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Abstract: The frequent occurrence of oil spills and the massive discharge of oily wastewater pose a
significant threat to sustainable and healthy human development. Therefore, it is of importance to
effectively separate oil–water mixtures. Inspired by nature, many superwetting surfaces/materials
for oil–water separation have been developed in recent years. However, these surfaces/materials are
subject to certain limitations and are unable to fully meet practical needs. With the advancement of
laser technology, a novel solution has been provided for fabricating superwetting oil–water separa-
tion materials. Based on the design theory and separation mechanism, this paper summarizes the
research progress of the laser-fabricated superwetting surfaces/materials for oil–water separation
in recent years. First, the basic wetting theory, design strategy, and oil–water separation mecha-
nism of the laser-fabricated materials are introduced in detail. Subsequently, the laser-fabricated
oil–water separation materials, including superoleophilic/superhydrophobic materials, superhy-
drophilic/superoleophobic materials, and materials with reversible or superamphiphilic wettability,
are systematically summarized and analyzed. Finally, the challenges and future research directions
of laser-fabricated superwetting oil–water separation materials are discussed.

Keywords: laser manufacturing; wettability; oil–water separation; superhydrophobic;
superhydrophilic

1. Introduction

Fossil fuels are an essential source of energy for the sustenance of humanity in modern
societies. Particularly since the twentieth century, the extensive exploitation of petroleum
resources commenced as a result of the Industrial Revolution. With the rapid development
of the economy and society, the demand for oil has correspondingly increased, posing
a significant threat to the global ecological environment and human health due to the
substantial occurrence of oil spills [1–6]. For example, approximately 10.8 million barrels
of crude oil were discharged into the water body of the Gulf during the Gulf War in
1991 [7–10]. In 2010, a major oil spill lasted for three months, with thousands of barrels of
oil discharged daily, known as the BP Oil Spill [11–14]. Furthermore, the constant discharge
of oily industrial wastewater has inflicted irreparable damage upon the soil and water
environment [15–19]. However, traditional oil–water separation methods [20], such as
gravity separation [21], chemical decomposition [22], and centrifugation [23,24], while
capable of separating most of the oil in the water, still present challenges, including high
energy consumption, low filtration, and secondary pollution to the environment. Hence,
there is an urgent need to seek a new generation of oil–water separation solutions.

Inspired by nature, the use of superwetting materials for separating oil–water mix-
tures has garnered extensive attention [25–48]. Superwetting materials, including super-
hydrophobic/superoleophilic and superhydrophilic/superoleophobic materials, can be
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fabricated by modifying the microstructures and chemical energy of the surface. These
materials exhibit opposite wetting behaviors towards oil and water, making them suitable
for oil–water separation applications [4,26,49–54]. In general, strategies for separating
stratified oil–water mixtures using superwetting materials can be divided into three groups:
(1) removing water from oil–water mixtures; (2) removing oil from oil–water mixtures; and
(3) selectively removing oil or water from oil–water mixtures. Compared to traditional
oil–water separation materials, superwetting materials offer notable advantages, including
high separation efficiency and flux, good selectivity, and self-cleaning properties [55]. For
example, conventional membranes tend to suffer from pore plugging and surface-coating
damage due to the accumulation of oil pollutants over repeated use, resulting in decreased
separation efficiency and oil–water flux. In contrast, for superhydrophilic/superoleophobic
membranes, these issues could be avoided [56]. However, existing superwetting materials
still have certain limitations, such as complex manufacturing processes, stringent require-
ments on materials, and high maintenance costs. Furthermore, the surface micro–nano
structures and the size and porosity of the pores greatly impact the separation perfor-
mance of superwetting materials in terms of efficiency, flux, and durability. Therefore,
achieving the precise fabrication of surface micro–nano structures and pore structures of
the superwetting materials is crucial for promoting their practical applications in indus-
try [26,52,54,57–60].

In recent years, ultrafast lasers, including nanosecond, picosecond, and femtosecond
lasers, have been widely used to fabricate superwetting materials for separating oil–water
mixtures [61]. A diverse range of materials, such as metals, alloys, polymers, and even
biomaterials, are well-suited for laser processing. The technology of ultrafast laser pro-
cessing offers high machining accuracy, small heat-affected zone, and strong versatility,
enabling the construction of various surface morphologies with different characteristics.
On the one hand, the surface is roughened by the micro–nano structures created by laser
ablation, and its hydrophilicity is enhanced according to the Wenzel model. On the other
hand, when the roughened surface is hydrophobically modified, the air is trapped in the
laser-fabricated micro–nano structures, resulting in a reduced solid–liquid contact area and
preventing water from wetting based on the Cassie–Baxter model. In addition, surface
wettability can be effectively controlled by adjusting the processing parameters, such as
laser power, scanning speed, and scanning spacing. Consequently, ultrafast laser processing
significantly contributes to the strong selectivity of the superwetting materials towards oil
and water.

