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Abstract: Real-world problems such as scientific, engineering, mechanical, etc., are multi-objective
optimization problems. In order to achieve an optimum solution to such problems, multi-objective
optimization algorithms are used. A solution to a multi-objective problem is to explore a set
of candidate solutions, each of which satisfies the required objective without any other solution
dominating it. In this paper, a population-based metaheuristic algorithm called an artificial electric
field algorithm (AEFA) is proposed to deal with multi-objective optimization problems. The proposed
algorithm utilizes the concepts of strength Pareto for fitness assignment and the fine-grained elitism
selection mechanism to maintain population diversity. Furthermore, the proposed algorithm utilizes
the shift-based density estimation approach integrated with strength Pareto for density estimation,
and it implements bounded exponential crossover (BEX) and polynomial mutation operator (PMO)
to avoid solutions trapping in local optima and enhance convergence. The proposed algorithm is
validated using several standard benchmark functions. The proposed algorithm’s performance is
compared with existing multi-objective algorithms. The experimental results obtained in this study
reveal that the proposed algorithm is highly competitive and maintains the desired balance between
exploration and exploitation to speed up convergence towards the Pareto optimal front.

Keywords: artificial electric field algorithm; strength Pareto; multi-objective optimization problems;
recombination operator; fine-grained elitism selection; shift-based density estimation

1. Introduction

Most realistic problems in science and engineering consist of diverse competing objectives that
require coexisting optimization to obtain a solution. Sometimes, there are several distinct alternatives [1,2]
solutions for such problems rather than a single optimal solution. Targeting objectives are considered
the best solutions as they are superior to other solutions in decision space. Generally, realistic multiple
objective problems (MOOPs) require a long time to evaluate each objective function and constraint.
In solving such realistic MOOPs, the stochastic process shows more competence and suitability than
conventional methods. The evolutionary algorithms (EA) that mimic natural biological selection and
evolution process are found to be an efficient approach to solve MOOPs. These approaches evidence
their efficiency to solve solutions simultaneously and explore an enormous search space with adequate
time. Genetic algorithm (GA) is an acclaimed approach among bio-inspired EA. In recent years, GA has
been used to solve MOOPs, called non-dominated sorting genetic algorithm (NSGA-II) [3]. NSGA II
is recognized as a recent advancement in multi-objective evolutionary algorithms. Besides, particle
swarm optimization is another biologically motivated approach which is extended to multi-objective
particle swarm optimization (MOPSO) [4,5], bare-bones multi-objective particle swarm optimization
(BBMOPSO) [6], and non-dominated sorting particle swarm optimization (NSPSO) [7] to solve
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multi-objective optimization problems. These multi-objective approaches in one computation can
produce several evenly distributed candidate solutions rather than a single solution.

However, based on Coulomb’s law of attraction electrostatic force and law of motion principle,
a new algorithm called an artificial electric field algorithm [8] (AEFA) was proposed. AEFA mimics the
interaction of charged particles under the attraction electrostatic force control and follows an iterative
process. In a multi-dimensional search space, charged particles move towards heavier charges
and converge to the heaviest charged particle. Due to the strong capability of exploration and
exploitation, AEFA proved to be more robust and effective than artificial bee colony (ABC) [8],
ant colony optimization (ACO) [8], particle swarm optimization (PSO) [8], and bio-geography based
optimization (BBO) [8]. AEFA received growing attention from researchers in the development of a series
of algorithms in several areas, such as parameter optimization [9], capacitor bank replacement [10],
and scheduling [11]. There have been no research contributions found in recent years that have
extended AEFA to solve MOOPs. In this paper, a modest contribution for improving AEFA to solve
MOOP is made. The proposed algorithm (1) adopted the concept of “strength Pareto” for the fitness
refinement of the charged particles, (2) introduced a fine-grained elitism selection mechanism based on
the shift-based density estimation (SDE) approach to improve population diversity and manage the
external population set, (3) utilized SDE with “strength Pareto” for density estimation, and (4) utilized
bounded exponential crossover (BEX) [12] and polynomial mutation operator (PMO) [13,14] to improve
global exploration, the local exploitation capability, and the convergence rate.

This paper is organized in the following way: Section 2 covers an overview of the existing
literature on multi-objective optimization, Section 3 describes the preliminaries and background
algorithms, Section 4 describes the proposed multi-objective method in detail, Section 5 presents
results and performance of the proposed algorithm in comparison to existing optimization techniques,
and Section 6 sums up the findings of this research in concluding remarks.

2. Related Work

Since a single solution cannot optimize multiple objectives at once, the problem is formulated as
multi-objective optimization. Nobahari et al. [1] proposed a non-dominated sorting based gravitational
search algorithm (NSGSA). Several multi-objective evolutionary algorithms (MOEAs) [15–18] are
proposed in the past years. These algorithms have proven their ability to find various Pareto-optimal
solutions in one single computation. Srinivas and Deb [19] proposed a non-dominated Sorting
genetic algorithm (NSGA) where elitism was used to achieve a better convergence. Zitzler and
Thiele [20] introduced the concept strength Pareto evolutionary algorithm (SPEA) with elitism selection.
They proposed to maintain an external population to keep all the non-dominated solutions obtained
in each generation. In each generation, the external and internal population were combined as a set,
then based on the number of dominated solutions, all the non-dominated solutions in the combined
set were assigned a fitness value. The fitness value decided the rank of the solutions that directed the
exploration process towards the nondominated solution. Rudolph [21] proposed a simple elitist [22]
multi-objective EA based on a comparison between the parent population and the child population.
At each iteration, the candidate parent solutions were compared with the child non-dominated solution,
and a final non-dominated solution set was formed to participate as the parent population for the
next iteration. Although the proposed algorithm ensured the convergence to the Pareto-optimal
front, it suffered from population diversity loss. All population-based evolutionary algorithms
help in maintaining population diversity and convergence for multi-objective optimization [23].
In recent years, many significant contributions have been made that centered around the development
of hybrid [24] algorithms and many-objective optimization algorithms [25,26]. Zhao and Cao [27]
proposed an external memory-based particle swarm optimization (MOPSO) algorithm in which, besides
the initial search population, two external memories were used to store global and local best individuals.
Also, a geographic-based technique was utilized to maintain population diversity. Zhang and Li [28]
combined traditional mathematical approaches with EA and introduced a decomposition-based MOEA,



Processes 2020, 8, 584 3 of 26

MOEA/D [29]. Martinez and Coello [30] extended MOEA/D and proposed a constraint-based selection
mechanism to solve constrained MOPs. Gu et al. [31] proposed a dynamic weight design method based
on the projections of non-dominated solutions to produce evenly distributed non-dominated solutions.
Zhang [32] introduced a novel and efficient approach for non-dominated sorting to solve MOEAs.
Chong and Qiu [33] proposed a novel opposition-based self-adaptive hybridized differential evolution
algorithm to handle the continuous MOPs. Cheng et al. [34] proposed a many-objective optimization
for high-dimensional objective space in which a reference vector guided an evolutionary algorithm
introduced to maintain balance between diversity and convergence of the solutions. Hassanzadeh and
Rouhani [35] proposed a multi-objective gravitational search algorithm (MOGSA). Yuan et al. [36]
extended the gravitational search algorithm (GSA) to strength Pareto based multi-objective gravitational
search algorithm (SPGSA). A review of existing literature is presented in Table 1.

Table 1. Summary of existing MOOPs.

Author(s) Objective/Work Done Technique
Proposed/Used Performance Parameters Research Gap(s)

Identified

Nobahari,
et.al. [1]

Proposed a
multi-objective

gravitational search
based on non-dominated

sorting for power
transformer design

Non-dominated
sorting

gravitational search
algorithm (NSGSA)

Normalized arithmetic mean

The Algorithm lacks
scalability when dealing

with complex cases of
power transformer design.

Srinivas, and
Deb [19]

Proposed a
multi-objective genetic

algorithm based on
non-dominated sorting

Non-dominated
sorting genetic

algorithm (NSGA)
Chi-square test

The proposed algorithm
shows a slow convergence

rate.

Deb and Jain
[25]

Proposed an
evolutionary approach

for solving
many-objective

optimization

Reference-based
non dominated

sorting approach
(NSGA3)

1. Benchmark functions
2. Mean
3. Standard deviation
4. Inverted generational

distance (IGD)

Recombination operator
can be improved to
enhance population

diversity

Zhang and Li
[28]

Proposed a
multi-objective

evolutionary algorithm
based on decomposition

The multi-objective
evolutionary

algorithm based on
decomposition

(MOEA/D)

1. C-metric
2. D-metric

The penalty parameter
used in the proposed
algorithm is statically

initialized. For an
extremely lower or higher
value, the performance of

the penalty method
decreases

Martinez and
Coello [30]

Proposed a
decomposition-based

multi-objective
evolutionary algorithm

(eMOEA/D-DE) for
constraint MOOP

A new selection
mechanism based

on ε-constraint
method

1. Hypervolume
2. Feasibility ratio

Constraint parameters
(ε, δ) used in the

algorithm are statically
initialized. It can be

initialized dynamically.

