layer Hidden Layer Output Layer

Figure 8. The structure of the cascade-forward multilayer neural network.

In order to prove that the cascade-forward two-layer ANN built function with high accuracy
between the design variables and optimization objectives, the prediction accuracy of optimization
objective compared with other common approximation models is shown in Table 7. Compared
with other common approximate models, a two-layer ANN model can construct the function with
highest accuracy between design variables and optimization objectives. The R-squared was set as the
evaluation basis of the prediction accuracy and it is defined as follows:

n

SSE =Y i(yi— i) (23)
i=1
ssT=Y (v -7) (24)
i=1
A2
R*=1- Z(y_—% (25)
X(y-y)

where SSE, SST and R? mean the sum of squares due to the error, total sum of squares and coefficient
of determination, respectively. y, # and ¥ stand for the outputs of the sample points, predicted outputs
by approximation models and average outputs for sample points.

Table 7. The accuracy of optimization objective predicted by different approximation models.

Approximation Model R? of m/% R? of 12/% R? of Hy/m R? of Hy/m

Two-layer ANN Model 0.982 0.990 0.993 0.996
RSM 0.913 0.962 0.970 0.994
Kriging Model 0.792 0.953 0.938 0.948

RBF Model 0.905 0.983 0.972 0.993
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3.6. NSGA for Multiobjective Optimization

The non-dominated sorting genetic algorithm with the elitism algorithm (NSGA-II) was invoked
from the genetic algorithm for multiobjective optimization. The advantage of this optimization
algorithm is that the elitism sorting algorithm can reduce computational complexity. NSGA-II [31] is
one of the popular multiobjective evolutionary algorithms. In this study, the objective function values
were calculated by using two-layer ANN models. The size of the population and total number of the
generation are 300 and 100, respectively. So, the NSGA-II was used to solve these approximate models.
There were 300 Pareto-optimal solutions for the three optimization objectives as shown in Figure 9.

8.5 -
8.0 5
K
| . ST
£ ;5 o % B
o
ey \ % %
7.0 4 e i
6.5
65.0 %
81.0
60.0 80.0
79.0
Ny 78.0
,72 /% . 77.0 ’71 Y

Figure 9. Pareto-optimal solutions in 3D function-space.

The Pareto-optimal solution is a set of solutions that are not inferior to all other feasible solutions.
Generally it refers to improving the objective functions of a multiobjective problem while degrading
some other objectives values. This is also referred to as non-dominated [32]. The optimized solutions
were selected according to design requirements. In order to illustrate the relationship between the
optimization objectives in detail, the Pareto-optimal solutions in 2D space was shown in Figure 10.
Figure 10a shows the trade-off among Pareto-optimal solutions in the 1,—H3 space, where 1; increased
with H3 decreasing. Additionally, Figure 10b shows a trade-off among Pareto-optimal solutions in
n1—12 space, where 17 increased with 1, decreasing. However, Figure 10c shows a weak relationship
among Pareto-optimal solutions in 1p—H3 space. 11, 12 and Hz cannot be improved at the same time,
but the sum of 17; and 1, can be improved after optimizing the pump and maintaining a certain lift.
One representative Pareto-optimal solution was chosen based on Equations (26) and (27). The 11, 112
and Hj3 predicted by NSGA-II were 78.13%, 61.01% and 8.07 m. This representative Pareto-optimal
solution was considered as the finally optimization design after a minor adjustment of the design
variables based on experience.

Maximum : Hj (26)
Constraint : m>78 (27)
nm > 61
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Figure 10. Pareto-optimal solutions in 2D function-space: (a) n1—H3,, (b) n1-12 and (c) no—H3.

4. Results and Analysis

4.1. Comparison of Pump Performance

Figure 11 shows the comparison of pump efficiency and head between the original design and
optimized design. Under the forward condition, the tendency of performance curves for the optimized
design was similar with that for the original design, and the high efficiency zone was obtained under
Q =[0.36, 0.4] (m?/s). The pump performance under the forward condition and reverse condition could
not be improved at the same time. In order to take 77, and H, into consideration during the optimization
design, forward pump performance under all flowrates slightly dropped after optimization. The m;
and H; of the optimized design were 77.61% and 4.21 m. However, under the reverse condition,
the improvement of pump efficiency and the pump head were so obvious and the high efficiency range
was also widened. The 1, and H; of the optimized design were 61.58% and 3.8 m.
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Figure 11. Comparison of pump performance between the original and optimized design: (a) under
the forward condition and (b) under the reverse condition.

4.2. Analysis of Inner Flow

Figure 12 shows the turbo surface of the impeller with different span, and the span was defined as
Equation (28).
Span = (r—ry)/(re — 1) (28)

where, 7 is the calculated ring radius, 3, is the hub radius and r; is the radius of the impeller rim.

