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Abstract: Mesona chinensis polysaccharide (MCP), a common thickener, stabilizer and gelling agent in
food and pharmaceuticals, also has antioxidant, immunomodulatory and hypoglycemic properties.
Whey protein isolate (WPI)-MCP conjugate was prepared and used as a stabilizer for O/W emulsion
in this study. FT-IR and surface hydrophobicity results showed there could exist interactions between
-COO- in MCP and -NH3+ in WPI, and hydrogen bonding may be involved in the covalent binding
process. The red-shifted peaks in the FT-IR spectra suggested the formation of WPI-MCP conjugate,
and MCP may be bound to the hydrophobic area of WPI with decreasing surface hydrophobicity.
According to chemical bond measurement, hydrophobic interaction, hydrogen bond and disulfide
bond played the main role in the formation process of WPI-MCP conjugate. According to morpholog-
ical analysis, the O/W emulsion formed by WPI-MCP had a larger size than the emulsion formed
by WPI. The conjugation of MCP with WPI improved the apparent viscosity and gel structure of
emulsions, which was concentration-dependent. The oxidative stability of the WPI-MCP emulsion
was higher than that of the WPI emulsion. However, the protection effect of WPI-MCP emulsion on
β-carotene still needs to be further improved.

Keywords: Mesona chinensis polysaccharide; whey protein isolate; conjugate; emulsion

1. Introduction

Compared with conventional emulsion, Pickering emulsion has the advantages of
enhanced encapsulation capability and resisting coalescence, phase separation, and Ost-
wald ripening [1–3]. Therefore, in recent years, Pickering emulsion is often used as carriers
for the delivery of bioactive substances, including lutein, curcumin, resveratrol and so on.
Generally, Pickering emulsion is stabilized by organic solid particles like protein, phos-
pholipid, polysaccharide, and inorganic solid particles like SiO2 and CaCO3. Food grade
organic particles have won people’s favor because of their safe, green, effective features [3].
In addition, it is difficult to prepare superior emulsions with a single stabilizer and thus
protein-polysaccharide, protein-phospholipid, and protein-protein composite nanoparti-
cles have attracted widespread attention. Xu et al. [4] prepared a WPI-chitosan complex
stabilized emulsion for controlled and sustainable release of α-tocopherol. Liu et al. [5]
stabilized O/W Pickering emulsion with WPI glycated with glucose, lactose, and maltodex-
trin. They found that glycation changed the surface hydrophobicity of WPI, improved
protein adsorption, and formed a more stable emulsion. Previous studies also showed
that polysaccharide improved the performance of protein-based emulsion systems, such as
increased encapsulation efficiency (EE), improved redispersibility after drying and bioac-
cessibility [6,7]. Therefore, protein-polysaccharide composite nanoparticles are promising
stabilizers in emulsions.
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MCP is an acid heteropolysaccharide extracted from Mesona chinensis Benth (Figure 1b),
a kind of medicinal and edible plant of the Labiatae family [8]. It is composed of xylose
and galacturonic acid [9]. MCP has good rheological properties and gelling behavior,
and a great influence on the textural, rheological, and digestibility properties of starch.
Some studies suggested that it could be used to prepare starch-based food packaging
materials, nanoparticles that deliver bioactive substances, and self-supporting hydrogels
with the desired texture and gelling properties [10]. In addition, MCP possesses various
bioactivities, including antioxidant effect against DPPH radical and ABTS radical cation,
hepatoprotective and immunoregulatory effects [11]. However, study on MCP-based
emulsions is scarce.
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β-carotene, a natural lipophilic compound, is widely found in many fruits and veg-
etables, such as pawpaw, carrot, sea buckthorn, and smoke stove. Owing to its excellent
coloring effect and biocompatibility, β-carotene is allowed to be used as an additive in the
food industry (e.g., fruit juice, candies, jam, flavored fermented milk, etc.) for coloring
purposes [12]. β-carotene contains eight isoprene structures on the main chain and two
β-viologen ring structures at the end (Figure 1a), which gives it favorable antioxidant
activity. β-carotene is often used to prevent oils from oxidizing and prepare food pack-
aging material as an excellent natural antioxidant [13,14]. In addition to these in vitro
applications, β-carotene can perform many important biological functions in the human
body as a vitamin A precursor [15]. β-carotene possesses antioxidation, anti-inflammatory
and anti-cancer activities [12,16]. Furthermore, it can improve intestinal dysfunctions,
control defects in vision, modulate atherosclerotic cardiovascular disease, and reduce the
symptoms of Alzheimer’s disease [17–20]. However, the unsaturated double bonds in
the β-carotene molecule structure cause poor storage stability and thus limits its wide
application in the food field [21].

