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Abstract: Continuous Time Echo State Networks (CTESNs) are a promising yet under-explored
surrogate modeling technique for dynamical systems, particularly those governed by stiff Ordinary
Differential Equations (ODEs). A key determinant of the generalization accuracy of a CTESN
surrogate is the method of projecting the reservoir state to the output. This paper shows that of the
two common projection methods (linear and nonlinear), the surrogates developed via the nonlinear
projection consistently outperform those developed via the linear method. CTESN surrogates are
developed for several challenging benchmark cases governed by stiff ODEs, and for each case,
the performance of the linear and nonlinear projections is compared. The results of this paper
demonstrate the applicability of CTESNs to a variety of problems while serving as a reference for
important algorithmic and hyper-parameter choices for CTESNs.

Keywords: echo state networks; surrogate modeling; data-driven modeling; ordinary differential
equations

1. Introduction

Modeling dynamic systems using scientific machine learning (SciML) techniques is a
rapidly growing field with advanced ML architectures being applied to model complex
problems across a diverse range of applications. Some examples are rapid design opti-
mization [1], real-time health monitoring [2], turbulent flow modeling [3], and materials
discovery [4]. Many of these applications utilize a “surrogate model” that makes real-time
predictions of the system behavior in place of full-order models that would be too slow or
expensive for the application.

Recently, Echo State Networks (ESNs) have seen an increase in popularity for modeling
highly nonlinear and chaotic phenomena in domains such as optimal control planning [5],
chaotic time series prediction [6,7], signals analysis [8] and even turbulent fluid flow [9].
These applications leverage the ability of ESNs to capture highly nonlinear transient
behavior accurately, as well as the extremely low cost of training them, with the empirical
success of ESNs on a wide range of approximation tasks discussed and explained in
several works [10,11]. One of the biggest limitations, however, for using the standard
ESN implementation in the surrogate modeling of nonlinear dynamical systems is that the
available training data may not be uniformly sampled in time. A particular example of this
is the numerical solution of stiff systems of Ordinary Differential Equations (ODEs) from
ODE solvers. An ODE system is said to be stiff if, for any initial conditions and in certain
intervals, the solving numerical method is forced to use a timestep which is very small
compared to the smoothness of the exact solution [12]. Numerical ODE solvers overcome
the instability due to stiffness by having a variable timestep size during the solve, leading
to uneven sampling of the solution in time.

There have been several attempts to apply reduced-order modeling for stiff ODEs.
Ji et al. [13] used Physics Informed Neural Networks [14], Kim et al. [15] used Neural
ODEs [16], and Goswami et al. [17] used Deep Operator Networks [18] to solve several
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stiff systems such as the ROBER [19] and POLLU [20] problems. However, the method-
ologies applied require assumptions and scalings that may not generalize, or require
many training data and computational resources to train deep neural networks. Work
by Anantharaman et al. [21] also showed the failure of popular architectures such as Long
Short-Term Memory (LSTM) and standard ESNs in modeling stiff systems.

To use the attractive properties of ESNs (i.e., capacity to model highly nonlinear signals
and ease of training) for modeling stiff systems and to address this issue, a variant of ESNs
called Continuous Time Echo State Networks or CTESNs has been proposed [21]. CTESNs
have been successfully employed in various applications from accelerating predictions of
power system dynamics [22] to accelerating solutions of pharmacology models [23].

In the recent literature, two ways of using CTESNs for surrogate modeling have
emerged, the Linear Projection CTESN (LPCTESN) [21] and the Nonlinear Projection
CTESN (NLPCTESN) [22,23], and these have been applied to a range of problems. However,
there is currently a lack of work critically examining the accuracy of both methods and how
they compare to one another. Further, both projection methods use a radial basis function
(RBF) for interpolation, which also comes with several algorithmic choices that need to be
explored. This study aims to fill this gap by investigating the effects of these algorithmic
choices on surrogates created to solve several stiff ODE systems such as Robertson’s
equations, the Sliding Basepoint model of automobile collision, and the POLLU air pollution
model. The findings of the study show that for the same hyper-parameter settings of the
CTESN, the NLPCTESN outperforms the LPCTESN on all benchmarks shown. Further, it
is shown that for the interpolating RBFs used within CTESNs, k-Nearest Neighbor (k-NN)
polynomial-augmented RBFs outperform standard RBFs in predictive accuracy.