Span=0.5
Span=0.9

Impeller
blade

Figure 12. The turbo surface with different spans.

Figure 13 shows the velocity axial distribution in the expansion diagram of the turbo surface
of the impeller with span = 0.5, under the forward design flow rate. In the expansion diagram,
the vertical axis was parallel to the impeller rotation axis and the horizontal axis was parallel to the
circumferential direction of the impeller. The Ps and Ss stands for the pressure side and suction side.
In both the original and optimized design, the high velocity was observed near the suction side and
the low velocity near the leadging edge due to the presence of the stagnation point. After optimization,
the velocity increased at the pressure side and appeared to be declining near the suction side.



Processes 2020, 8, 309 16 of 22

Low velocity near
leading edge

V, /(ms?

-
.-l =]

BS
Y 9% 0970@70‘53% o %

O

Original design

ol o

Optimized design

Figure 13. Comparison of the velocity axial distribution in the impeller between the original design
and optimized design under the forward design flow rate (span = 0.5).

Figure 14a shows the axial velocity distribution in the impeller outlet under the forward design
flow rate. The trend of the velocity curve in the optimized design was similar with that of the original
design. The low axial velocity could be seen near span = 0 and span = 1.0 due to the viscous effects
caused by the friction between the fluid and wall. In the middle interval, the axial velocity increased
slowly with increasing span. In addition, when span < 0.6, the axial velocity in the original design
was smaller than that of the optimized design, but when span > 0.6, the axial velocity in the original
design was larger than that in the optimized design. Figure 14b shows the circulation distribution in
the impeller outlet. The circulation was defined as Equation (29). The tendency of the velocity curve in
the optimized design was also similar with that in the original design. The circulation rose slowly with
span increasing firstly and then it increased rapidly with span increasing. Furthermore, the circulation
in the optimized design was smaller than that of the original design, which would cause the pump
head to decline after optimization.

Cu= f dl (29)
L

where, v, is the absolute circumferential velocity and 4! is the unit length of the ring.

Figure 15 shows the axial velocity distribution in the expansion diagram of the turbo surface with
span = 0.5 under the forward design flow rate. As shown in the figure, both in the original design
and optimized design, the difference of the flow structure near each diffuser blade was so obvious.
The high velocity could be found near some diffuser blades and the obvious low velocity was observed
near the rest diffuser blades, which could result in hydraulic losses.
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Figure 14. Comparison in the impeller outlet between the original and optimized design for the
(a) velocity axial distribution and (b) circulation distribution (under the forward design flow rate).
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Figure 15. Comparison of the velocity axial distribution in the diffuser between the original and
optimized design under the forward design flow rate (span = 0.5).

Figure 16 is the distribution of the axial velocity in the expansion diagram of the turbo surface
with span = 0.5 under the reverse design flow rate. These two designs show a similar flow structure
with weak velocity near the leading edge, which was due to the presence of the stagnation point of the
leading edge, as well as the high velocity near the suction side. In the optimized design, the area of
the high velocity near the suction side became larger, and the velocity near the pressure side became
lower. The velocity gradient near the pressure side in the original design was larger than that in the

optimized design.
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Figure 16. Comparison of the velocity distribution in the impeller between the original design and
optimized design under the reverse design flow rate (span = 0.5).

Figure 17 shows the comparison of the velocity in the impeller outlet between the original and
optimized design. As shown in Figure 17a, the original impeller had a non-uniform axial velocity
distribution, and it first increased, then decreased with increasing span in the middle interval. The axial
velocity of the optimized design remained almost stable in the middle interval, which meant that
the impeller outflow was much more stable. As shown in Figure 17b, the tendency of the circulation
curve for the optimized design was similar with that for the original design. The circulation initially
rose slowly and later became rapid with increasing span. The optimized impeller outlet however had
higher circulation when span > 0.25 and it could result in a higher pump head compared with the
original design.

—— Optimized design = Optimized design ====- Original design
6.30 1450
7420 |/ % 10.00
E | E
~N L \:
=210 ¢ O 550
000 Lwwwsisiinnn,s, 1.00 S
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Figure 17. Comparison in the impeller outlet between the original and optimized design for the (a) axial
velocity distribution and (b) circumferential velocity distribution (under the reverse design flow rate).
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4.3. Validation of the Optimization Results

In order to prove the validity of the optimization design and accuracy of the numerical simulation,
the external characteristic test for the optimized design was carried out. Figure 18 shows the vertical
bench test of the axial-flow pump and the flow rate was regulated by the gate valve. The main technical
parameters of the measurement equipment were shown in Table 8. Due to the structure of the test bench,
the rotation speed of 1350 r/min was used for the external characteristic test. Then the experiment data
was transformed by the equivalent efficiency formula to compare with the numerical simulation as
shown in Figure 19. The performance curves from the numerical simulation had good agreement with
experiment data, and the deviation of 17; and 1, were about 1.23% and 3.56%. In addition, the main
design parameters of this optimized reversible axial-flow pump is shown in Table 9. The results shows
that the reverse pump performance was improved actually, at the same time of maintaining the forward
pump performance.