In this paper, the laser-manufactured superwetting materials for oil–water separation
are comprehensively reviewed. First, the significance of environmentally friendly and
efficient oil–water separation technology is highlighted in the face of the global threat
of oil pollution. Second, based on the analysis of the theoretical basis of wettability, the
design strategy and oil–water separation mechanism of the laser-fabricated superwetting
materials are introduced. Subsequently, according to the different substances separated
from the mixtures, various ultrafast laser-processing methods for fabricating oil–water
separation materials and the separation performances of these fabrications are reviewed
and discussed in depth. Finally, the current limitations of ultrafast laser processing are
addressed and the prospects for realizing efficient and multi-purpose oil–water separation
through laser-processed materials are discussed.

2. Wettability Theory and Design Strategy of Laser-Fabricated Oil–Water Separation
Materials
2.1. Basic Wettability Theory

Wettability refers to the ability of a liquid to spread over a solid surface, serving as the
theoretical basis of superwetting materials for oil–water separation. In 1850, the theory of
surface wettability was first proposed by Young [62,63]. The wettability of a solid surface is



Separations 2024, 11, 126 3 of 24

typically quantitatively assessed by the contact angle (CA) θ and the sliding angle (SA) α.
Young’s equation can be expressed as Equation (1):

cos θ =
γSA − γSL

γLA
(1)

where θ is the CA on an ideal smooth surface, γSA and γSL are the interfacial energy/tension
of the solid–air and solid–liquid, respectively, and γLA denotes the interface energy/tension
between liquid and air [46,64] (Figure 1a). The SA is the angle between the inclined plane
and the horizontal plane when the surface is gradually tilted to the point where the droplet
is just able to slide [65] (Figure 1b).
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(d) Cassie–Baxter state, and (e) Transition state.

The ideal smooth surface described by Young does not exist in real life. Inspired by
Young’s theory of wettability, Wenzel introduced the concept of surface roughness [63,66]
(Figure 1c), and the modified equation is as follows:

cos θL = Rcos θ (2)

where θL is the CA on the rough surface, and R denotes the surface roughness.
The Wenzel state describes a liquid fully wetting a solid surface, while there is another

case in nature where the liquid cannot thoroughly wet the solid surface. In this scenario, the
liquid contacts the air in the microstructures (Figure 1d), and the Cassie–Baxter equation is
derived as follows [45,67]

cos θL = f cos θ + f − 1 (3)

where f is the area fraction of the liquid in contact with the solid surface.
However, when subjected to external pressure, the liquid is forced into microgrooves

on the microscopic surfaces of solids. In this case, the Cassie model no longer applies and
can be replaced by a transitional form of the Transition state (Figure 1e).

Based on the analysis of the background theories of wettability, it can be concluded
that a water droplet in contact with a solid surface in the air has four wetting states. When
the water contact angle (WCA) is >90◦, it indicates the solid surface is hydrophobic. When
the WCA is >150◦ and the SA < 10◦, the solid surface is superhydrophobic. In this case,
the water droplets can easily slide off the solid surface. When the WCA is <90◦, the solid
surface is hydrophilic. When the WCA is < 10◦, the solid surface is superhydrophilic. In
this case, the water droplets can hardly fall off the solid surface as a result of the strong
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adsorption of water on the surface. Correspondingly, there are also four states of an oil
droplet contacting a solid surface.

2.2. Wettability Theory of Underwater Oil

Similar to a droplet in contact with a solid surface in the air, wetting occurs when
oil comes into contact with solid underwater surfaces. Therefore, the Young, Wenzel, and
Cassie–Baxter states can also be used to describe the wetting behaviors of an underwater
oil droplet on solid surfaces (Figure 2).
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When an oil droplet contacts an ideal smooth surface underwater, Young’s equation
can be expressed as [39,65,68]:

cos θOW =
γOAcos θO − γWAcos θW

γOW
(4)

where θOW is the underwater contact angle of oil on a smooth surface; θO and θW denote
the Young’s contact angles of oil droplets and water droplets in the air, respectively. γOA,
γWA, and γOW refer to the surface tension at the oil–air, water–air, and oil–water interfaces,
respectively.

Because the surface tension of water is much greater than that of oil (γOA << γWA), the
contact angle is θO < θW. It can be deduced from Equation (4) that hydrophilic materials
typically exhibit oleophobicity underwater. Similar to the Wenzel and Cassie states in air,
the impact of surface roughness on the wettability of an underwater oil droplet on a rough
solid surface can be described by the underwater Wenzel state and underwater Cassie state
as [69]:

cos θW
OW = Rcos θOW (5)

cos θC
OW = f cos θOW + f − 1 (6)

where θOW, θW
OW, and θC

OW denote the underwater contact angle of the oil in states
that are underwater Young, underwater Wenzel, and underwater Cassie, respectively. R
denotes the surface roughness, and f is the area fraction of underwater oil in contact with
the solid surface.