Gu et.al. [31]

Proposed a
multi-objective

evolutionary algorithm
based on the projection

of the current
non-dominated solutions

and equidistance
interpolation

Dynamic weight
design method
with MOEA/D

1. Benchmark functions
2. Mean
3. Standard deviation
4. Inverted generational

distance (IGD)

The algorithm lacks
efficacy to solve complex

higher-dimensional
problems.

Zhang, et al.
[32]

Proposed a novel and
computationally efficient

approach to
non-dominated sorting

Efficient
non-dominated

sort (ENS)

1. Number of
dominance comparison

2. Execution time

The efficiency of the
algorithm decreases with
an increase in the number

of objectives
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Table 1. Cont.

Author(s) Objective/Work Done Technique
Proposed/Used Performance Parameters Research Gap(s)

Identified

Chong and
Qiu [33]

Proposed MOO
algorithm to solve

multi-objective traveling
salesman problem

Self-adaptive
differential

algorithm with a
decomposition-based

framework
(D-OSADE)

1. Benchmark functions
2. Mean
3. Standard deviation
4. Inverted generational

distance (IGD)

The algorithm becomes
less effective as the number

of salesmen increases

Cheng et al.
[34]

Proposed an
evolutionary algorithm

for many-objective
optimization

Reference vector
guided

evolutionary
algorithm (RVEA)

1. Benchmark functions
2. Mean
3. Standard deviation
4. Wilcoxon rank-sum test

The reference vector is
static. The selection type
of reference vector to be
used in many-objective

optimization is not
considered

Hassanzade
and Rouhani

[35]

Proposed a
multi-objective

algorithm based on
gravitational force

Multi-objective
gravitational

search algorithm
(MOGSA)

1. Spacing metric
2. Generational distance metric

The algorithm suffers
premature convergence

in solving complex
higher-dimensional

problems.

Yuan et al.
[36]

Proposed a
multi-objective

gravitational search
based on the concept of

strength Pareto

Strength Pareto
gravitational

search (SPGSA)

1. Convergence metric
2. Space metric
3. Generational distance metric
4. Diversity metric

Population diversity can
be further improved.

Our Contribution

In this paper, an improved artificial electric field algorithm is proposed to solve multi-objective
optimization problems. The concept of strength Pareto is used in the optimization process of the
proposed algorithm to refine fitness assignment. The shift-based density estimation (SDE) technique
with fine-grained elitism selection approach and SDE with strength Pareto are applied to improve the
population diversity and density estimation, respectively. The bounded exponential crossover (BEX)
operator and polynomial mutation operator (PMO) are used to reduce the possibility of the solution
trapping in local optima. The proposed algorithm is validated using different benchmark functions
and compared with existing multi-objective optimization techniques.

3. Preliminaries and Background

This section briefly discusses the basic concepts of multi-objective optimization, artificial electric
field algorithm, shift-based density estimation technique, and recombination and mutation operators.

3.1. Multi-Objective Optimization

In general, a multiple-objective problem (MOOP) involving m diverse objectives is mathematically
defined as

P = {P1; P2; . . . ; Pd}

where P represents the solution to MOOP, and d represents the dimension of the decision boundary.
A MOOP can be a minimization problem, a maximation problem, and a combination of both. The target
objectives in MOOP are defined as

Minimize/Maximize:
F(P) = [Fi(P), i = 1, 2 . . . .m]

Subject to the constraints: {
Ga(P) ≤ 0, a = 1, 2, . . . .A and,

Hb(P) ≤ 0, b = 1, 2, . . . .B
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where Fi(P) represents the ith objective function of Pth solution. An MOOP either can have no or

more than one constraint, e.g., Ga

(
→

P
)

and Hb

(
→

P
)

are considered as the ath and bth optional inequality

and equality constraints, respectively. A and B represent the total number of inequality and equality
constraints, respectively. The MOOP is then processed to calculate the value of the solution (P) for which
F(P) satisfies the desired optimization. Unlike single-objective optimization (SOO), MOOP considers
multiple conflicting objectives and produces a set of solutions in the search space. These solutions are
processed by the concept of Pareto dominance theory [36], defined as follows:

Considering an MOOP, a vector
→
x = x1; x2; . . . ; xm shows domination on vector

→
y = y1; y2; . . . ; ym,

if and only if
∀ i ∈ {1 . . . .m}, xi ≤ yi ∃ i ∈ {1 . . . .m} : xi < yi

where m represents the objective space dimension. A solution
→
x ∈ X (Universe) is called Pareto

optimal if and only if no other solution y ∈ Y dominates it. In such a case, solutions
(
→
x

)
are said

to be non-dominated solutions. All these non-dominated solutions are composed to a set called
Pareto-optimal set.

3.2. Artificial Electric Field Algorithm (AEFA)

Artificial electric field algorithm (AEFA) is a population-based meta-heuristic algorithm, which
mimics the Coulomb’s law of attraction electrostatic force and law of motion. In AEFA, the possible
candidate solutions of the given problem are represented as a collection of the charged particles.
The charge associated with each charged particle helps in determining the performance of each
candidate solution. Attraction electrostatic force causes each particle to attract towards one another
resulting in global movement towards particles with heavier charges. A candidate solution to the
problem corresponds to the position of charged particles and fitness function, which determines their
charge and unit mass. The steps of AEFA are as follows:

Step 1. Initialization of Population.
A population of P candidate solutions (charged particles) is initialized as follows:

CPi =
(
CP1

i , CP2
i , CPk

i . . . . . . . . .CPD
i

)
, ∀ i = 1, 2, 3 . . . p (1)

where CPk
i represents the position of ith charged particle in the kth dimension, and D is the

dimensional space.
Step 2. Fitness Evaluation.
A fitness function is defined as a function that takes a candidate solution as input and produces

an output to show how well the candidate solution fits with respected to the considered problem.
In AEFA, the performance of each charged particle depends on the fitness value during each iteration.
The best and worst fitness are computed as follows:

Best (T) = minn
i=1 Fitness (T) (2)

Worst (T) = maxn
i=1 Fitness (T) (3)

where Fitnessi (T) and n represent the fitness value of ith charged particle and total number of charged
particles in the population, respectively. Best (T), Worst (T) represent the best fitness and the worst
fitness respectively of all charged particles at time T.

Step 3. Computation of Coulomb’s Constant.
At time t, Coulomb’s constant is denoted by K(t) and computed as follows:

K(t) = K0 ∗ exp
(
−α

iter
maxiter

)
(4)
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Here, K0 represents the initial value and is set to 100. α is a parameter and is set to 30. iter and
maxiter represent current iteration and maximum number of iterations, respectively.

Step 4. Compute the Charge of Charged Particles.
At time T, the charge of ith charged particle is represented by Qi(T). It is computed based on the

current population’s fitness as follows:

Qi(T) =
qi(T)∑n
i=1 qi(T)

(5)

where

qi(T) = exp
(

f itnesscpi(T) −Worst (T)

Best (T) −Worst(T)

)
(6)

Here, Fitnesscpi is the fitness of the ith charged particle. qi(T) helps in determining the total charge
Qi(T) acting on the ith charged particle at time T.

Step 5. Compute the Electrostatic Force and Acceleration of the Charged Particles.

1. The electrostatic force exerted by the jth charged particle on the ith charged particle in the Dth

dimension at time T is computed as:

FD
ij (T) = K(t)

(
Qi(T) ∗Q j(T)

)
∗

(
PD

j (T) −XD
j (T)

)
Ri j(T) + ε

(7)

FD
i (T) =

N∑
j=1, j,i

rand () ∗ FD
ij (T) (8)

where Qi(T) and Q j(T) are the charges of ith and jth charged particles at any time T. ε is a small
positive constant, and Ri j(T) is the distance between two charged particles i and j. PD

j (T) and

XD
j (T) are the global best and current position of the charged particle at time T. FD

i (T) is the net
force exerted on ith charged particle by all other charged particles at time T. rand () is uniform
random number generated in the [0, 1] interval.

2. The acceleration aD
i (T) of ith charged particle at time T in Dth dimension is computed using the

Newton law of motion as follows:

aD
i (T) =

Qi(T) ∗ ED
i (T)

MD
i (T)

, ED
i (T) =

FD
i (T)

Qi(T)
(9)

where ED
i (T) and MD

i (T) represent respectively the electric field and unit mass of ith charged
particle at time T and in Dth dimension.