This paper is divided as follows: Section 2 introduces the concept of ESN and CTESN,
along with the projection methods LPCTESN and NLPCTESN described above discussed
in detail. Section 3 demonstrates the application of the methods to several challenging
stiff ODE problems, with a qualitative and quantitative discussion of the results. Section 4
summarizes the work with possible future directions to take.

2. Methods
2.1. Standard Echo State Networks

An Echo State Network [24], depicted in Figure 1, is a form of reservoir computing that
is very similar to the more popular Recurrent Neural Network (RNN) in its architecture. It
makes predictions by following a recurrence relation (Equation (1)) for updating a latent
space vector and using that vector to map to a given output. Unlike RNNs, the parameters
of the RNN in the “reservoir” are fixed and are not updated during training, and it is
only the mapping from latent space to the output space that is learned. Depending on the
implementation, this makes the training of ESNs very fast (sometimes as fast as a simple
least squares fit) and computationally cheap.

Figure 1. Depiction of a standard Echo State Network.
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The governing equation for an Echo State Network reads:

rn+1 = σ(Winxn + Wrn), (1)

where rn ∈ RNr is the latent state at timestep n, σ is an activation function (most commonly
tanh), Win ∈ RNr×Nx and W ∈ RNr×Nr are the reservoir matrices which are fixed and
randomly initialized, and xn is the system state at time n. The matrix W is a sparse matrix
and usually has 1% nonzero entries.

The output projection reads:

xn+1 = Φ(rn+1), (2)

where Φ is decided by the projection method. The most popular projection method is the
linear projection, resulting in

xn+1 = Woutrn+1, (3)

where Wout ∈ RNx×Nr is the linear projection matrix that needs to be fitted to the training
data. Like most machine learning algorithms, ESNs have a set of hyper-parameters that
need to be tuned, and there are several works [25,26] that can be used as guides to select
them. A key hyper-parameter in ESNs is the spectral radius of W. In this study, the spectral
radius is fixed to a value of 0.01 for all models created. This value was obtained via a
hyper-parameter search, details of which are given in Appendix C. Although a bit smaller
than the conventional values used in standard ESNs, it was found in this study on CTESNs
that using the slightly smaller value maximized predictive accuracy while also ensuring
the stability of the reservoir (r) solution.

To fit the trainable matrix, one only has to solve the ordinary linear least squares problem:

If X = [x1; x2; . . . ; xN ] and R = [r1; r2; . . . ; rN ] then

Wout = (RRT)−1RX.
(4)

2.2. Continuous Time Echo State Networks (CTESNs)

Continuous Time Echo State Networks are a variant of ESNs that model time as a
continuous rather than discrete quantity. The model equation for a CTESN is given by:

ṙ = σ(Winx + Wr), (5)

with all variables having the same definition as in the previous section. The projection
equation reads:

x = Φ(r). (6)

As per the literature, there are two ways of modeling the relation between the latent
space and the outputs [27]; one is the linear method (called Linear Projection CTESN or
LPCTESN), described by:

x = Woutr. (7)

The second method is the nonlinear method (called NonLinear Projection CTESN or
NLPCTESN), where the projection Φ is a nonlinear mapping. Many possible functions
can be used, but the literature on NLPCTESNs [22,27] currently uses standard radial basis
functions (RBFs) to write the projection:

x = RBF(r). (8)

Surrogate Modeling via CTESNs

To create and use a surrogate model via the CTESN method, a few steps are followed.
First, a Design of Experiments (DoE) space is created and N sample combinations of query
parameters are drawn; call this set P = {p1, p2 . . . pN}. Each pi represents a set of conditions
at which the ODE is solved and the surrogate is expected to capture the change in the
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solution due to changes in the value of pi. Examples include the initial conditions (see
Sections 3.1.2 and 3.2), rate constants of the ODE (see Sections 3.1.1 and 3.3), etc. The ODE
is solved numerically at each pi ∈ P, to return the solution set Y = {y1, y2....yn}, yi ∈ RNx×Ni

ts .
A single parameter combination p∗ ∈ P is drawn at random, and the reservoir ODE (given
by Equation (5)) is solved using a numerical ODE solver. This returns an r(t) ∈ RNr×Nts

where Nts is the number of timesteps in the solution at p∗. Then, depending on whether the
method follows a linear or nonlinear projection method, either Algorithm 1 or Algorithm 2
is followed to fit and query the surrogate.