2.3. Oil–Water Separation Mechanism of Superwetting Materials

The liquid intrusion pressure (∆P) refers to the minimum pressure at which the liquid
on the surface of the material initiates intrusion into the pores under external pressure, and
it is an important physical quantity affecting the oil–water separation performance. This
pressure can be calculated by the Laplace equation [70]:

∆P =
2γ

R
= − lγcos θ

A
(7)

where γ is the surface tension of the liquid; R, l and A are the radius, perimeter, and
cross-sectional area of the pore, respectively; θ is the contact angle of the droplet. For super-
oleophilic/superhydrophobic oil–water separation materials, the contact angle of oil (θo) is
<10◦ and the contact angle of water (θw) is >150◦, resulting in the intrusion pressure of oil
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being (∆Po) < 0 and the intrusion pressure of water being (∆Pw) > 0 (Figure 3a,b). Therefore,
when heavy oil–water mixtures come into contact with superoleophilic/superhydrophobic
surfaces, the heavy oil can easily pass through the surfaces, while the water cannot. For
superhydrophilic/superoleophobic oil–water separation materials, the contact angle of
water (θw) is <10◦ and the underwater contact angle of oil (θo) is >150◦, resulting in the
intrusion pressure of water being (∆Pw) < 0 and the intrusion pressure of underwater oil
being (∆Po) > 0 (Figure 3c,d). Therefore, when light oil–water mixtures come into contact
with the superhydrophilic/superoleophobic surfaces, the water can freely pass through the
surfaces quickly, while the light oil is fully blocked.
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2.4. Design Strategy of Laser-Fabricated Oil–Water Separation Materials

Ultrafast laser processing is acknowledged for its non-contact nature, having high
processing quality and precision. In comparison to other processing methods, ultrafast
laser processing offers unique advantages due to the little collateral damage caused by
the shock waves and heat conduction generated in the material being processed [71–75].
Under ultrafast laser irradiation, ablation or melting occurs when the lattice temperature of
the substrate rises to a specific value (the temperature depends on the electron–phonon
coupling strength of the material). Ablation, as the primary action mode of laser processing,
occurs in several ways, such as evaporation [76], spallation [77,78], phase explosion [79,80],
and fragmentation [81]. The micro–nano structures on the surface are formed after the
ablation area cools down and re-solidifies [72].

A typical ultrafast laser-processing system is illustrated in Figure 4a. The laser beam
emitted from the laser generator is attenuated by an attenuator to produce a beam with a
specified power. It is then incident into a scanning galvanometer after being expanded and
finally focused on the sample surface after being reflected by several mirrors and a dichroic
mirror. Simultaneously, the illumination beam is transmitted through the dichroic mirror
and incident into the CCD camera. The movement of the processing platform in three
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dimensions (3D) and the ultrafast laser-processing parameters are precisely controlled by a
computer [75,82].

In recent years, ultrafast laser micro–nano processing has been extensively applied in
modifying the surface wettability of solid materials [61]. A variety of complex micro–nano
structures can be precisely manufactured on different material surfaces by ultrafast laser-
processing technology [83–96]. For instance, Yang et al. [97] systematically studied the
mechanism of the wettability transition on nanosecond laser-ablated aluminum substrate
surfaces. The ablated aluminum surfaces formed micro-/nanoscale rough structures with
a large number of protrusions and overlying particles (Figure 4b). These multilayered
surface structures with large air pockets greatly reduced the contact area between the actual
surface and the droplets. As the laser-abraded rough surfaces absorbed organic matter in
the air, the wettability of the surface gradually transformed from superhydrophilicity to
superhydrophobicity after exposure to ambient air for a month.

Ultrafast laser processing not only effectively controls the wettability of materials by
producing micro–nano structures, but it also adjusts the pore structures (e.g., pore size
and porosity) of the materials on demand. Wang et al. [98] prepared microholes arrayed
on titanium foil with controllable wettability by a femtosecond laser. The laser-treated
microholes exhibited varying sizes at different processing parameters, and their diameters
increased with the rise in pulse number and pulse energy within a certain range (Figure 4c).
Furthermore, the surface superhydrophilicity and superhydrophobicity of the as-prepared
Ti foil could be repeatedly converted by high-temperature treatment in a dark room and
immersion in alcohol under UV irradiation.

In addition, the laser-induced periodical surface structures (LIPSS), which are micro-
and nanoscale rough structures formed by laser irradiation, can significantly change the
surface morphology and chemical composition of the material, thus altering its surface
energy and roughness [99–103]. For instance, Gaudiuso et al. [104] used sub-THz bursts
of femtosecond laser pulses to prepare surface-textured copper with superhydrophobic
properties. Under specific laser-irradiation conditions, the as-prepared copper surfaces
formed double-scale hierarchical texture structures, constituted by LIPSS and random
nanoparticle decoration (Figure 4d). These special structures endowed the copper surface
with superhydrophobic and anti-adhesion properties. Martínez-Calderon et al. [105] pre-
pared highly hydrophobic stainless-steel surfaces with dual-scale rough structures by a
femtosecond laser (Figure 4e). These rough structures consist of the micro-pattern and the
LIPSS nano-pattern, resulting in a static contact angle of the stainless-steel surface higher
than 150◦.