Step 6. Update velocity and position of charged particles.
At time T, the position and velocity of ith charged particle in Dth dimension ae updated as follows:

velDi (T + 1) = randi ∗ velDi (T) + aD
i (t) (10)

CPD
i (T + 1) = CPD

i (T) + velDi (t) (11)

where velDi (T) and CPD
i (T) represent the velocity and position of the ith charged particle in Dth

dimension at time T, respectively. rand() is a uniform random number in the interval [0, 1].

3.3. Shift-Based Density Estimation

In order to maintain good convergence and population diversity, the shift-based density estimation
(SDE) [37] was introduced. While determining the density of an individual (Pi), unlike traditional
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density estimation approaches, SDE shifts other individuals in the population P to a new position.
The SDE utilizes the convergence comparison between current and other individuals for each objective.
For example, if P j ∈ P outperforms Pk ∈ P on any objective, the corresponding objective value of PJ is
shifted to the position of Pk on the same objective. In contrast, the value (position) of the objective
remains unchanged. The process is described as

Fsd
i

(
P j

)
=

 F′i (Pk), if F′i
(
P j

)
< F′i(Pk)

F′i
(
P j

)
, otherwise

(12)

where Fsd
i

(
P j

)
represent the shifted objective value of F′i

(
P j

)
, and

Fsd
(
P j

)
=

(
Fsd

1

(
P j

)
, Fsd

2

(
P j

)
, Fsd

3

(
P j

)
, . . . Fsd

m

(
P j

))
represents shifted objective vector of F

(
P j

)
.

The steps followed in density estimation are explained in Algorithm 1.

Algorithm 1 Density Estimation for Non-Domination Solutions

Input: Non-dominated solutions
(
PIc1

, PIc1
, . . . .PIcn

)
Output: Density of each solution

1. Shift the position of non-dominated solutions using Equation (12)
2. Calculate the distance between two adjacent non-dominated solutions as follows:

d PIci
, PIci+1

=

√√√ n∑
j=1

(
Fit

(
PIci , j

)
− Fit

(
PIci+1, j

))2

3. Find the kth minimum value (σ PIck

) in {dPI c i , dPI c i+1 , PIci
∈ P∩ PIci

, PIci+1
}

4. Compute SDE
(
PIci

)
= 1

σPIck
+2

3.4. Recombination and Mutation Operators

In AEFA, movement (acceleration) of one charged particle towards another is determined by the
total electrostatic force exerted by other particles on it. In this paper, bounded exponential crossover
(BEX) [12] and polynomial mutation operator (PMO) [13,14] are used with AEFA to enhance the
acceleration in order to increase convergence speed further.

3.4.1. Bounded Exponential Crossover (BEX)

The performance of MOOP highly depends upon the solution generated by the crossover operator.
A crossover operator produces solutions that reduce the possibility of being trapped in local optima.
Bounded exponential crossover (BEX) is used to generate the offspring solutions in the interval

[
Pl

i, Pu
i

]
.

BEX involves an additional factor α that depends on the interval
[
Pl

i, Pu
i

]
and the parent solution

position. The steps to generate offspring solutions in the interval
[
Pl

i, Pu
i

]
and related to each pair of

the parent xi and yi are given in Algorithm 2.

3.4.2. Polynomial Mutation Operator (PMO)

In order to avoid premature convergence in MOOP, the mutation operator is used. In this paper,
the polynomial mutation operator (PMO) is used with the proposed algorithm. PMO includes two
control parameters: mutation probability of a parent solution (pm) and the magnitude of the expected
solution (ηm). For an individual P(t)

i = (P(t)
1 , P(t)

2 . . . . . .P(t)
m ), PMO is computed as follows:

P(t+1)
i = P(t)

i + δ ∗ (yu− yd) (13)
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where P(t+1)
i represents the decision variable after the mutation, and P(t)

i represents the decision
variable before the mutation. yu and yd represent the lower and upper bounds of the decision variable,
respectively. δ represents a small variation obtained by

δ =



[
2r2 + (1− 2r2) ∗

(
max(yu−xt

i , xt
i−yd)

yu−yd

)ηm+1 ] 1
ηm+1

− 1 if r2 ≤ 0.5

1−
[

2r2 + (1− 2r2) ∗

(
max(yu−xt

i , xt
i−yd)

yu−yd

)ηm+1 ] 1
ηm+1

, otherwise

(14)

Here, r2 is a random number in [0, 1] interval, which is compared with a predefined threshold
value (0.5), and ηm represents the mutation distribution index.

Algorithm 2 Bounded Exponential Crossover (BEX)

Input: Parent solutions x = x1, x2, . . . .xm and y = y1, y2, . . . .ym and scaling parameter λ > 0
Output: Offspring solutions
While i ≤ m do

1. Generate uniformly distributed random number ui ∈ U(0, 1)
2. Compute βx

i and βy
i which is derived by inverting the bounded exponential distribution,

βx
i =


λ log

{
exp

(
xl

i−xi

λ(yi−xi)

)
+ ui

(
1− exp

(
xl

i−xi

λ(yi−xi)

))}
, if ri ≤ 0.5

−λ log
{
1− ui

(
1− exp

(
xl

i−xi

λ(yi−xi)

))}
, if ri > 0.5

β
y
i =


λ log

{
exp

(
xl

i−yi

λ(yi−xi)

)
+ ui

(
1− exp

(
xl

i−yi

λ(yi−xi)

))}
, if ri ≤ 0.5

−λ log
{
1− ui

(
1− exp

(
yl

i−xi

λ(yi−xi)

))}
, if ri > 0.5

where ri ∈ U(0, 1) represents uniformly distributed random variable and xl
i, xu

i are the lower and upper
bounds of the ith decision variable.

3. Offspring solutions are generated using

εi = xi + βx
i (yi − xi), ηi = yi + βx

i (yi − xi)

end while

4. Proposed Algorithm

In this section, the proposed multi-objective optimization method is described in detail.
The algorithm starts with parameter initialization. Then, a population of candidate solutions is
generated. Further, by computing fitness values for each candidate solution, the best solution is
selected. The population is iteratively updated until the termination conditions are satisfied and the
optimal solution is returned. The proposed algorithm is presented in Algorithm 3. The explanation of
the symbols used in the proposed algorithm is presented in Table 2. The steps followed in the proposed
algorithm are as follows.

4.1. Population Generation

In the proposed algorithm, there are two populations, i.e., searching population (Pn) and the
external population

(
P∗Ic

)
. The searching population, which contains initial candidate solutions,

computes the non-dominated solutions and stores them in the external population. The process is
performed iteratively.
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Algorithm 3 Proposed Multi-Objective Optimization Algorithm

Input: Searching population of size (n), External Population of size (m)

Output: Non-dominated set of charged particles
(
NDCp

)
Begin

1. Initialize searching population ( Pn ) of charged particles CP.

2. Initialize external population P∗= ∅ and set iteration counter Ic = 1

While (Ic<Icmax)
For each CP ∈ PIc U P∗Ic

1. Compute the fitness F(CP) using Equation (15)
2. Computer the density using shift-based density estimation (Section 3.3)

end for
For each CP ∈ PIc U P∗Ic

do
If F(CP) < 1 then
P∗Ic+1

= P∗Ic+1
U {CP}

end if
end for
If (P∗Ic+1

< m) then

PIc+1 = PIc+1 U
((

PIc U P∗Ic

)[
1 : m−

∣∣∣PIc+1
∣∣∣])

else
delete non-dominated solution from P∗Ic

using Equation (17) as described in Section 4.3
end if

a. Select charged particles (CP) into the mating pool PIc+1 from P Ic
U P∗Ic+1

b. Evaluate charge, update the velocity and position of PIC+1 as defined in Section 3.2 and obtain the new
position of CP

c. Apply crossover and mutation operator (using Section 3.4) on population PIc+1

end while
For each CP ∈ Pt+1 do

If CP is a non-dominated solution then
NDCp = NDCp ∗ {CP} ;

end if
end for

4.2. Fitness Evaluation

The traditional AEFA is not suitable for the MOOPs due to the definition of charge. According to
Equations (7) and (8), the charge of a particle is related to fitness value. Thus, the multi-objective fitness
assignment used in the SPEAII [38] is introduced to evaluate the charge of the AEFA algorithm for two
or more objectives in MOOPs. The multi-objective fitness assignment of the proposed algorithm is
calculated by using the formula as follows:

F(i) = R(i) + D(i), R(i) =
∑

j ∈PtU P′t

s( j) and s( j)| { i|i ∈ PtU Pt
∗
}| (15)

where F(i) is the fitness value of the charged particle i. R(i) means the raw fitness value of the charged
particle i, and D(i) represents the additional density information of the charged particle i. The raw
fitness exhibits the strength of each charged particle by assigning a rank to each charged particle.
In MOOP, to avoid such conditions where more than more solution (charged particle) shows a similar
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rank, an additional density measure is used for distinguishing the difference between them. The SDE
technique is used to describe the additional density (crowding distance) of i.