In this study, the MCP was covalently combined with WPI, a kind of protein with
good gelation, emulsification, and polysaccharide binding properties, to prepare WPI-MCP
conjugate. The WPI-MCP conjugate was characterized by FT-IR, chemical bonds, and
surface hydrophobicity measurements. Then, WPI-MCP conjugate was used to prepare
O/W emulsion, and its protective effect on β-carotene during storage was investigated.
Knowledge obtained from our work will contribute to the development of polysaccharide-
protein conjugate stabilized emulsions and provide information for better stability of
β-carotene.

2. Materials and Methods
2.1. Materials

MCP (35.62% total sugar, 37.14% of uronic acid, 14.33% protein, and the molecular
weight was 325 kDa) was extracted according to Lin et al. [22]. WPI was purchased from
Hilmar Ingredients Corporation (Hilmar, CA, USA), and β-carotene was obtained from
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Corn oil was obtained from
the local market (Nanchang, China). 1-anilino-8-naphthalensulfonate (ANS) was purchased
from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). The water used in this
work was ultrapure water.

2.2. Preparation and Characterization of WPI-MCP Conjugate
2.2.1. Preparation

MCP and WPI were dissolved in phosphate buffer (PBS) (10 mM, pH 7.0) with mag-
netic stirring at 25 ◦C for 120 min respectively. The MCP and WPI stock solutions were
placed at 4 ◦C overnight for hydration. After that, MCP stock solutions were mixed with
WPI stock solutions and named WPI (2% WPI, w/v), WPI-MCP0.05 (2% WPI + 0.05% MCP,
w/v), WPI-MCP0.1 (2% WPI + 0.1% MCP, w/v), WPI-MCP0.2 (2% WPI + 0.2% MCP, w/v),
WPI-MCP0.3 (2% WPI + 0.3% MCP, w/v), respectively, and then heated at 95 ◦C for 30 min.
The mixtures were placed in ice to cool immediately, followed by homogenization at
13,000 r/min for 5 min to prepare the composite particles (WPI-MCP conjugate).

2.2.2. FT-IR

Samples were lyophilized using a FreeZone 2.5 freeze dryer (Labconco, Kansas City,
MO, USA) and taken at approximately 1:100 with potassium bromide, and the infrared
spectra were obtained on a Nicolet 5700 Fourier transform infrared spectrophotometer
(Nicolet, Madison, WI, USA) using potassium bromide as a blank background control. The
wavelength range was 4000–500 cm−1 with 64 scans and 4 cm−1 resolution. Each sample
was measured three times.
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2.2.3. Chemical Bonds Measurement

The chemical bonds that existed in WPI-MCP conjugate containing 2% WPI and 0.2%
MCP (w/v) were evaluated based on Deng’s [23] method with slight modification. 0.2%
MCP concentration (w/v) was chosen because the WPI-MCP0.2 emulsion had the smallest
particle size (not shown in this work). Four solvents were prepared: solvent 1 (S1) was
0.6 M sodium chloride, solvent 2 (S2) was 0.6 M sodium chloride + 1.5 M urea, solvent 3 (S3)
was 0.6 M sodium chloride + 8 M urea, and solvent 4 (S4) was 0.6 M sodium chloride + 8 M
urea +0.5 M β-mercaptoethanol. 500 mg lyophilized samples were added to 5 mL S1 and
then mixed by vortexing for 120 s. The mixtures were placed at 25 ◦C for 20 min, followed
by centrifugation at 10,000× g for 20 min. The precipitates were mixed with 5 mL S2/S3/S4
with the same procedures. The WPI solubility, expressed as the percentage of protein
content (obtained by Bradford method) in the supernatant relative to the total protein,
in S1, S2, S3, and S4 was used to evaluate the ionic bond, hydrogen bond, hydrophobic
interaction, and disulfide bond, respectively.