Figure 5 summarizes the design strategy of laser-fabricated superwetting porous
materials for oil–water separation. Generally, the hydrophobic materials are transformed
from hydrophobic/oleophilic to superhydrophobic/superoleophilic by laser-fabricating
mico–nano structures on the surface, thus realizing water-blocking oil–water separation.
In addition, the pores required for oil passage can also be fabricated by ultrafast lasers.
Similarly, the superhydrophilic/underwater superoleophobic porous materials for oil-
blocking oil–water separation can be fabricated from hydrophilic materials based on ultra-
fast laser processing.
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3. Superwetting Porous Materials Fabricated by Ultrafast Laser for Oil–Water
Separation
3.1. Superoleophilic and Superhydrophobic Porous Materials

Superoleophilic and superhydrophobic materials fabricated by ultrafast lasers play a
crucial role in oil–water separation. The unique structures and chemical characteristics of
these surfaces enable oil substances to pass through or be adsorbed onto the surfaces while
water is completely rejected, thus effectively separating oil from the oil–water mixtures.
In general, superoleophilic and superhydrophobic surfaces can be fabricated in two basic
ways. The first method involves directly etching or oxidizing the surfaces of the materials
through laser beams with high energy density to form micro–nano convex structures or
holes, thereby increasing the surface roughness and enhancing the oleophilicity and hy-
drophobicity of the surfaces. The second method entails fabricating micro–nano structures
on the surfaces by laser processing, followed by additional low-surface-energy modifica-
tion. These strategies, with the different preparation methods, materials, and separation
properties mentioned in this chapter, are summarized in Table 1 [106–112].

Recently, numerous laser-processed metal and polymer materials for oil–water separa-
tion have been reported. For example, Khan et al. [106] fabricated periodic microstructures
on the surfaces of stainless steel and copper mesh by ultrafast laser processing. The super-
hydrophobic and superoleophilic properties of the processed sample surface were obtained
after aging in a vacuum or the air (Figure 6a,b). In oil–water separation tests (Figure 6c),
the as-prepared copper mesh exhibited a high permeability for n-hexane, with a separation
efficiency of 98%. This environmentally friendly, convenient, chemical-free technique pro-
vides guidance for separating oil–water mixtures by laser-structured superoleophilic and
superhydrophobic mesh. Additionally, Dong et al. [107] used laser ablation to efficiently,
rapidly, and massively induce nanoripple structures on the copper mesh fixed to a PTFE
film. The as-prepared copper mesh exhibited superoleophilicity and superhydrophobicity
as a result of the formation of the nanoripples through a combined effect of laser ablation
of the copper surface as well as resolidification of the ejected PTFE particles (Figure 6d).
Furthermore, the copper mesh demonstrated excellent oil–water separation performance in
high-temperature, low-temperature, and corrosive environments. Due to the low adhesion,
the as-prepared mesh surface also possessed perfect self-cleaning properties (Figure 6e).
Yong et al. [108] used laser processing combined with mechanical drilling to create a porous
PTFE sheet with durable superoleophilicity and superhydrophobicity. A large number of
pores and protrusions were manufactured by laser ablation (Figure 7a). These inherently
hydrophobic and rough microstructures endowed PTFE surfaces with excellent superhy-
drophobic properties. The microhole arrays created by mechanical drilling allowed oil to
quickly permeate through the sample surface (Figure 7b). The as-prepared sample exhibited
ultralow adsorption to water droplets and a strong attraction to oil (Figure 7c,d). In the
oil–water separation tests, the device could efficiently separate oil–water mixtures multiple
times (Figure 7e). In addition, the as-prepared sample could also efficiently separate the
mixture of oil and strong acid/alkali solutions (Figure 7f). The porous films produced by
this method could also work in various harsh environments.
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Table 1. Processing parameters and separation properties of superoleophilic/superhydrophobic porous materials.

Fabrication Methods Manufacturing
Materials

Laser Pulse
Duration Frequency

Energy per
Pulse/Laser

Power

Scanning
Speed
(mm/s)

Chemical
Modifica-

tion
Types of Oil

Separation
Efficiency

(%)

Oil Flux (OF,
Lm−2h−1) Characteristics Refs.

UL processing
Stainless-steel
mesh, copper

mesh
36 fs 50 kHz 0.1 mJ

5.0 W
100~1200
100, 300 - n-Hexane >98 50

Environmentally
friendly, chemical

free, highly efficient
[106]

UL processing Copper mesh,
PTFE

120 fs 1 kHz - 0.05 -
Edible oil ~98.3 ~46 Fast, efficient,

self-cleaning ability [107]Glycerol ~97.9 ~25
Diesel ~95.8 ~20

UL processing, mechanical
drilling PTFE 50 fs 1 kHz 20 mW 5 - Petroleum ether - 132,840 Simple, durable,

stable [108]

UL processing Brass sheet 100 ns 20 kHz 0.9 mJ
18 W 500 -

Gasoline ~85 2880

Facile, economical,
environmentally

friendly
[109]

Diesel fuel ~75 2160
n-Heptane ~90 3240
n-Hexane ~85 2880
n-Decane ~82 2520
Kerosene ~90 3240

UL processing PTFE - 200 kHz 4.0 W
20.0 W

1500
150

-

Chloroform ~99.5

~129,960
Facile, rapid,

excellent stability
and applicability

[110]

Hexadecane ~99.4
Silicon oil ~99.2

Petroleum ether ~99.3
Gasoline ~99.5

Soybean oil ~99.3

Sucrose solution assisted UL Al film 100 fs 1 kHz 280 µJ
4~16 µJ

0.2
1 PDMS Dichloroethane >99.61 19,008

Highly efficient,
recyclable, strongly

environmental
stability

[111]