4.3. A Fine-Grained Elitism Selection Mechanism

Elitism selection is a critical process in multi-objective optimization. It helps in the determination
of the best fit solution for the next generation. The selection process affects the Pareto front output.
If a better solution is lost in the selection, it cannot be found again. The selection of a better solution that
dominates other solutions helps in removing worse solutions. In this study, a modified fine-grained
elitism selection method that utilizes the shift-based density estimation (SDE) approach is proposed
to improve population diversity. Similarly, to the non-dominated solution selection mechanism,
the proposed method also selects the non-dominated solution as follows:

P∗IC+1 =
{

CP
∣∣∣∣CP Pn U P∗IC+1

}
∧ F(CP) < 1

As the external population size (m) is fixed, the non-dominated solutions are copied to the external
population set (P∗IC+1) until the current size of the external population is less than m. In contrast,
the non-dominated solutions (P∗IC+1 −m) are discarded from the external population set. In order to
discard solutions and maintain diversity, the proposed method deletes the solution with the most
crowded region computed using the SDE approach, as described in Section 3.3. The steps used to
compute the shared crowding distance are as follows.

1. The distance between two adjacent particles PIc and P∗IC+1 is computed as Algorithm 1.

2. For each particle, an additional density estimation (shared crowding distance) is computed
as follows:

σcrowd =
SDE (P∗Ic

)

|m|
(16)

When the size of the non-dominated solution size exceeds external population size (i.e., P∗Ic
> m),

the proposed method selects the kth charged particle from the external population (P∗Ic
) using Equation

(17) and deletes it. This process is performed iteratively until |P∗Ic
| = m.

σkcrowd >

∑|P∗Ic |
i=1 σcrowd(P∗Ic )i

|m|
(17)

Here, the solution (charged particle) whose density is greater than the average shared crowing
distance of all non-dominated solutions in the external population is considered as the worst solution
and is deleted from the external population set. Then, the average crowding distance is recomputed
and used in a similar manner until P∗Ic

= m.
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Table 2. Symbols used in the proposed algorithm.

Symbol Definition

n Initial searching population size
Pn Searching population
m External population size
Pm External population

CPD
i (T) Position of ith charged particle (candidate solution) in Dth dimension at time T

velDi (T) velocity of ith charged particle in Dth dimension at time T
NDCp Non-dominated set of charged particles (candidate solution)

Fitness (T) Objective fitness function
Best (T) Charged particle with best fitness at time T

Worst (T) Charged particle with worst fitness at time T
K Coulomb’s constant

Qi(T) Total charge on a ith charged particle at time T
qi(T) Small charge of ith charged particle to determine the total charge acting on ith charged particle

Fi j Force exerted by jth charge particle on ith charge particle
SDE Shift based density estimation
Icmax Maximum number of iterations

dPI ci ,PI ci+1
Distance between two non-dominated solutions (PIci and PIci+1 )

σcrowd Shared crowding distance for each CP
σkcrowd Shared crowding distance of kth CP chosen for deletion from the external population set

5. Experimental Results and Discussion

This section is further divided into three sub-sections. Section 5.1 discusses the performance
comparison of the AEFA with existing evolutionary approaches. Section 5.2 gives a performance
comparison of the proposed algorithm with existing multi-objective optimization algorithms,
and Section 5.3 presents a sensitivity analysis of the proposed algorithm.

5.1. Performance Comparison of the AEFA With Existing Evolutionary Approaches

At first, the performance of AEFA is evaluated on 10 benchmark functions. These benchmarks are
taken as three unimodal (UM), three low-dimensional multimodal (LDMM), and four high-dimensional
multimodal (HDMM) functions. All these functions belong to the minimization problem.
The description of the benchmark functions is given in Table 3. Then, the performance of the
AEFA is compared with existing evolutionary approaches. For performance comparison, four statistical
performance indices are considered: average best-so-far solution, mean best-so-far solution, the
variance of the best-so-far solution, and average run-time. During each iteration, the algorithm updates
the best-so-far solution and records running time. The performance indices are computed by analyzing
the obtained best-so-far solution and running time.

5.1.1. Parameter Setting

For experimental analysis, the parameters, i.e., population size (Pn, Pm), the maximum Coulomb’s
constant (K0), and the maximum number of iterations (Icmax), are initialized in Table 4.

5.1.2. Results and Discussion

The performance of AEFA is compared with existing evolutionary optimization algorithms:
backtracking search algorithm (BSA) [36], cuckoo search algorithm (CK) [36], artificial bee colony (ABC)
algorithm [36], and gravitational search algorithm (GSA) [36]. The results are demonstrated in Table 5
and Figure 1. Figure 1 presents the difference between the AEFA and other existing algorithms based
on the values obtained by performance measures on benchmark functions. For a better representation,
all the results (except Figure 1d–h) are formulated in logarithm scale (base 10). A larger logarithmic
value represents the minimum values of performance measures obtained for different functions.
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The results in Table 5 and Figure 1 demonstrate that the AEFA obtained minimum values for all UM
and LDMM functions. The obtained values competed with the values of GSA and outperformed
the value of ABC, CK, and BSA, which reveals that AEFA maintains a balance between exploration
and exploitation and performs better in comparison to existing approaches. However, for HDMM
(except benchmark F10) functions, AEFA performs worse as compared to ABC, and BSA, which implies
that the AEFA suffers from the loss of diversity resulting in premature convergence in solving complex
HDMM problems. It is concluded from results that the original AEFA faces challenges in solving
higher-dimensional multimodal problems.

Table 3. Benchmark functions used for performance comparison of evolutionary algorithms.

Benchmark
Function Type Variable Bound Objective Function Dimension(s)

F1 UM
−100 ≤ xi ≤ 100 F(x) =

∑n
i=1 x2

i 30i = 1, 2, 3 . . . n

F2 UM
−10 ≤ xi ≤ 10 F(x) =

∑n
i=1|xi|+

∏n
i=1 xi 30i = 1, 2 . . . n

F3 UM
−100 ≤ xi ≤ 100 F(x) = max {|xi|, 1 ≤ i ≤ n} 30i = 1, 2 . . . n

F4 LDMM
0 ≤ xi ≤ 1

F(x) = −
∑4

i=1 ci exp(−
∑6

j=1 ai j
(
x j − pi j

)2
) 6i = 1, 2 . . . n

F5 LDMM
0 ≤ xi ≤ 100

F(x) = −
∑7

i=1 [(X − ai)(X − ai)
T + ci]

−1 4i = 1, 2 . . . n

F6 LDMM
0 ≤ xi ≤ 100

F(x) = −
∑10

i=1 [(X − ai)(X − ai)
T + ci]

−1 4i = 1, 2 . . . n

F7 HDMM
−500 ≤ xi ≤ 500

F(x) =
∑n

i=1 −xi sin
(√
|xi|

)
30i = 1, 2 . . . n

F8 HDMM
−5.12 ≤ xi ≤ 5.12

F(x) =
∑n

i=1

[
x2

i − 10cos(2πxi) + 10
]

30i = 1, 2 . . . n

F9 HDMM
−600 ≤ xi ≤ 600

F(x) = 1
40000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1 30i = 1, 2 . . . n

F10 HDMM −50 ≤ xi ≤ 50
i = 1, 2 . . . n

F(x) = 0.1
{
sin(3πxi)+

∑n
i=1(xi − 1)2 + 1

+ sin2(3πxi + 1)] +(xn − 1)2

∗[1 + sin2(2πxn)]
}
+
∑u

i=1 u(xi, 10, 100, 4),

u(xi, a, k, m) =

{
k(xi − a)m xi > a

k(−xi − a)m xi < −a

30

Table 4. Parameters used to evaluate AEFA.

Description Parameter Value

Population size Pn, Pm 50
Initial value used in Coulomb’s constant K0 100

Maximum number of iterations Icmax
300 for F4− F6 and 1000 for the
rest of the benchmark functions
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Table 5. Performance comparison between AEFA and existing evolutionary optimization algorithms.