Algorithm 1 Linear Projection CTESN Surrogate Fitting

for yi in Y do

Fit Wi
out from yi = Wi

out· r using Equation (4)

end for

Fit RBF mapping Wi
out = RBF(pi), ∀ (Wi

out, pi) pairs

To query a new parameter ptest:

Step 1: Wtest
out = RBF(ptest)

Step 2: ytest(t) = Wtest
out ·r

Algorithm 2 NonLinear Projection CTESN Surrogate Fitting

for yi in Y do

Fit RBFi
1 as per yi = RBFi

1(r(t), Wi
RBF1

)

end for

Fit RBF2 as per Wi
RBF1

= RBF2(pi), ∀ (Wi
RBF1

, pi) pairs

To query a new parameter ptest:

Step 1: Wtest
RBF1

= RBF2(ptest)

Step 2: ytest(t) = RBF1(Wtest
RBF1

, r(t))

Algorithms 1 and 2 both use an interpolating RBF in their procedure, and in this article,
it is demonstrated that polynomial-augmented k-Nearest Neighbor (k-NN) RBFs deliver
superior results in terms of generalization to new test problems for CTESN-based surrogate
models, compared to standard RBFs. The reader is encouraged to read Appendix A for a
detailed explanation of k-NN polynomial-augmented RBFs.

3. Applications and Results

CTESN surrogates are created for three problems. First, Robertson’s equations are
solved, parametrizing the rates of reaction and initial condition separately. Then, the Sliding
Basepoint system is modeled, comparing explicitly the difference due to the projection
method and parametrizing the initial conditions of the problem. Finally, the POLLU
system is solved, again parametrizing the initial conditions of the problem and comparing
the results obtained using differing projection methods. Unless mentioned otherwise,
the training data were sampled from the DoE space randomly.

In all results in this section, the MAE is computed as

MAE =
1

Ntest

Ntest

∑
j=1

∑
N j

ts
i=1 |y

i
j,pred − yi

j,true|

N j
ts

, (9)

where Ntest is the number of test cases; yi
j,pred and yi

j,true are the prediction and true solution,
respectively, for the i’th timestep of the j’th test case.
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3.1. Robertson’s Equations

The first demonstrated application is the surrogate modeling of the Robertson Equations [19].
They are written as:

ẏ1 = −r1 · y1 + r3 · y2 · y3,

ẏ2 = r1 · y1 − r3 · y2 · y3 − r2 · y2
2,

ẏ3 = r2 · y2
2,

(10)

where y1, y2, and y3 represent the concentration of the reactant species and r1, r2, and r3
represent the fixed rates of reaction. The system is usually subject to initial conditions of
[y1, y2, y3] = [1, 0, 0].

They are a system of ODEs that describe a standard rate process and are often used
to benchmark numerical ODE solvers due to the stiffness of the system. More specifically,
the long-time integration of Robertson’s equations is known to be a challenging problem
for numerical ODE solvers, and the system hence serves as a good test for surrogate models.
In this work, models are created by parametrizing the system in two ways; first, the rates
of reaction are parametrized. This has been the focus of several other papers written on
CTESNs [21,27]. Second, the initial conditions of the system are parametrized.

3.1.1. Parametrizing Rates of Reaction

In this section, the Design of Experiment (DoE) space for the rates is given as:

r1 = [0.032, 0.048],

r2 = [2.4, 3.6]× E7,

r3 = [0.8, 1.2]× E4.

(11)

The focus is limited to presenting the results of the prediction of the variable y2. This
variable has a sharp transient that occurs at a time scale much smaller than the other two,
and hence causes the system to be stiff.

The average MAE for y2, averaged across several test cases listed in Table 1, is shown in
Table 2 sorted in descending order of generalization MAE. Predictions for y2 for a particular
test parameter are shown in Figure 2. For the same hyper-parameters, it can be observed
that the absence of either the augmenting polynomial or the k-NN interpolation (i.e., using
all collocation points to predict the solution in the RBF) significantly increases the error of
prediction. It can also be seen that the nonlinear projection performs better on average than
the linear projection.

In the next section, the initial condition of Robertson’s ODE is parametrized, and a
similar error analysis is performed.

Table 1. Test parameter values for rate parametrization of Robertson’s ODE system.

Parameter Set r1/0.04 r2/3 · E7 r3/1 · E4

P1 0.95 1.05 0.95

P2 0.9 1.1 0.9

P3 1.1 0.9 1.1

P4 1.03 0.99 1.04
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Table 2. Average Mean Absolute Error (MAE) in y2, averaged across all test cases.