Needleless electrospinning,
reactive laser ablation in liquids

PVDF, PET, Ti
foil, AgNO3

400 fs 1 MHz 1.5 µJ
150 mW 2000 KOH

Kitchen oil 97.9 - Emulsion separation,
eco-friendly [112]n-Hexane 92.3
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and oil contact-angle measurements of the processed stainless-steel meshes. (b) SEM images of the
copper meshes before and after processing, water contact-angle, and oil contact-angle measurements
of the processed copper meshes. (c) Oil–water separation testing of a copper mesh. Reproduced
from ref. [106] with permission from Frontiers(copyright 2020). (d) SEM images of the as-prepared
copper-mesh surface, water contact-angle, and oil contact-angle measurements of the processed
copper meshes. (e) Self-cleaning tests of the as-prepared mesh. Reproduced from ref. [107] with
permission from Elsevier (copyright 2020).
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Figure 7. (a) SEM images of the PTFE surface after femtosecond laser ablation. (b) SEM images of the
microholes array structured PTFE sheet. (c) A water droplet rolling on the femtosecond laser-ablated
surface. (d) Dripping an oil droplet on the rough PTFE surface. (e) Oil–water separation test of the
prepared sample. (f) Corrosion resistance test of the prepared sample. Reproduced from ref. [108]
with permission from Elsevier (copyright 2016).
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Furthermore, ultrafast laser processing can be combined with other surface-modifi-
cation methods to prepare superhydrophobic and superoleophilic materials. In this case,
laser ablation provides a certain surface roughness, while modification imparts opposite
wettability to the surface. For instance, Ma et al. [111] fabricated a superhydrophobic and
superoleophilic aluminum membrane by combining laser processing and PDMS modifica-
tion (Figure 8a). First, the parallel narrow slit arrays were neatly fabricated on one side of
the Al film along the x-axis direction through ultrafast laser processing, with a laser energy
density higher than the threshold (Figure 8b). Subsequently, the Al film was immersed in
a sucrose solution at a depth of 10 mm, while the other side of the Al film was processed
along the y-axis direction (Figure 8c). After laser processing, numerous nanospikes were
created on the front face of the Al film. Finally, using a muffle furnace, the thin PDMS
liquid layer that was spin-coated on the glass substrate was evaporated onto the front
side of the Al film. The as-prepared Al film exhibited superhydrophobic/superoleophilic
properties and excellent separation efficiency (Figure 8d). In addition, the Al film with
excellent stability maintained good superhydrophobicity after 7 months of exposure to air
(Figure 8e).
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Figure 8. (a) Preparation procedure for the Al filter. (b) SEM images of the front face of the Al filter
with the slit spacing of 200 µm. (c) SEM images of nanospikes. (d) Oil–water separation testing.
(e) Durability testing. Reproduced from ref. [111] with permission from Elsevier (copyright 2021).

3.2. Superhydrophilic and Superoleophobic Porous Materials

Superhydrophilic and superoleophobic porous materials, in comparison to super-
oleophilic and superhydrophobic ones, demonstrate exceptional self-cleaning properties
for oil substances by preventing oil contamination and pore plugging. In addition, as a
result of the lower density of most oils compared to water, these surfaces exhibit superior
gravity-driven separation performance for various oil–water mixtures. In recent years, sig-
nificant breakthroughs have been achieved in removing oil from oil–water mixtures using
ultrafast laser-fabricated superhydrophilic and superoleophobic porous materials. The
preparation methods, materials, and separation performances of the strategies mentioned
in this chapter are summarized in Table 2 [113–120].
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Table 2. Processing parameters and separation properties of superhydrophilic/superoleophobic porous materials.

Fabrication
Methods

Manufacturing
Materials

Laser Pulse
Duration Frequency

Energy per
Pulse/Laser

Power

Scanning
Speed
(mm/s)

Types of Oil
Separation
Efficiency

(%)

Water Flux
(WF,

Lm−2h−1)
Characteristics Refs.

UL processing Stainless-steel
mesh

100 ns 50 kHz 12 W 500
Kerosene ~97.7

>63,000
Simple, economical,

high efficiency [113]Peanut oil ~97.3

UL processing
Stainless-steel

mesh, soda lime
glass

200 ns 18 kHz 1~2.5 W 5
Mustard oil ~97.5

~145,000
Simple, high

efficiency, stable [114]Kerosene ~97
Petrol ~97.1

UL processing Stainless-steel
mesh, Cu foil 100 ns 20 kHz 10 W 500

Kerosene ~98.5

~118,800
Fast, efficient,
self-cleaning [115]

Soybean oil ~96.8
Hexadecane ~97.5

Dodecane ~97.3
Silicone oil ~96.6

UL processing Al foil 104 fs 1 kHz 50 µJ - 1,2-Dichloroethane
99 77,000 High speed,

efficient
[116]Normal octane

UL processing,
mechanical

drilling
Iron sheet 50 fs 1 kHz 30 mW 6 1,2-Dichloroethane >97.8 - Widely applicable [117]

UL processing Al alloy, Ti alloy,
stainless steel

100 ns 20 kHz 14 W 500
Kerosene ~97.8 - Large area, durable [118]Soybean oil ~97.5

UL processing Cu foil 5 ns 90 kHz - 5
Sesame oil

~98 ~16,000 Simple, efficient,
scalable

[119]Hexane
Toluene

UL processing Eggshell
membrane

- 25 kHz
0.193 W
1.32 W

800

Peanut oil ~98.7 ~12,500 Green,
anti-corrosion,

robust, self-cleaning
[120]