2.2.4. Surface Hydrophobicity

Surface hydrophobicity was determined using Dong’s method [24]. ANS working
solution was obtained by dissolving ANS in PBS (10 mM, pH 7.0) buffer. The WPI and
WPI-MCP systems were diluted with the same PBS to a protein concentration from 0.1 to
0.5 mg/mL at 0.1 mg/mL intervals. Surface hydrophobicity of MCP was obtained at 0.1, 0.2,
0.3, 0.4, and 0.5 mg/mL MCP concentration. The dilution was added to 8 mM ANS solution
at a ratio of 200:1, mixed well and placed in the dark for 15 min before the measurement of
fluorescence intensity on a microplate reader (Molecular Devices, Sunnyvale, CA, USA).
The excitation, emission wavelengths, and slit width were 390, 470, and 10 nm respectively.
The initial slope of the fluorescence intensity versus WPI concentration corresponded to
the surface hydrophobicity.

2.3. Preparation and Characterization of WPI-MCP Emulsion
2.3.1. Preparation

WPI-MCP solutions containing 2% (w/v) WPI and 0%, 0.05%, 0.1%, 0.2%, and 0.3%
(w/v) MCP were mixed with corn oil at a ratio of 9:1 (v/v). The mixtures were homogenized
with a high-speed shear emulsifier at 13,000 r/min for 5 min, and then the emulsion was
obtained by a high-pressure microjet circulating three times at 120 MPa.

2.3.2. Microstructure Analysis

The morphology of the Pickering emulsion was characterized by an Olympus CKX53
microscope (Olympus Co., Ltd., Tokyo, Japan). A 10-fold dilution of the emulsion was
placed on the slide without a coverslip to avoid deformation of the droplets to observe the
microstructure. In addition, a BX 53 fluorescence microscope (Olympus Co., Ltd., Tokyo,
Japan) was employed for observing the emulsion interfacial structure. Nile Red (0.1%, w/v)
and Nile Blue A dye (0.1%, w/v) were used for staining, which were excited by a 488 nm
argon laser and a 633 nm helium-neon (He-Ne) laser, respectively.

2.3.3. Rheological Properties

Rheological properties of emulsions were obtained on the DHR-2 rheometer (TA
Instruments Inc., New Castle, DE, USA) using a 40 mm diameter parallel plate at a 0.5 mm
gap at 25 ◦C after 12 h of resting. For steady rheological determination, the relationship
between apparent viscosity and the shear rate was recorded at the shear rate ranging from
0.1 to 100 s−1. For dynamic viscoelasticity properties, the changes of storage modulus (G′)
and loss modulus (G′′) were recorded at 0.1–10 rad/s frequency range.
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2.4. Preparation and Characterization of β-Carotene-Loaded WPI-MCP Emulsion
2.4.1. Preparation

β-carotene was dissolved in corn oil at 1 mg/mL under ultrasonic processing for
30 min. The emulsions were prepared according to Section 2.3.1. In the WPI-MCP β-
carotene emulsion, the concentration of β-carotene was 0.1 mg/mL, and the WPI-MCP
solution containing 0.2% (w/v) MCP was chosen to prepare β-carotene emulsion because
the particle size of the emulsion stabilized by WPI-MCP0.2 was the smallest (not shown in
this work). Emulsion without MCP as a control group.

2.4.2. Particle Size and Zeta Potential Determinations

100-fold dilution of the emulsion was measured for particle size and zeta potential
using a Zetasizer Nano ZS90 particle size analyzer (Malvern Inc., Malvern, UK). The
determinations were preformed in triplicate at 25 ◦C.