Benchmark Optimization Algorithm
Statistical Performance Indices

Average Best Mean Best Variance Best Average Run Time

F1

AEFA 3.21× 10−16 2.54× 10−18 3.98× 10−16 9.48× 100

GSA 3.33× 10−14 2.68× 10−17 4.79× 10−14 9.71× 100

ABC 4.20× 10−9 1.52× 10−9 8.40× 10−9 1.63× 101

CK 9.26× 10−3 9.44× 10−3 2.35× 10−2 3.88× 100

BSA 4.87× 10−3 3.28× 10−3 4.53× 10−3 1.28× 100

F2

AEFA 1.26× 10−8 2.00× 10−8 1.10× 10−8 9.72× 100

GSA 1.55× 10−8 2.08× 10−8 1.16× 10−8 9.95× 100

ABC 3.22× 10−6 2.99× 10−6 1.35× 10−6 1.75× 101

CK 1.62× 100 1.30× 100 8.15× 10−1 4.12× 100

BSA 1.73× 10−2 1.49× 10−2 9.11× 10−3 1.98× 100

F3

AEFA 2.68× 10−10 2.98× 10−9 8.78× 10−11 9.01× 100

GSA 3.34× 10−9 3.13× 10−9 9.05× 10−10 8.98× 100

ABC 6.02× 101 6.15× 101 9.39× 100 1.71× 101

CK 3.21× 100 3.22× 100 9.39× 100 3.92× 100

BSA 4.52× 100 4.65× 100 1.05× 100 1.74× 100

F4

AEFA −3.30× 100
−3.30× 100 4.38× 10−16 2.44× 100

GSA −3.32× 100
−3.32× 100 4.08× 10−16 2.24× 100

ABC −3.32× 100
−3.32× 100 2.33× 10−9 7.24× 100

CK −3.32× 100
−3.32× 100 4.80× 10−5 1.32× 100

BSA −3.32× 100
−3.32× 100 1.48× 10−4 6.74× 10−1

F5

AEFA −1.02× 101
−1.02× 101 2.68× 10−16 2.34× 100

GSA −1.04× 101
−1.04× 101 2.97× 10−15 2.29× 100

ABC −1.04× 101
−1.04× 101 1.38× 10−3 8.23× 100

CK −1.04× 101
−1.04× 101 2.69× 10−3 1.57× 100

BSA −1.04× 101
−1.04× 101 3.50× 10−2 1.04× 100

F6

AEFA −1.05× 101
−1.05× 101 1.28× 10−15 2.40× 100

GSA −1.05× 101
−1.05× 101 1.47× 10−15 2.46× 100

ABC −1.05× 101
−1.05× 101 7.06× 10−4 9.34× 100

CK −1.05× 101
−1.05× 101 2.97× 10−3 2.97× 10−3

BSA −1.05× 101
−1.05× 101 6.17× 10−2 9.07× 10−1

F7

AEFA −2.79× 103
−2.68× 103 4.18× 102 2.98× 100

GSA −2.84× 103
−2.84× 103 4.22× 102 3.01× 100

ABC −1.08× 104
−1.07× 104 2.97× 102 5.86× 100

CK −8.77× 103
−8.79× 103 2.44× 102 4.60× 100

BSA −1.11× 104
−1.11× 104 2.49× 102 2.57× 100

F8

AEFA 1.28× 101 1.28× 101 3.56× 100 1.06× 101

GSA 1.53× 101 1.54× 101 4.01× 100 1.10× 101

ABC 1.06× 10−1 2.24× 10−6 3.05× 10−1 1.89× 101

CK 8.38× 101 8.40× 101 1.05× 101 4.80× 100

BSA 2.84× 101 2.77× 101 4.18× 100 2.62× 100

F9

AEFA 4.08× 100 3.19× 100 1.80× 100 9.70× 100

GSA 4.15× 100 3.56× 100 1.81× 100 9.74× 100

ABC 4.01× 10−4 2.81× 10−8 1.79× 10−3 2.44× 101

CK 1.03× 10−1 9.68× 10−2 9.6× 10−2 5.32× 100

BSA 3.21× 10−2 1.87× 10−2 3.65× 10−2 2.42× 100

F10

AEFA 5.00× 10−4 1.96× 10−18 2.30× 10−3 1.12× 101

GSA 5.49× 10−4 2.10× 10−18 2.46× 10−3 1.07× 101

ABC 2.10× 10−3 1.17× 10−3 2.45× 10−3 1.27× 101

CK 1.50× 10−1 1.49× 10−1 6.82× 10−2 7.82× 100

BSA 4.98× 10−4 4.37× 10−4 3.60× 10−4 4.35× 100

5.2. Performance Comparison of the Proposed Algorithm with Existing Multi-Objective
Optimization Algorithms

As shown in Table 5, the AEFA faces challenges in solving MOOP. These challenges are addressed
through the proposed algorithm. The proposed algorithm is evaluated with six benchmark functions.
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The description of benchmark functions is presented in Table 6. The performance of the proposed
algorithm is compared with the existing MOOP based on four performance measures: generational
distance metric (GD) [2], diversity metric (DM) [3], converge metric (CM) [3], and spacing metric
(SM) [39]. DM measures the extent of spread attained in the obtained optimal solution. CM measures
the convergence to the obtained optimal Pareto front. GD measures the proximity of the optimal
solution to the Pareto optimal front. SM demonstrates how evenly the optimal solutions are distributed
among themselves. Further, the performance of the proposed algorithm is compared with existing
MOOPs in terms of recombination and mutation operators.

5.2.1. Parameter Setting

For experimental analysis, the parameters, i.e., initial population size (Pn), external population
size (Pm), the maximum Coulomb’s constant (K0), the maximum number of iterations (Icmax),
initial crossover probability (Pco), final crossover probability (Pc1), initial mutation probability (Pm0),
and final mutation probability (Pm1), are initialized and presented in Table 7.

5.2.2. Results and Discussion

The performance of the proposed algorithm is analyzed in three steps: (1) the proposed algorithm
is evaluated on SCH, FON, and ZDT benchmarks and then compared with NSGA II [3], NSPSO [7],
BCMOA [40], and SPGSA [36] based on CM, DM, and GD metrics; the (2) proposed algorithm is
evaluated on MOP5 and MOP6 benchmarks and then compared with NSGSA [36], MOGSA [36],
SMOPSO [36], MOGA II [36], and SPGSA [36] based on GD and SM metrics; and (3) the efficacy of
using the recombination operator is validated by evaluating the proposed algorithm on six benchmarks
and then compared with the existing MOOPs. Experiments are performed 10 times on each benchmark
function, and results are recorded in terms of mean and variance, contributing to the robustness of the
algorithm. The results are presented in Tables 8–12 and Figures 2–6. For better representation, all the
results in Figures 2–6 are prepared using logarithmic scale, where a high logarithmic value corresponds
to a minimum output value (mean and variance). Results in Table 8 and Figure 2 demonstrate that the
proposed algorithms obtained minimum values of CM metric as compared to NSGSA [36], MOGSA [36],
SMOPSO [36], MOGA II [36], and SPGSA [36] which proves that the proposed algorithm ensures better
convergence and keeps a good balance between exploration and exploitation of low-dimensional as
well as high-dimensional problems. Figure 3 and Table 9 show that the proposed algorithm obtained
the minimum value of variance (in DM metric) for all the benchmark functions as compared to NSGA II,
NSPSO, BCMOA, and SPGSA, which validates the efficacy and robustness of the proposed algorithm.
Results in Table 10 (GD metric) and Figure 4 demonstrate that the proposed algorithm performed better
in comparison to existing NSGA II, NSPSO, BCMOA, and SPGSA. GD metric validates the proximity
of obtained optimal solution to the optimal Pareto front, thereby ensuring the effectiveness of the
proposed algorithm. Table 11 and Figure 5 demonstrate that the proposed algorithm achieves better
values for GD and SM metrics than the compared algorithm. GD values of the proposed algorithm
show more accurate results than the compared algorithm, and SM values show that the proposed
algorithm attains a better convergence accuracy for all benchmark functions, which shows that the
proposed algorithm can produce uniformly distributed, non-dominated optimal solutions. Table 12
and Figure 6a–c show that the proposed algorithm is compared with SPEA2, SPGSA, SPGSA_NRM,
and a self-variant of MOOP without utilizing BEX and PMO operators. Results indicate that involving
BEX and PMO operators in the proposed algorithm significantly improves the algorithm optimization
performance in comparison to the compared algorithm. Contrary, in the absence of these operators,
the proposed algorithm suffers from premature convergence. So, it is concluded from all four metrics
(Tables 8–11) and Table 12 that the proposed algorithm shows better efficacy, accuracy, and robustness
in searching true Pareto fronts across the global search space in comparison to the existing MOOP
algorithm. Further, involving BEX and PMO operators, the proposed algorithm maintains desirable
diversity in searching the true Pareto front.
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Table 6. Benchmark functions used for MOOP performance comparison.