Toluene ~99.2 ~16,500
Petroleum ether ~98.7 ~22,500

Paraffin oil ~98.6 ~11,000
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For example, Yu et al. [113] fabricated a superhydrophilic/superoleophobic stainless-
steel mesh by ultrafast laser treatment. Abundant micron-sized grit structures were created
on the smooth stainless-steel surface (Figure 9a,b), and these rough structures were mainly
oxides with hydrophilicity. The superwettability of the laser-treated stainless-steel mesh
was predominantly attributed to these micro–nano structures and oxides. After laser
processing, the surface wettability changed from hydrophobic and underwater oleophobic
to superhydrophilic and underwater superoleophobic (Figure 9c,d). This alteration in
wettability endowed the surface with excellent oil-blocking oil–water separation properties.
Similarly, Ahlawat et al. [114] used a nanosecond laser to induce the deposition of glass
particles on the stainless-steel mesh, creating long-term superhydrophilic micro–nano
structures and enabling gravity-driven oil–water separation (Figure 9e,f). This chemical-
free and one-step processing method holds significance for environmental conservation.
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Figure 9. (a) SEM images of the untreated stainless-steel mesh surface. (b) SEM images of the treated
stainless-steel mesh surface. (c) Wettability test of the untreated stainless-steel mesh. (d) Wettability
test of the treated stainless-steel mesh. Reproduced from ref. [113] with permission from IOP Publish-
ing (copyright 2018). (e) SEM images of the laser texturing without any glass plate. (f) SEM images
of the laser-textured mesh covered with soda lime glass plate during laser processing. Reproduced
from ref. [114] with permission from Elsevier (copyright 2021).

Additionally, the pores of materials designed for oil–water separation can be directly
manufactured by ultrafast laser. For instance, Li et al. [116] fabricated ultrathin Al foil with
large-area regular micropore arrays by one-step laser processing. Leveraging high precision
and controllability, the uniform arrays of micropores with rough nanostructures were neatly
arranged on the surface of the aluminum foil by a femtosecond laser (Figure 10a). The
multi-stage composite structures provided by micro-sized pores and nanoscale roughness
greatly changed the wettability of the aluminum foil from hydrophilic to superhydrophilic
and underwater superoleophobic (Figure 10b). By employing a small oil–water separator,
substantial quantities of light and heavy oil–water mixtures could be easily and quickly
separated and purified, offering the potential for recovering oil and water (Figure 10c). In
addition, the micropore-arrayed aluminum foil can efficiently filter particles of different
sizes (Figure 10d), demonstrating versatile application properties. The as-prepared control-
lable aluminum foils with high precision and efficiency provide an alternative for building
a lab-on-a-chip and even separating blood and cells.
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Figure 10. (a) SEM images of the as-prepared ultrathin Al foil. (b) Wettability test of the treated Al
foil. (c) Oil–water separation treatment of the treated Al foil. (d) Filtration performance test of the
treated Al foil. Reproduced from ref. [116] with permission from The Royal Society of Chemistry;
Royal Society of Chemistry (copyright 2016).

In addition to laser-fabricated metal membranes, nonmetal porous materials with
superwettability can also be produced by ultrafast lasers for oil–water separation. For ex-
ample, Xia et al. [120] used a simple and environmentally friendly laser-processing strategy
to prepare superhydrophilic and superoleophobic membranes for oil–water separation
from discarded eggshells and eggshell membranes (Figure 11a). Due to the abundant
hydrophilic groups of this organic biomaterial, such as hydroxyl, amino, and carboxyl
groups, coupled with the multilevel micro–nano structures created by laser processing, the
as-prepared membranes exhibit strong superhydrophilicity and underwater superoleopho-
bicity (Figure 11b). In dynamic wettability tests of the membranes, both light and heavy
oils were able to slide on the very lowly inclined surfaces, indicating the strong oil-rejection
properties of the as-prepared membranes (Figure 11c). In addition, the as-prepared mem-
branes demonstrated excellent self-cleaning and anti-contamination capabilities. Despite
being prewetted by oil, the ∆P < 0 is for both water and oil under this condition. Conse-
quently, the water was able to clean the oil and permeate the membrane, leading to the
failure of oil–water separation (Figure 11d). However, for the water-prewetted membrane,
the ∆P < 0 is for water, while the ∆P > 0 is for oil. In this case, water could pass through
the membrane while oil could not, thus successfully realizing oil-blocking oil–water sep-
aration (Figure 11e). These laser-engineered eggshell membranes with green, durable,
and self-cleaning properties serve as a commendable example of utilizing bio-wastes in
oil–water separation.
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Figure 11. (a) SEM images of the as-prepared membranes. (b) Wettability of the as-prepared
membranes. (c) Time-lapsed snapshots of chloroform and petroleum ether droplets rolling off the
tilted samples in water. (d) Oil–water separation test with oil pre-wetting. (e) Oil–water separation test
with water pre-wetting. Reproduced from ref. [120] with permission from Elsevier (copyright 2022).