Trial No. Nr Ndata Nneigh
Polynomial

Augmentation
Projection

Method
Avg. MAE
(×10−7)

1 50 50 4 N Linear 17.6

2 50 50 All Y Linear 1.40

3 50 500 4 Y Linear 1.29

4 50 50 4 Y Linear 0.76

5 50 50 4 Y Nonlinear 0.32

(a) (b)

(c) (d)

(e)
Figure 2. Figures show the time history for y2 for a test parameter set (P2 from Table 1). Each trial
mentioned below is referenced from Table 2. The NLPCTESN prediction is the best out of all models.
(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4 (e) Trial 5.

3.1.2. Parametrizing Initial Conditions

The initial condition of the system is parametrized. This problem can be challenging
for lower initial values of y1(0) as it leads to a smaller and sharper transient in y2, which
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becomes more difficult to capture accurately by the surrogate. The DoE space of the initial
condition is given as

y1(0) = [0.5, 1],

y2(0) = 0,

y3(0) = 1 − y1(0).

(12)

The condition for y3 is decided on the basis that the sum of all quantities should
always equal to 1. Once more, the focus is on comparing the predicted results in y2.

Table 3 tabulates the average MAE across all test cases for the problem, listed in
Table 4, sorted in descending order. Figure 3 shows the comparison for a test parameter,
across five different configurations of the CTESN surrogate model. A similar trend of
hyper-parameter performance as seen in Table 2 is noted, in that the absence of the k-NN
interpolation increases the error of the prediction. For the same hyper-parameters, the non-
linear projection once again achieves lower generalization MAE than the linear projection.

Table 3. Average Mean Absolute Error (MAE) in y2, averaged across all test cases when parametrizing
the initial condition.

Trial No. Nr Ndata Nneigh
Projection

Method
Avg. MAE
(×10−7)

1 500 50 All Linear 158

2 50 50 All Linear 28.6

3 500 50 4 Linear 25.2

4 50 50 4 Linear 6.23

5 50 50 4 Nonlinear 0.99

Table 4. Test parameter values for initial condition parametrization of Robertson’s ODE system.

Parameter Set y1 y2 y3

P1 0.6 0 0.4

P2 0.7 0 0.3

P3 0.85 0 0.15

P4 0.9 0 0.1

(a) (b)

Figure 3. Cont.
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(c) (d)

(e)
Figure 3. Figures show time history for y2 for a test parameter set (P4 from Table 4). Each trial
mentioned below is referenced from Table 3. The NLPCTESN performs the best out of all models.
(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4 (e) Trial 5.

3.2. Sliding Basepoint Model

Finally, the discussed methods are applied to the surrogate modeling of a realistic
crash safety design problem. A system of ODEs proposed by Horváth et al. [28] that
approximately models an automobile collision is solved via a created surrogate model. This
system, called the Sliding Basepoint model, has parameters that were fitted on realistic
crash data and are assumed to accurately model a collision problem. Figure 4 depicts the
system at its initial state and at a later time. The system is given as:

ẋ1 = v1,

v̇1 =
1

m1
F1(Fs, c1, v1),

ẋ2 = v2,

v̇2 =
1

m2
F2(−Fs, c2, v2),

k̇ = Dk · P,

ċ1 = Dc · P,

(13)

where m1, m2, F1, F2, x1, x2, v1, v2 refer to the masses, total forces on, positions, and velocities
of the bodies, respectively. m1 in reality reflects the mass of the chassis of the car; x1 behaves
similarly to the deformation of the bumper. Fs represents the spring force:

Fs = k · (x2 − x1), (14)

between the two masses and P represents the power of dissipation

P = |m1 · v2
1|. (15)
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Figure 4. Sliding Basepoint system for collision modeling.

Finally, the forces are computed based on best-fit models described in the paper:

F1(Fs, c1, v1) = Fs − c1 · |v1| · sign(v1),

F2(Fs, c2, v2) =

{
0, if Fs < c2 or |v2| < v f

Fs − c2 · sign(v2), otherwise

(16)

The values of the fixed parameters are given in Table 5, and the parameter values
changed while testing the surrogate are listed in Table 6. The reader is referred to the
paper [28] for further details. The system is subject to initial conditions [x1, v1, x2, v2, k, c1] =
[0, v0, 0, 0, k0, 0].