2.4.3. EE

EE of β-carotene was evaluated according to Zhang’s [10] method with adaptations.
The β-carotene entrapped within the emulsion was extracted by anhydrous ethanol-n-
hexane (1:2, v/v) solution 3 times. The pooled n-hexane phase was measured on a mi-
croplate reader (Molecular Devices, Sunnyvale, CA, USA) at 450 nm. The amount of
β-carotene in the sample was calculated by the standard curve. EE was obtained by the
following equation:

EE (%) =
Entrapped β− carotene

Total mass of input β− carotene
(1)

2.4.4. Oxidative Stability Assessment

The peroxide value (POV) was analyzed by measuring the content of hydrogen perox-
ide in the primary lipid of the emulsion based on Yuan’s [25] method with slight modifica-
tion. The emulsion was mixed with isopropanol-isooctane solution (1:2, v/v) at a ratio of
1:5. Then, 200 µL of supernatant were taken after centrifugation at 3500× g for 2 min and
mixed with 20 µL 3.94 mol/L thiocyanate and 20 µL of Fe2+, and then fixed to 5 mL with
butanol-methanol solution (1:2, v/v). The mixtures were kept away from light for 20 min,
followed by a record on a microplate reader (Molecular Devices, Sunnyvale, CA, USA)
at 510 nm. The concentration of peroxides was calculated by a standard curve prepared
with Fe3+.

Thiobarbituric acid reactive substances (TBARS) were analyzed according to Chen’s
method [26]. Emulsions were mixed with trichloroacetic acid (10%, w/v) and thiobarbi-
turic acid solution (1%, w/v) at a ratio of 3:5:2, followed by heat treatment at 100 ◦C for
30 min. The emulsions were placed in ice for rapid cooling, followed by centrifugation
at 4500 r/min for 20 min. The supernatant was collected and measured on a microplate
reader (Molecular Devices, Sunnyvale, CA, USA) at 532 nm. Different concentrations of
1,1,3,3-tetraethoxypropane (0, 1.25, 2.5, 5, 10, 20 µM) were used to calculate the TBARS
value. The samples were placed at 45 ◦C and the POV and TBARS values were analyzed at
0, 7, 14, 21, and 28 days.

2.5. Chemical Stability Analysis

The WPI β-carotene emulsion and WPI-MCP β-carotene emulsion were put in cen-
trifuge tubes respectively and then stored at 4 ◦C and 25 ◦C away from light. The β-carotene
retention, expressed as Ct/C0, where C0 and Ct were the β-carotene content at the 0 and
t days storage, respectively, was measured at 0, 7, 14, 21, and 28 days by the same method
with Section 2.4.3.
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2.6. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) using SPSS 26.0
software (IBM, Chicago, IL, USA) and reported as mean ± SD. There was significant
difference when the value of p < 0.05.

3. Results and Discussion
3.1. FT-IR

Infrared spectroscopy can be used to study the structure and chemical bonding of
compounds [27]. Figure 2a showed the FT-IR spectra of WPI, MCP, and WPI-MCP con-
jugates at the 4000–500 cm−1 wavenumber range. For MCP, the peaks at 3349 cm−1 and
2936 cm−1 corresponded to the stretching vibrations of O-H and C-H, respectively [22].
1608 cm−1 could be caused by the carbonyl C = O vibrations in uronic acid. For WPI,
the peak at 3292 cm−1 represented the stretching vibrations of O-H. Peaks at 1645 cm−1

(amide I) and 1537 cm−1 (amide II) are attributed to C = O stretching vibrations and C-N
stretching vibrations in combination with N-H bending, respectively. After interaction with
MCP, the peak of WPI at 3292 cm−1 shifted to 3294 cm−1 and became wider, indicating
the binding of MCP with WPI and the intermolecular and/or intramolecular hydrogen
bonds in WPI-MCP conjugate increased. Tirgarian et al. [28] also reported that conjugation
of soy protein isolate (SPI) and sodium caseinate with polysaccharides including Alyssum
homolocarpum seed gum and kappa-carrageenan induced red shift of the peaks of these
two proteins in 3200–3500 cm−1. Moreover, the peak in the amide I band at 1645 cm−1