3.3. Superwetting Porous Materials with Reversible or Superamphiphilic Wettability

In the above discussion, it can be seen that the superoleophilic/superhydrophobic
porous materials and superhydrophilic/superoleophobic porous materials are limited to
separating oil or water from oil–water mixtures. These two strategies lack flexibility, as they
cannot selectively separate oil and water from the mixtures in different applications and
conditions. Specifically, superhydrophobic/superoleophilic materials may separate heavy
oils (density larger than that of water) from the mixtures while not effectively separating
light oils (density larger than that of water). Hence, developing materials with switchable
wettability is of great significance, and an ultrafast laser provides a powerful tool for
addressing these issues by effectively altering the surface wettability. The preparation
methods, materials, and separation properties of the reported strategies for multiuse
separation mentioned in this chapter are summarized in Table 3 [121–126].
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Table 3. Processing parameters and separation properties of reversible superwetting porous materials.

Fabrication
Methods

Manufacturing
Materials

Laser Pulse
Duration Frequency

Energy per
Pulse/Laser

Power

Scanning
Speed
(mm/s)

Wettability
Transforma-

tion Methods
Types of Oil

Separation
Efficiency

(%)

Oil–Water Flux
(Lm−2h−1) Characteristics Refs.

UL processing Stainless-steel
mesh

100 ns - 12 W 500
Ethanol
soaking,

natural drying

Kerosene ~96

WF ≈ 102,600
Facile, economical,
environmentally

friendly
[121]

Lubricating oil ~96.7
Dichloromethane ~97
Dichloroethane ~96.3

UL processing PDMS, curing
agent, Al sheets

- - 6 W 800

APPJ
treatment,

heating
treatment

Dichloromethane ~96

OF ≈ 15,000
WF ≈ 18,000

Environmentally
friendly, low cost,

high efficiency
[122]

Peanut oil ~97.5
Diesel ~99

Hexadecane ~97.3
Lubricating oil ~98

Waterjet-assisted
laser ablation, UL

processing

Stainless-steel
mesh

100 ns - 18 W 200 -

Kerosene ~97.6

-

Simple,
environmentally

friendly, excellent
mechanical

property

[123]
Soybean oil ~96.9
n-Heptane ~98.3

Dichloromethane ~97.5
1,2-Dichloroethane ~97.5

UL processing Brass mesh 100 ns 20 kHz 10 W 500 -

Kerosene ~98.5

WF > 134,280
OF > 76,680

Simple, high
efficiency, stable [124]

Soybean oil ~96.4
Dodecane ~97

1,2-Dichloroethane ~96.3
Chloroform ~98

UL processing Copper sheet 100 ns - 24 W 1000 -

Kerosene

>98
WF > 32,000
OF > 37,500

Superior
environmental

stability
[125]

Isooctane
Heptane

1,2-Dichloroethane
Dichloromethane

UL processing,
chemical

modification

Cu wire mesh,
fluorosilane, GO

- - 100 mW 2 -

Bean oil

- - Asymmetric
wettability [126]

n-Heptane
Methylbenzene

Perchlormethane
Trichloromethane
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Wang et al. [121] processed stainless-steel mesh with a nanosecond laser and obtained
reversible surface wettability induced by ethanol. The smart surface with good mechanical
durability and environmental stability could efficiently separate both light and heavy
oil–water mixtures. The nearly smooth original substrate was processed by laser to obtain
many micron-sized sand structures and nanoscale fluffy structures (Figure 12a,b). The
wettability of the stainless-steel mesh changed from hydrophobicity/superoleophilicity
to superhydrophilicity/superoleophilicity after processing. As the time the sample was
exposed to air increased, the wettability of the meshes changed from superhydrophilic
to superhydrophobic due to the accumulation of nonpolar carbon on the rough surfaces.
The surface wettability of the meshes could be reversed by ethanol soaking and natural
drying treatments, and this conversion allows efficient separation for both light and heavy
oil–water mixtures (Figure 12c). The theoretical explanation for this phenomenon was that
the pristine surfaces without ethanol modification were superhydrophobic/superoleophilic,
so heavy oil could pass through the surfaces while water could not (Figure 12d). In contrast,
surfaces treated with ethanol were superhydrophilic/underwater superoleophobic. Thus,
water could pass through the surfaces while light oil was blocked (Figure 12e).
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Reproduced from ref. [121] with permission from American Chemical Society (copyright 2020).

While the oil–water separation materials with reversible superwettability can be ob-
tained via treatments, such as ethanol immersion, atmospheric pressure plasma jet [122],
etc., these methods may entail additional expense or complex conversion operations in
practical applications. Therefore, superamphiphilic membranes with superhydrophilic
and superoleophilic properties may have a wider range of practical applications. For
example, Wang et al. [123] fabricated a robust microstructure on 304 stainless-steel mesh
using waterjet-assisted laser ablation. The as-prepared mesh showed excellent separation
performances for light and heavy oil–water mixtures and corrosion solutions–oil mixtures.
As shown in Figure 13a, the surface of the original stainless-steel mesh without microstruc-
tures and micropores is relatively smooth. After treatment, abundant micron-sized sandy
textures and micropores were created on the mesh surface, and the pore size was reduced
(Figure 13b). These micro–nano structures played a crucial part in the superwettability
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of the mesh surface. Water and oil droplets diffused rapidly upon contacting the sample
surface, indicating the superhydrophilic and superoleophilic properties of the processed
surface (Figure 13c). In liquid environments, the wettability of the mesh changed from un-
derwater oleophobic and underoil superhydrophobic to underwater superoleophobic and
underoil superhydrophobic after processing (Figure 13d,e). The as-prepared stainless-steel
mesh could achieve the separation for light and heavy oil–water mixtures only by water
prewetting and oil prewetting. When the as-prepared mesh was prewetted by water, the
water could pass quickly through the mesh, while the light oil could not. In contrast, when
the mesh was prewetted by oil, the heavy oil could pass quickly through the mesh, while
the water could not.