The mechanics of crash and impact problems are known to have sharp transients and
highly oscillatory behaviors associated with them, making their numerical solutions slow
and costly to compute for a wide range of parameters. Hence, CTESNs will be a good
surrogate modeling tool for the problem.

In this work, the initial conditions of the problem (v0 and k0) are parametrized to
simulate different impact velocities and directions (the spring constant of the bumper can
be assumed to be different in different directions). The state space for the problem is the
vector [x1, v1, x2, v2, k, c1].

The DoE space is the range:

v0 = [5, 25] (m/s),

k0 = [1, 10]× 106 kg/s2,
(17)

chosen to represent a wide range of speeds and stiffness constants. The DoE space was sam-
pled using a space-filling sampling strategy [29] and the surrogate models were trained on
100 data points, and data were generated using a stiff ODE solver using solver parameters
given in [28].

Table 7 shows the average MAE for the state variable v2 for the linear and nonlinear
projection methods, all other hyper-parameters being kept the same, for test parameters listed
in Table 5. v2 was chosen to demonstrate the accuracy of the surrogates because, as is visible
in Figure 5, it has sharp nonlinear oscillatory transients starting from the moment of collision,
which is difficult to capture for surrogate models. It can be seen from Table 7 and Figure 5
that the LPCTESN has a poorer performance on test cases compared to the NLPCTESN.

Of particular interest is the speedup obtained by using the surrogate; this leads to up
to a 200× speedup in the prediction of the solution, the ODE solver taking roughly 0.02 s
per solve of the ODE system. This is important because the transients in Figure 5 occur at
the same time scale O(10−2s). With a 200× speedup, if the surrogate is deployed on board a
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vehicle, it can judge the severity of the collision much more quickly by computing impact
forces from the result of the system, and closed-loop control and safety measures can be
deployed. In this case, it would effectively function as a digital twin for collision monitoring.

(a) (b)

(c) (d)

(e) (f)
Figure 5. Solution v2 for several tests with different test parameters, the average error of which is
shown in Table 7. The left and right columns show results from the linear and nonlinear projections,
respectively. Table 6 defines the values P3–P5 mentioned below. (a) LPCTESN—P3 (b) NLPCTESN—
P3 (c) LPCTESN—P4 (d) NLPCTESN—P4 (e) LPCTESN—P5 (f) NLPCTESN—P5.

Table 5. Parameter values taken from [28] with their SI units.

m1 (kg) m2 (kg) Dk Dc c2 (N) v f (m/s)

1916 24.9 3.38 0.459 145,000 0.1

Table 6. Test parameter values for the collision modeling problem.

Parameter Set v0/25 k0/106

P1 0.496 4.46

P2 0.884 8.45

P3 0.424 1.43

P4 0.283 3.75

P5 0.9 9.95
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Table 7. Average Mean Absolute Error (MAE) in v2, averaged across all test cases in Table 6.

Trial No. Nx Nneigh
Projection

Method Avg. MAE (v2)

1 50 4 Linear 1.02

2 50 4 Nonlinear 0.51

3.3. The POLLU Model

The CTESN approach is used to model the POLLU air pollution model developed at
the Dutch National Institute of Public Health and Environmental Protection [20]. It consists
of 20 species and 25 reactions, modeled by nonlinear ODEs of the form

dy
dt

= P(t, y)− L(t, y)y, (18)

where y is the concentration vector (in ppm) of the reacting species, P is the production
term, and L is a diagonal matrix representing the loss term for every species in the system.
Table 8 shows the production and loss rates for each species of the system. The values of
the rate constants r are given in Table A1. The reader is referred to the paper [20] for a
complete description of the reaction system.

Table 8. Species involved in the POLLU reaction system, with their production and loss rates, derived
from [20].