Benchmark
Function Type Variable

Bound Objective Function Dimension(s)

SCH [3]
Bi-Objective

(Low dimension)
−3 ≤ xi ≤ 3 Minimize F1(x) = x2

1
Minimize F2(x) = (x− 2)2

FON [3] Bi-Objective
(Low dimension)

−4 ≤ xi ≤ 4
i = 1, 2 . . . n

Minimize F1(x) = 1− exp
(
−

∑n
i=1

(
xi −

1
√

n

)2
)

3
Minimize

F2(x) = 1− exp
(
−

∑n
i=1

(
xi +

1
√

n

)2
)

ZDT1 [3]
Bi-Objective

(High dimension)
0 ≤ xi ≤ 1

i = 1, 2 . . . n

Minimize F1(x) = x1
30Minimize F2(x) = g

(
1−

√
f 1
g

)
,

g = 1 + 9
∑n

i=2

(
xi

n−1

)

ZDT2 [3] Bi-Objective
(High dimension)

0 ≤ xi ≤ 1
i = 1, 2 . . . n

Minimize F1(x) = x1
30Minimize F2(x) = g

(
1−

(
f 1
g

)2
)
,

g = 1 + 9
∑n

i=2

(
xi

n−1

)

MOP5 [5]
Tri-Objective

(Low dimension)
−30 ≤ x, y<=30

Minimize F1(x, y) = 1
2

(
x2 + y2

)
Sin

(
x2 + y2

)
2Minimize

F2(x, y) = 1
8 (3x− 2y + 4) + (x−y+1)2

27 +15
Minimize F3(x, y) = 1

x2+y2+1 − 1.1e−
(
x2 + y2

)
MOP6 [5]

Bi-Objective
(Low dimension)

0 ≤ x, y<=1
Minimize F1(x, y) = x

2Minimize F2(x, y) = (1 + 10y)

∗

[
1−

(
x

1+10y

)2
−

(
x

1+10y

)
sin(8πx)

]

DTLZT2
[13]

Tri-Objective
(High dimension)

0 ≤ xi ≤ 1
i = 1, 2 . . . n

Minimize
F1(x) = Cos

(
π
2 x1

)
Cos

(
π
2 x2

)
(1 + g(x))

12Minimize
F2(x) = Cos

(
π
2 x1

)
Sin

(
π
2 x2

)
(1 + g(x))

Minimize F3(x) = Sin
(
π
2 x2

)
(1 + g(x)),

where g =
∑n

i=3(xi − 0.5)2
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Table 7. Parameters used in the proposed algorithm.

Description Parameter Value

Population (charged particles) size Pn 100

External Population size Pm
100 for SCH, FON, ZDT
800 for MOP functions

Initial value used in Coulomb’s constant K0 100

The maximum number of iterations Icmax
100 for SCH and FON functions
250 for ZDT and MOP functions

Initial crossover probability Pco 1.0
Final crossover probability Pc1 0.0
Initial mutation probability Pm0 0.01
Final mutation probability Pm1 0.001

Table 8. Performance comparison of the proposed algorithm with existing MOOPs based on SCH,
FON, and ZDT functions using the CM metric.

Benchmark
Function Parameters

Algorithm

Proposed
Algorithm SPGSA BCMOA NSGA II NSPSO

SCH
Mean 1.48× 10−1 1.65× 10−1 7.60× 10−1 3.8× 10−1 8.6× 10−1

Variance 1.22× 10−4 1.3× 10−4 1.00× 10−3 1.00× 10−3 8.60× 10−4

FON
Mean 1.52× 10−1 1.61× 10−1 4.85× 10−1 4.14× 10−1 5.81× 10−1

Variance 2.52× 10−4 2.4× 10−4 1.00× 10−4 9.80× 10−4 3.16× 10−2

ZDT1
Mean 1.5× 10−1 1.61× 10−1 5.98× 10−1 4.06× 10−1 6.38× 10−1

Variance 1.42× 10−4 1.4× 10−4 4.10× 10−3 1.26× 10−3 2.69× 10−3

ZDT2
Mean 1.61× 10−1 1.63× 10−1 6.89× 10−1 4.39× 10−1 5.80× 10−1

Variance 1.46× 10−4 1.5× 10−4 8.13× 10−3 1.19× 10−3 1.08× 10−3

Table 9. Performance comparison of the proposed algorithm with existing MOOPs based on SCH,
FON, and ZDT functions using the DM metric.

Benchmark
Function Parameters

Algorithm

Proposed
Algorithm SPGSA BCMOA NSGA II NSPSO

SCH
Mean 2.75× 10−3 3.24× 10−3 3.28× 10−3 3.14× 10−3 3.40× 10−1

Variance 1.89× 10−8 2.98× 10−8 2.16× 10−8 4.64× 10−8 7.40× 10−4

FON
Mean 1.55× 10−3 1.72× 10−3 2.77× 10−3 2.36× 10−3 2.84× 10−1

Variance 1.30× 10−8 1.10× 10−8 3.41× 10−8 1.24× 10−8 9.04× 10−2

ZDT1
Mean 1.02× 10−3 1.17× 10−3 1.19× 10−3 4.02× 10−3 3.81× 10−1

Variance 1.98× 10−9 2.66× 10−9 3.41× 10−8 3.14× 10−7 3.22× 10−3

ZDT2
Mean 7.90× 10−5 8.06× 10−4 8.37× 10−4 2.71× 10−3 4.59× 10−1

Variance 4.22× 10−11 6.37× 10−10 1.25× 10−8 7.69× 10−8 3.24× 10−3
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Table 10. Performance comparison of the proposed algorithm with existing MOOPs based on SCH,
FON, and ZDT functions using the GD metric.

Benchmark
Function Parameters

Algorithm

Proposed
Algorithm SPGSA BCMOA NSGA II NSPSO

SCH
Mean 2.69× 10−4 3.78× 10−4 3.78× 10−4 3.68× 10−4 4.5× 10−4

Variance 2.02× 10−10 3.06× 10−10 1.57× 10−10 3.4× 10−10 2.6× 10−8

FON
Mean 4.05× 10−5 2.13× 10−4 3.62× 10−4 2.94× 10−4 3.6× 10−4

Variance 3.12× 10−11 3.06× 10−10 8.03× 10−10 4.2× 10−10 1.8× 10−9

ZDT1
Mean 3.12× 10−5 2.4× 10−4 2.02× 10−4 5.56× 10−4 4.3× 10−4

Variance 4.37× 10−11 4.76× 10−10 3.64× 10−9 7.95× 10−9 3.4× 10−8

ZDT2
Mean 6.16× 10−5 9.71× 10−5 1.00× 10−4 4.18× 10−4 3.5× 10−4

Variance 1.14× 10−11 1.56× 10−11 1.97× 10−10 9.64× 10−9 1.6× 10−8

Table 11. Performance comparison of the proposed algorithm with existing MOOPs based on MOP5
and MOP6 functions using the GD/SM metric.

Benchmark
Function Metric

Algorithm

Proposed
Algorithm SPGSA NSGSA MOGSA SMOPSO MOGA II

MOP5
GD 2.86× 10−6 3.9× 10−5 1.0× 10−4 1.2× 10−3 1.11× 10−2 7.2× 10−1

SM 4.86× 10−3 2.18× 10−2 3.4× 10−2 1.8× 10−1 3.96× 10−1 2.0× 10−1

MOP6
GD 7.02× 10−7 5.01× 10−6 3.0× 10−5 2.45× 10−5 2.98× 10−4 1.00× 10−3

SM 4.86× 10−3 5.34× 10−2 5.7× 10−2 1.80× 10−1 1.16× 10−1 9.42× 10−1
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Table 12. Performance comparison of the proposed algorithm with existing MOOPs based on recombination and mutation operators.

Performance Metric Benchmark Functions Proposed Algorithm Proposed Algorithm (without BEX and PMO Operator) SPEA2 SPGSA SPGSA_ES