Separations 2024, 11, x FOR PEER REVIEW 18 of 24 
 

 

 

Figure 13. (a) SEM images of the original stainless-steel mesh. (b) SEM images of the processed 

stainless-steel mesh. (c) Digital images and contact angles of water and oil droplets on the as-pre-

pared stainless-steel mesh in the air. (d) Digital images and contact angles of underwater oil droplets 

and underoil water droplets on the as-prepared stainless-steel mesh. (e) Digital images and contact 

angles of underwater oil droplets and underoil water droplets on the original stainless-steel mesh. 

Reproduced from ref. [123] with permission from Elsevier (copyright 2022). 

4. Summary and Outlooks 

The substantial discharge of oily wastewater and frequent oil spills pose significant 

threats to the ecosystem and the economy. Therefore, the development of materials for 

efficient oil–water separation holds great potential for practical applications. Ultrafast la-

sers have attracted widespread attention from researchers due to their high processing 

precision, facile operating procedures, and broad processability of various existing mate-

rials. The surface morphology and chemical composition of materials can be effectively 

controlled by laser-manufactured micro–nano structures, which dramatically change the 

properties of the material. Inspired by numerous natural superwetting surfaces, the bionic 

laser-processed porous materials with superwetting properties, including superoleo-

philic/superhydrophobic materials for water-blocking separation, superhydrophilic/su-

peroleophobic materials for oil-blocking separation, superamphiphilic materials for on-

demand oil–water separation, etc., have been further developed. This demonstrates the 

tremendous application potential of these laser-manufacturing strategies in practical 

multi-purpose oil–water separation. 

However, there are still several issues associated with ultrafast laser-fabricated su-

perwetting porous materials for oil–water separation. First, the current separation mate-

rials may face challenges in terms of mechanical and chemical stability. Therefore, devel-

oping separation materials with high durability and recyclability is essential to facilitate 

their large-scale applications. Second, research on the interaction mechanism between ul-

trafast lasers and various metallic and non-metallic materials is not comprehensive 

Figure 13. (a) SEM images of the original stainless-steel mesh. (b) SEM images of the processed
stainless-steel mesh. (c) Digital images and contact angles of water and oil droplets on the as-prepared
stainless-steel mesh in the air. (d) Digital images and contact angles of underwater oil droplets and
underoil water droplets on the as-prepared stainless-steel mesh. (e) Digital images and contact
angles of underwater oil droplets and underoil water droplets on the original stainless-steel mesh.
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4. Summary and Outlooks

The substantial discharge of oily wastewater and frequent oil spills pose significant
threats to the ecosystem and the economy. Therefore, the development of materials for
efficient oil–water separation holds great potential for practical applications. Ultrafast
lasers have attracted widespread attention from researchers due to their high process-
ing precision, facile operating procedures, and broad processability of various existing
materials. The surface morphology and chemical composition of materials can be ef-
fectively controlled by laser-manufactured micro–nano structures, which dramatically
change the properties of the material. Inspired by numerous natural superwetting sur-
faces, the bionic laser-processed porous materials with superwetting properties, includ-
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ing superoleophilic/superhydrophobic materials for water-blocking separation, superhy-
drophilic/superoleophobic materials for oil-blocking separation, superamphiphilic materi-
als for on-demand oil–water separation, etc., have been further developed. This demon-
strates the tremendous application potential of these laser-manufacturing strategies in
practical multi-purpose oil–water separation.

However, there are still several issues associated with ultrafast laser-fabricated super-
wetting porous materials for oil–water separation. First, the current separation materials
may face challenges in terms of mechanical and chemical stability. Therefore, developing
separation materials with high durability and recyclability is essential to facilitate their
large-scale applications. Second, research on the interaction mechanism between ultrafast
lasers and various metallic and non-metallic materials is not comprehensive enough, which
significantly limits the application of femtosecond laser processing in new materials for
multiple uses. In addition, the relationship between different laser-induced surface mi-
cro/nanostructures, such as nanospike arrays and microgrooves, and the corresponding
wetting properties have not been fully revealed, which could be focused on in the future.
In addition, there is a lack of uniform characterization methods for the oil–water separation
performances of the fabricated materials, such as the testing equipment and calculation
methods for separation efficiency tests, filtrate volume and operation methods for flux tests,
types of used oil models for separation, etc., which is not conducive to evaluate different
preparation strategies. In summary, while ultrafast laser processing still faces challenges,
it offers a promising alternative in biomimetic micro/nanosurface fabrication. With the
refinement of the theoretical system of ultrafast laser processing, it is anticipated that the
purification technology for separating complex oil–water mixtures containing multiple
components will witness significant advancements.
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