Species (y) Production Rate (P) Loss Rate (L)

1 r2y2y4 + r3y5y2 + r9y11y2 + r11y13
+ r12y10y2 + r22y19 + r25y20

r1 + r10y11 + r14y6
+r23y4 + r24y19

2 r1y1 + r21y19 r2y4 + r3y5 + r9y11 + r12y10

3 r1y1 + r17y5 + r19y16 + r22y19 r15

4 r15y3 r2y2 + r16 + r17 + r23y1

5 r4y7 + r4y7 + r6y7y6 + r7y9
+r13y14 + r20y17y6

r3y2

6 r3y5y2 + r18y16 + r18y16 r6y7 + r8y9 + r14y1 + r20y17

7 r13y14 r4 + r5 + r6y6

8 r4y7 + r5y7 + r6y7y6 + r7y9 0.0

9 0 r7 + r8y6

10 r7y9 + r9y11y2 r12y2

11 r8y9y6 + r11y13 r9y2 + r10y1

12 r9y11y2 0.0

13 r10y11y1 r11

14 r12y10y2 r13

15 r14y1y6 0.0

16 r16y4 r18 + r19

17 0.0 r20y6

18 r20y17y6 0.0

19 r23y1y4 + r25y20 r21 + r22 + r24y1

20 r24y19y1 r25

The system is a common benchmark for stiff ODE solvers and represents a difficult
problem to solve due to the large number of species and ODEs involved. When such
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systems have to be solved at many grid points, say, in a computational mesh, they represent
a very expensive computation and hence this example is an ideal application for testing
surrogates of stiff ODEs. In this work, the initial conditions of the system are simultaneously
parametrized, according to the following:

y2,0 = [0.14, 0.26],

y4,0 = [0.028, 0.052],

y7,0 = [0.07, 0.13].

(19)

Here, y2,0, y4,0, and y7,0 refer to the initial concentration of the respective species. The initial
conditions for the rest of the species are default as per the paper [20].

The training data were sampled using 100 data points within this DoE space, selected
randomly. The reservoir size Nr was set to 100, and the number of queried neighbors Nneigh by
the k-NN RBF was set to 10. Table 9 shows the mean absolute errors computed across several
test cases (listed in Table 10) for a few species in the reaction, for the linear and nonlinear
projection methods. It can be observed that the nonlinear projection CTESN outperforms the
linear projection CTESN when all other hyper-parameters are kept the same. Figure 6 shows
the comparison of the prediction graphically; the LPCTESN prediction is much noisier than
the NLPCTESN prediction at later times. This was also observed with Robertson’s equations,
where the predictions at larger time scales by the LPCTESN tended to become noisier.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

(g) (h)
Figure 6. Solutions y1, y2, y14, and y20 for a test parameter (P2 from Table 10). The left and right
columns contain results from the linear and nonlinear projections, respectively. The NLPCTESN
outperforms the LPCTESN in this example. (a) LPCTESN—y1 (b) NLPCTESN—y1 (c) LPCTESN—y2

(d) NLPCTESN—y2 (e) LPCTESN—y14 (f) NLPCTESN—y14 (g) LPCTESN—y20 (h) NLPCTESN—y20.

Table 9. Mean Absolute Error (MAE) for the POLLU problem, averaged across all test cases in
Table 10.

Projection
Method

Mean Absolute Error

y1(×10−5) y2(×10−5) y4(×10−4) y14(×10−8) y20(×10−6)

Linear 75.1 76.3 7.68 51.5 22.1

Nonlinear 2.60 2.78 3.01 1.76 2.59

Table 10. Test parameter values for the POLLU air pollution modeling problem.

Parameter Set y2,0 y4,0 y7,0

P1 0.192 0.0464 0.114

P2 0.258 0.04012 0.103

P3 0.188 0.0332 0.0938

P4 0.208 0.0508 0.115

P5 0.228 0.0488 0.0714

4. Discussion and Conclusions

From the numerical experiments conducted, it was observed that polynomial-augmented
K-Nearest Neighbor RBFs outperform standard RBFs in terms of accuracy when used as
part of the CTESN surrogate modeling algorithm. It was observed that the nonlinear pro-
jection (NLPCTESN) method consistently outperformed the linear projection (LPCTESN)
method, achieving superior accuracy when the hyper-parameters were the same, on a vari-
ety of problems. The NLPCTESN method demonstrated accuracy across several problems
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with sharp transients, varying time scales, and long horizons of integration, whereas the
LPCTESN method had a higher generalization error on all test examples. The surrogate
was also shown to achieve a speedup of several orders of magnitude compared to an
ODE solver of a realistic collision problem and could be used for several cases like design
optimization and online collision severity monitoring.