90.00 8.00
70.00 6.00
< 50,00 a00 £
= I
30.00 2.00
10.00 . . . . . 0.00
0.16 021 0.26 0.31 036 0.41 0.46
Q /(md/s)
(@)
o CFDn A EXPn
----- A~ EXPH X CFDH
70.00 1 8.00
Y Ny = VAl
Bop e '”A%% o m%\ﬁ
Y w1 6.00
50.00 oD B
© & 1% A c
SN AXAK 4 400 =
= ax
30.00 w2 200
W 12
Ba
10.00 0.00

018 022 026 030 034 038
Q /(m3/s)

(b)

Figure 19. The comparison of pump performance between the simulated data and experiment data
under the (a) forward operation and (b) reverse operation.
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Table 8. Main technical parameters of measurement equipment.

Measurement Equipment Name Instrument Model Measurement Measurement
Items Range Accuracy
Flow rate Intelligent electromagnetic  \prrer 11x0000F  0-1800 m3/h <+0.2%
flowmeter
Head Intelligent dlffere.nhal EJA 0-10 m <£0.1%
pressure transmitter
T .
. orque Intelligent torque speed JCL1 0-200 N-m <£0.1%
otation speed sensor

Table 9. The main design parameters of the optimized reversible axial-flow pump.

Design Parameters Value

Forward rated flowrate (m3/s) 0.368
Efficiency under forward rated condition (%) 78.73
Head under forward rated condition (m) 3.72
Reverse rated flowrate (m3/s) 0.298
Efficiency under reverse rated condition (%) 63.85
Head under reverse rated condition (m) 3.51
Rotation speed (rev/min) 1450

5. Conclusions

In this paper, a multiobjective optimization was performed to improve the total pump performance
under the forward and reverse design condition. Some conclusions could be drawn.

(1) as and @ had the most important effect on the pump performance, according to the orthogonal
experimental design. L, Ls, 61, 05, a5 and @1 were set as the final design variables for the
combination optimization of the impeller and diffuser.

(2) Compared with other approximate models, the two-layer ANN could construct the functions with
highest accuracy between the design variables and optimization objectives, based on 120 groups
of sample points generated from LHS.

(3) 300 Pareto-optimal solutions were obtained by NSGA and one representative Pareto-optimal
solution was selected as the basis of the optimized design. The 1; and H; of the optimized
design decreased by 0.50% and 10.06%, respectively, compared with the original design. The axial
velocity gradient near the suction side of the optimized diffuser was larger than that of the original
diffuser. The circulation of the impeller outlet had decreased after optimization. However, the 1»
and H; of the optimized design increased by 18.62% and 60.40%, compared with the original
design. In addition, the curve slope of the axial velocity and circulation in the impeller outlet of
the optimized design decreased and increased after optimization.

(4) The external characteristic test for the optimized design was completed to prove the validity of this
optimization method. In addition, the test highest efficiency values under the forward condition
and reverse condition were 78.73% and 63.85% respectively, which could meet engineering needs.

The design method in this paper could be used as a reliable and high time-efficient methodology
to design the reversible axial-flow pump based on a one-way axial-flow pump.
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Nomenclature

Q (m?/s) Flow rate

Hp (m) Head under forward design condition

Hj (m) Head under reverse design condition

H3 (m) Sum of H; and H»

1 (%) Efficiency under forward design condition
N2 (%) Efficiency under forward design condition
N (r/min) Rotating speed

6(°) Blade angle of impeller

L (mm) Chord length of impeller

(°) Included angle between camber line and chord
o(°) theoretical lift coefficient

A(%) Outlet angle of skeleton line

e(®) Inlet angle of skeleton line

a(®) Inlet angle of diffuser

B(°) Outlet angle of diffuser

o (°) Wrap angle of diffuser

Cu (mz/s) Circulation

V, (m/s) Axial velocity

Abbreviations

3D Three-Dimensional

RANS Reynolds-Averaged Navier-Stokes

LHS Latin Hypercube Sampling

ANN Artificial Neural Network

NSGA Non-domination based Genetic Algorithm
CFD Computational Fluid Dynamics

DOE Design of Experiment

RSM Response Surface Model

EXP Experiment
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