CM metric

SCH 2.87× 10−3 3.11× 10−3 3.31× 10−3 3.21× 10−3 3.23× 10−3

FON 1.45× 10−3 1.58× 10−3 1.86× 10−3 1.60× 10−3 1.67× 10−3

ZDT1 1.07× 10−3 1.17× 10−3 1.31× 10−3 1.17× 10−3 1.43× 10−3

ZDT2 5.08× 10−4 7.28× 10−4 8.68× 10−4 7.84× 10−4 9.37× 10−4

MOP5 4.18× 10−3 5.11× 10−3 4.01× 10−2 3.65× 10−2 6.16× 10−2

MOP6 6.18× 10−6 4.11× 10−5 9.86× 10−5 9.84× 10−5 1.19× 10−4

DTLZ2 1.88× 10−4 5.01× 10−3 7.97× 10−3 8.01× 10−3 8.33× 10−3

GD metric

SCH 4.08× 10−5 4.98× 10−5 4.03× 10−4 3.76× 10−4 3.78× 10−4

FON 1.81× 10−4 1.95× 10−4 2.37× 10−4 1.98× 10−4 2.01× 10−4

ZDT1 2.31× 10−4 2.43× 10−4 2.63× 10−4 2.50× 10−4 2.60× 10−4

ZDT2 6.25× 10−5 7.11× 10−5 9.41× 10−5 9.36× 10−5 9.78× 10−5

MOP5 5.28× 10−4 2.70× 10−3 1.90× 10−2 1.76× 10−2 2.13× 10−2

MOP6 1.12× 10−5 1.32× 10−5 1.32× 10−5 1.30× 10−5 1.55× 10−5

DTLZ2 3.77× 10−4 4.01× 10−4 1.09× 10−3 1.10× 10−3 1.18× 10−3

SM metric

SCH 5.48× 10−3 6.11× 10−3 20.08× 10−2 1.36× 10−2 1.05× 10−2

FON 3.12× 10−3 4.22× 10−3 3.66× 10−3 3.00× 10−3 3.51× 10−3

ZDT1 7.81× 10−4 8.11× 10−4 3.66× 10−3 3.18× 10−3 3.21× 10−3

ZDT2 5.23× 10−4 5.89× 10−4 3.61× 10−3 3.11× 10−3 3.58× 10−3

MOP5 6.08× 10−3 6.28× 10−3 6.09× 10−1 6.10× 10−1 6.15× 10−1

MOP6 2.90× 10−3 3.09× 10−3 6.01× 10−3 3.10× 10−3 3.47× 10−3

DTLZ2 7.16× 10−3 8.01× 10−3 5.74× 10−2 5.87× 10−2 2.3× 10−2
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Figure 6. Performance comparison of the proposed algorithm with existing MOOPs based on
recombination and mutation operators. (a) Performance comparison of the proposed algorithm with
existing MOOPs based on recombination and mutation operators on the CM metric. (b) Performance
comparison of the proposed algorithm with existing MOOPs based on recombination and mutation
operators on the GD metric. (c) Performance comparison of the proposed algorithm with existing
MOOPs based on recombination and mutation operators on the SM metric.

5.3. Sensitivity Analysis of the Proposed Algorithm

Sensitivity analysis is defined as the process that determines the influences of change in input
variable on the robustness of outcome. In this paper, the robustness of the proposed algorithm is
evaluated in two steps: (1) sensitivity analysis 1 and (2) sensitivity analysis 2. Sensitivity analysis 1 is
performed for the different values of crossover operator (BEX), mutation operator (PMO), and initial
value of coulomb’s constant (K0). Sensitivity analysis 2 is performed for the different values of initial
population size and maximum number of iterations. The detailed description of the sensitivity analysis
and related parameter settings is described in Table 13. Further, a combined performance score,
described in Table 14, is used measure the performance of the proposed algorithm.
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Table 13. Parameter settings for sensitivity analysis.

Analysis Sensitivity Analysis
Performed on Parameter Setting Setting of Variable

Parameters

Number of
Parameter Setting

Combinations

Sensitivity
Analysis 1

1. BEX Cross over
2. PMO Mutation
3. Initial value of

Coulomb’s
constant (K0)

1. Initial population size
(Pn) = 100

2. External population
(Pm) = 100

3. Maximum no. of
iterations = 2000

1. Mutation = 0.01; 0.7;
0.9; 0.001

2. Crossover Rate = 0.7;
0.8; 0.9; 1.0

3. K0 = 100, 300, 500

30

Sensitivity
Analysis 2

Initial population Size Mutation probability = 0.001 Population Size = 50; 100;
200; 400; 500 20

Maximum no. of
Iterations Crossover probability = 1.0 Maximum no. of Iterations

= 500; 1000; 2000 50

Table 14. Performance measure for sensitivity analysis.

Performance
Measures

Overall Performance of Parameter Setting Combinations

Very Good Good Average Poor Very Poor

Combined
performance

Score
5.0–4.0 4.0–3.0 3.0–2.0 2.0–1.0 1.0–0.0

Results and Discussion

Sensitivity of mutation operator (PMO), crossover operator (BEX), initial population size, maximum
number of iterations, and initial value of coulomb’s constant (K0) are analyzed using GD and SM
metrics, and results are presented in Tables 15–19, respectively. Table 15 shows that performance of the
PMO varied from “Average” to “Good”, which means that selection of suitable values for mutation
is required to achieve optimum results. Table 16 demonstrates that performance of the BEX varied
from “Average” to “Very Good”, which means that the sensitivity of BEX is low for the proposed
algorithm. Table 17 demonstrates that performance of the population size varied from “Average”
to “Very Good”, which means that the sensitivity of the population is moderate for the proposed
algorithm. Table 18 demonstrates that performance of maximum no. of iterations is “Good” for
all experiments, which means that the proposed algorithm is less sensitive to maximum number of
iterations. Table 19 demonstrates that performance of the initial value of Coulomb’s constant (K0)

varies from “Good” to “Very Good”, which means that the proposed algorithm is less sensitive to (K0).
It is concluded from all the tables (Tables 15–19) that the proposed algorithm works efficiently in all
given scenarios, which shows its robustness.

Table 15. Sensitivity analysis of mutation parameter (PMO).

Value of Mutation
Parameter

Value of Constant Parameters
Metrics Combined

Performance Score
Overall

PerformanceGD SM

0.01 1. Initial population size = 100
2. External population size = 100
3. Maximum no. of iterations = 2000
4. Crossover value = 0.8

3899 24.6 2.9 Average
0.07 67 32.3 3.6 Good
0.09 86 33.5 3.0 Average
0.001 135 28.4 1.8 Very Poor

0.01 1. Population Size = 100
2. Maximum no. of iterations = 2000
3. Crossover value = 0.9

11,085 22 3.3 Good
0.07 55 32 3.8 Good
0.09 83 28.7 2.6 Average
0.001 71 32 3.4 Good
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Table 16. Sensitivity analysis of crossover parameter (BEX).

Value of Crossover
Parameter

Value of Constant Parameters
Metrics Combined

Performance Score
Overall

PerformanceGD SM

0.7 1. Initial population size = 100
2. External population size = 100, 800
3. Maximum no. of iterations = 2000
4. Mutation value = 0.001

112 39 4.2 Very Good
0.8 45 28 3.2 Good
0.9 60 35 3.0 Average
1.0 36 30 2.6 Average

0.7 1. Initial population size = 100
2. External population size = 100, 800
3. Maximum no. of iterations = 2000
4. Mutation value = 0.09

4454 26 3.8 Good
0.8 10,121 23 3.6 Good
0.9 3632 21 3.2 Good
1.0 11,068 24 3 Good

Table 17. Sensitivity analysis of initial population size.

Initial Population Size Value of Constant Parameters
Metrics Combined

Performance Score
Overall

PerformanceGD SM

100 1. External population size = 100, 800
2. Maximum no. of iterations = 1000
3. Mutation value = 0.005
4. Crossover Value = 0.9

225 28 3.0 Average
200 32 34 3.1 Good
400 36 39 4.0 Very Good
500 38 30 3.6 Good

100 1. External population size = 100, 800
2. Maximum no. of iterations = 1000
3. Mutation value = 0.005
4. Crossover Value = 0.9

60 30 3.5 Good
200 105 34 3.9 Good
400 21 36 3.5 Good
500 21 35 3.2 Good

Table 18. Sensitivity analysis of maximum no. of iterations.

Maximum No
of Iterations

Value of Constant Parameters
Metrics Combined

Performance Score
Overall

PerformanceGD SM

500 1. Initial population size = 200
2. External population size = 100, 800
3. Mutation value = 0.09
4. Crossover Value = 0.7

65 30 3.4 Good
1000 21 33 3.2 Good
2000 30 34 3.2 Good

500 1. Initial population size = 500
2. External population size = 100, 800
3. Mutation value = 0.09
4. Crossover Value = 1.0

50 32 3.3 Good
1000 51 34 3.6 Good
2000 24 34 3.8 Good

Table 19. Sensitivity analysis of Coulomb’s constant initial value.

Initial Value of
Coulomb’s Constant

Value of Constant Parameters
Metrics Combined

Performance Score
Overall

PerformanceGD SM

100 1. Initial population size = 200
2. External population size = 100, 800
3. Maximum number of iterations = 1000
4. Mutation value = 0.09
5. Crossover Value = 0.7

85 31 3.6 Good
300 30 40 3.3 Good

500 40 332 4.2 Very Good

100 1. Initial population size = 500
2. External population size = 100, 800
3. Maximum number of iterations = 2000
4. Mutation value = 0.09
5. Crossover Value = 1.0

62 35 3.3 Good
300 48 39 3.9 Good

500 38 31 4.0 Very Good

6. Conclusions and Future Work

In this paper, an improved population-based meta-heuristic algorithm, AEFA, is proposed to
handle the multi-objective optimization problems. The proposed algorithm used strength Pareto
dominance theory to refine fitness assignment and an improved fine-grained elitism selection based on
the SDE mechanism to maintain population diversity. Further, the proposed algorithm used the SDE
technique with strength Pareto dominance theory for density estimation, and it implemented bounded
exponential crossover (BEX) and polynomial mutation operator (PMO) to avoid solutions trapping
in local optima and enhance convergence. The experiments were performed in two steps. In the first
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step, the AEFA was evaluated on different low-dimensional and high-dimensional benchmark functions,
and then the performance of the AEFA was compared with the existing evolutionary optimization
algorithms (EOAs) based on four parameters: average best-so-far solution, mean best-so-far solution,
the variance of the best-so-far solution, and average run-time. Experimental results show that for
low-dimensional benchmark functions, AEFA performed better in comparison to existing EOAs, but for
complex high-dimensional benchmark functions, AEFA suffered from loss of diversity and performed
worse. In the second step, the proposed algorithm was evaluated on different benchmark functions,
and then the performance of the proposed algorithm was compared with the existing evolutionary
multi-objective optimization algorithms (EMOOPs) based on diversity, converge, generational distance,
and spacing metrics. Experimental results prove that the proposed algorithm is not only able to find the
optimal Pareto front (non-dominated solutions), but it also shows better performance than the existing
multi-objective optimization techniques in terms of accuracy, robustness, and efficacy. In the future,
the proposed work can be explored in various directions. One direction is to extend the proposed
algorithm to solve various real-word multi-objective optimization problem. The proposed work can
also be used to solve complex problems by hybridization of the proposed algorithm with another
existing algorithm.
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9. Demirören, A.; Hekimoğlu, B.; Ekinci, S.; Kaya, S. Artificial Electric Field Algorithm for Determining
Controller Parameters in AVR system. In Proceedings of the 2019 International Artificial Intelligence and
Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–7.