There are several directions in which this work could be built upon. The CTESN is a
black-box data-driven method, and future works need to investigate how well the model
learns the physics of the problem, or apply physics-constrained modeling approaches to
the outputs of the CTESN. The speedup of the surrogate model becomes very apparent
when solving many instances of the ODE; this happens either when the ODE system is
very large, or the small ODE system has to be solved repeatedly many times, such as in
coupled ODE–PDE systems. Examples include chemically reacting flows similar to the
POLLU system, in which a large stiff system of ODEs has to be solved at every compute
node, or FEM-based crash solvers which require accurate modeling of sharp transients
similar to those demonstrated in this work.
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ESN Echo State Networks
CTESN Continuous Time Echo State Networks
LPCTESN Linear Projection Continuous Time Echo State Network
NLPCTESN NonLinear Projection Continuous Time Echo State Network
MAE Mean Absolute Error
RBF Radial Basis Function
k-NN k-Nearest Neighbor
DoE Design of Experiments
ODE Ordinary Differential Equations
FEM Finite Element Method

Appendix A. k-Nearest Neighbor Polynomial-Augmented Radial Basis
Function Interpolation

Radial basis function (RBF) interpolation is a high-order accurate method that uses
radial basis functions to create interpolants of unstructured data, which can be in an
arbitrary number of dimensions. The scalar form of the interpolant is

s(x) =
N

∑
i=0

wiϕ(||x − xi||2) (A1)

where xi represent the points at which the solution is known, wi are the associated co-
efficients which are fitted, and ϕ is a kernel function. One of the most common kernel
functions, also used in this work, is

ϕ(ϵr) = (ϵr)2log(ϵr) (A2)

where ϵ is the shape factor, which is an important hyper-parameter. In this work, it is set to
1. However, it can often greatly affect the generalization capability of the RBF. Cao et al. [30]
discussed how high-order polynomial-augmented RBFs outperformed standalone RBFs
and reduced the dependency of the RBF on the shape factor ϵ, and several works [31,32]
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have shown that adding high-order polynomials to the RBF greatly enhances the accuracy
of the model. In this work, the polynomial-augmented RBF takes the form:

f (x) = K(x, y)A + P(x)B (A3)

where A and B are fitted coefficient matrices, and K and P need to be constructed for a
query point x, given data points y. If Nd, NO, Np are determined by the number of data
points, the output dimension, and the polynomial order, respectively, we have A ∈ RNd×NO

and B ∈ RNp×NO . K ∈ RNd can be constructed as

Ki(x) = ϕ(||x − yi||), i = 1 . . .Nd, (A4)

and P ∈ RNp can be constructed as

P(x) = 1+ x + . . . (A5)

A further improvement to RBF interpolation is adding a k-Nearest Neighbor con-
straint to the prediction process. This means that during prediction, only k of the nearest
collocation points (i.e., yi) will contribute to the prediction at the test point. These N points
in practice are usually inferred using a decision tree. Intuitively, this method is useful
when the interpolation spaces are large and the hyper-parameters of the RBF may not be
optimally tuned, leading to collocation points at large distances from the test point and
contributing to the interpolant evaluation, corrupting the solution.

Appendix B. POLLU Reaction Rates

The rates of reaction of the POLLU system are shown in Table A1.

Table A1. Reaction rates for the POLLU problem.

Reaction Rate Value Reaction Rate Value

r1 0.350 × 100 r14 0.163 × 105

r2 0.266 × 102 r15 0.480 × 107

r3 0.120 × 105 r16 0.350 × 10−3

r4 0.860 × 10−3 r17 0.175 × 10−1

r5 0.820 × 10−3 r18 0.100 × 109

r6 0.150 × 105 r19 0.444 × 1012

r7 0.130 × 10−3 r20 0.124 × 104

r8 0.240 × 105 r21 0.210 × 101

r9 0.165 × 105 r22 0.578 × 101

r10 0.900 × 104 r23 0.474 × 10−1

r11 0.220 × 10−1 r24 0.178 × 104

r12 0.120 × 105 r25 0.312 × 101

r13 0.188 × 101

Appendix C. Hyper-Parameter Search for Spectral Radius

Table A2 shows the average test error for different values of the spectral radius,
for parametrizing the initial conditions of Robertson’s equations, described in Section 3.1.2.
The optimal value of the spectral radius was found to be in a similar range for all experi-
ments and was kept consistent at 0.01 for all shown results for consistency.
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Table A2. Different spectral radii used and the MAE in y2, averaged across all test cases. Using a
value of 0.1–0.01 was found to be optimal across all experiments.

Spectral Radius Average Error (y2)× 10−7

0.0001 0.94

0.001 0.51

0.01 0.33

0.1 0.27

1.0 0.95

10.0 2.24
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