10. Abdelsalam, A.A.; Gabbar, H.A. Shunt Capacitors Optimal Placement in Distribution Networks Using
Artificial Electric Field Algorithm. In Proceedings of the 2019 the 7th International Conference on Smart
Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2019; pp. 77–85.

11. Shafik, M.B.; Rashed, G.I.; Chen, H. Optimizing Energy Savings and Operation of Active Distribution
Networks Utilizing Hybrid Energy Resources and Soft Open points: Case Study in Sohag, Egypt. IEEE Access
2020, 8, 28704–28717. [CrossRef]

http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.ins.2011.06.004
http://dx.doi.org/10.1109/ACCESS.2020.2966909


Processes 2020, 8, 584 25 of 26

12. Thakur, M.; Meghwani, S.S.; Jalota, H. A modified real coded genetic algorithm for constrained optimization.
Appl. Math. Comput. 2014, 235, 292–317. [CrossRef]

13. Gong, M.; Jiao, L.; Du, H.; Bo, L. Multiobjective immune algorithm with nondominated neighbor-based
selection. Evol. Comput. 2008, 16, 225–255. [CrossRef]

14. Liu, Y.; Niu, B.; Luo, Y. Hybrid learning particle swarm optimizer with genetic disturbance. Neurocomputing
2015, 151, 1237–1247. [CrossRef]

15. Fonseca, C.M.; Fleming, P.J. Genetic algorithms for multi-objective optimization: Formulation, discussion
and generalization. In Proceedings of the 5th International Conference on Genetic Algorithms, San Mateo,
CA, USA, 1 June 1993; pp. 416–423.

16. Horn, J.; Nafploitis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multi-objective optimization.
In Proceedings of the 1st IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994;
pp. 82–87.

17. Tan, K.C.; Goh, C.K.; Mamun, A.A.; Ei, E.Z. An evolutionary artificial immune system for multi-objective
optimization. Eur. J. Oper. Res. 2008, 187, 371–392. [CrossRef]

18. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications; Ithaca: Shaker,
OH, USA, 1999; Volume 63.

19. Srinivas, N.; Deb, K. Multi-Objective function optimization using non-dominated sorting genetic algorithms.
Evol. Comput. 1995, 2, 221–248. [CrossRef]

20. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study.
In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1998;
pp. 292–301.

21. Rudolph, G. Technical Report No. CI-67/99: Evolutionary Search under Partially Ordered Sets; Dortmund
Department of Computer Science/LS11, University of Dortmund: Dortmund, Germany, 1999.

22. Rughooputh, H.C.; King, R.A. Environmental/economic dispatch of thermal units using an elitist
multiobjective evolutionary algorithm. In Proceedings of the IEEE International Conference on Industrial
Technology, Maribor, Slovenia, 10–12 December 2003; Volume 1, pp. 48–53.

23. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: New York, NY, USA,
2001; Volume 16.

24. Vrugt, J.A.; Robinson, B.A. Improved evolutionary optimization from genetically adaptive multimethod
search. Proc. Natl. Acad. Sci. USA 2007, 104, 708–711. [CrossRef] [PubMed]

25. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput.
2013, 18, 577–601. [CrossRef]

26. Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based
nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach.
IEEE Trans. Evol. Comput. 2013, 18, 602–622. [CrossRef]

27. Zhao, B.; Guo, C.X.; Cao, Y.J. A multiagent-based particle swarm optimization approach for optimal reactive
power dispatch. IEEE Trans. Power Syst. 2005, 20, 1070–1078. [CrossRef]

28. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans.
Evol. Comput. 2007, 11, 712–731. [CrossRef]

29. Ma, X.; Liu, F.; Qi, Y.; Li, L.; Jiao, L.; Liu, M.; Wu, J. MOEA/D with Baldwinian learning inspired by the
regularity property of continuous multiobjective problem. Neurocomputing 2014, 145, 336–352. [CrossRef]

30. Martinez, S.Z.; Coello, C.A.C. A multi-objective evolutionary algorithm based on decomposition for
constrained multi-objective optimization. In Proceedings of the 2014 IEEE Congress on Evolutionary
Computation (CEC), Beijing, China, 6–11 July 2014; pp. 429–436.

31. Gu, F.; Liu, H.L.; Tan, K.C. A multiobjective evolutionary algorithm using dynamic weight design method.
Int. J. Innov. Comput. Inf. Control 2012, 8, 3677–3688.

32. Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. An efficient approach to nondominated sorting for evolutionary
multiobjective optimization. IEEE Trans. Evol. Comput. 2014, 19, 201–213. [CrossRef]

33. Chong, J.K.; Qiu, X. An Opposition-Based Self-Adaptive Differential Evolution with Decomposition for
Solving the Multiobjective Multiple Salesman Problem. In Proceedings of the 2016 IEEE Congress on
Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4096–4103.

http://dx.doi.org/10.1016/j.amc.2014.02.093
http://dx.doi.org/10.1162/evco.2008.16.2.225
http://dx.doi.org/10.1016/j.neucom.2014.03.081
http://dx.doi.org/10.1016/j.ejor.2007.02.047
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1073/pnas.0610471104
http://www.ncbi.nlm.nih.gov/pubmed/17215363
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.1109/TPWRS.2005.846064
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1016/j.neucom.2014.05.025
http://dx.doi.org/10.1109/TEVC.2014.2308305


Processes 2020, 8, 584 26 of 26

34. Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for
many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [CrossRef]

35. Hassanzadeh, H.R.; Rouhani, M. A multi-objective gravitational search algorithm. In Proceedings of the
2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks,
Liverpool, UK, 28–30 July 2010; pp. 7–12.

36. Yuan, X.; Chen, Z.; Yuan, Y.; Huang, Y.; Zhang, X. A strength pareto gravitational search algorithm for
multi-objective optimization problems. Int. J. Pattern Recognit. Artif. Intell. 2015, 29, 1559010. [CrossRef]

37. Li, M.; Yang, S.; Liu, X. Shift-based density estimation for Pareto-based algorithms in many-objective
optimization. IEEE Trans. Evol. Comput. 2013, 18, 348–365. [CrossRef]

38. Zitzler, E.; Laumanns, M.; Thiele, L. TIK report 103: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm; Computer Engineering and Networks Laboratory (TIK), ETH Zurich: Zurich, Switzerland, 2001.

39. Schott, J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization; Air force inst of
tech Wright-Patterson AFB: Cambridge, MA, USA, 1995.

40. Guzmán, M.A.; Delgado, A.; De Carvalho, J. A novel multiobjective optimization algorithm based on
bacterial chemotaxis. Eng. Appl. Artif. Intell. 2010, 23, 292–301. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TEVC.2016.2519378
http://dx.doi.org/10.1142/S0218001415590107
http://dx.doi.org/10.1109/TEVC.2013.2262178
http://dx.doi.org/10.1016/j.engappai.2009.09.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Preliminaries and Background 
	Multi-Objective Optimization 
	Artificial Electric Field Algorithm (AEFA) 
	Shift-Based Density Estimation 
	Recombination and Mutation Operators 
	Bounded Exponential Crossover (BEX) 
	Polynomial Mutation Operator (PMO) 


	Proposed Algorithm 
	Population Generation 
	Fitness Evaluation 
	A Fine-Grained Elitism Selection Mechanism 

	Experimental Results and Discussion 
	Performance Comparison of the AEFA With Existing Evolutionary Approaches 
	Parameter Setting 
	Results and Discussion 

	Performance Comparison of the Proposed Algorithm with Existing Multi-Objective Optimization Algorithms 
	Parameter Setting 
	Results and Discussion 

	Sensitivity Analysis of the Proposed Algorithm 

	Conclusions and Future Work 
	References