shifted to 1647 cm−1 after conjugation, which may be caused by the interaction between
-COO- from MCP and -NH3+ from WPI. The peaks at 1537, 1450, and 1394 cm−1 shifted to
1541, 1456, and 1398 cm−1, respectively. Chen et al. [29] showed that conjugation resulted
in a red shift, and the stronger the conjugate effect, the stronger the red shift. From the
above results, it can be seen that these peaks in amide I, amide II, and 3200–3500 cm−1

underwent varying degrees of redshift, which supported the formation of WPI-MCP conju-
gate. Additionally, the spectra of WPI-MCP conjugates with different MCP concentrations
were similar.
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Figure 2. (a) FTIR spectra of WPI, MCP and WPI-MCP conjugates. (b) Intermolecular forces, inluding
ionic bond (S1), hydrogen bond (S2), hydrophobic interaction (S3), and disulfide bond (S4) in WPI
and WPI-MCP systems containing 2% WPI and 0.2% MCP (w/v). Different superscripts represent
statistically significantly different (p < 0.05).
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3.2. Surface Hydrophobicity

Surface hydrophobicity has been used to predict and evaluate changes in the surface
properties of the protein. The hydrophobic groups on the protein surface play a key role
in maintaining stable protein conformation [30,31]. ANS is an effective tool to measure
surface hydrophobicity, because ANS can bind to hydrophobic amino acids on the protein
surface [32]. As shown in Table 1, the surface hydrophobicity values of WPI and MCP were
29.57 and 3.07, respectively, showing that MCP processed lower surface hydrophobicity,
which may be due to the presence of a large number of hydroxy groups in the MCP. Af-
ter cross-linking of WPI with MCP, WPI surface hydrophobicity significantly decreased
with increasing concentration of MCP. The decrease of surface hydrophobicity started
to slow down at 0.2% (w/v) MCP concentration. At this point, the value of surface hy-
drophobicity was reduced by 69.33%. The addition of polysaccharides introduced hydroxyl
groups, which could decrease the surface hydrophobicity of the whole system. Another
reason could be that MCP may be bound to the hydrophobic area of WPI and thus reduce
the binding sites of ANS on WPI. Moreover, the formation of WPI-MCP conjugate with
larger molecular weight may increase the steric hindrance preventing ANS adsorption.
Hu et al. [33] reported that the surface hydrophobicity of SPI-Pleurotus eryngii polysac-
charide conjugates was lower than that of WPI. Huang et al. [34] also found the surface
hydrophobicity of WPI decreased after conjugation with genipin-crosslinked alkaline solu-
ble polysaccharides. They thought one of the reasons could be that the larger molecular
weight after crosslinking increased steric hindrance for adsorption by ANS.

Table 1. The surface hydrophobicity of WPI, MCP and WPI-MCP conjugates.

Sample Surface Hydrophobicity R2

WPI 29.57 ± 0.93 e 0.9925
MCP 3.07 ± 0.03 a 0.9879

WPI-MCP0.05 20.60 ± 0.11 d 0.9914
WPI-MCP0.1 11.68 ± 0.70 c 0.9867
WPI-MCP0.2 9.07 ± 1.05 b 0.9706
WPI-MCP0.3 8.53 ± 0.20 b 0.9890

Note: The data are presented as means ± SD. Different superscripts in same column (a–e) represent statistically
significantly different (p < 0.05).

3.3. Chemical Bonds Measurement

The intermolecular force was investigated by breaking the different forces involved
in protein-protein and protein-polysaccharide molecules with different solvents. The
intermolecular forces that appeared in WPI and WPI-MCP solutions were evaluated in our
study. Figure 2b indicated there were fewer ionic bonds in the WPI-MCP system. MCP as
acidic polysaccharides had negative charges, and WPI was also negatively charged at pH
7 because its isoelectric point was pH 4.5 [35]. Therefore, it is difficult for WPI and MCP
to interact with each other through ionic bonds. In addition, the hydrophobic interaction,
hydrogen bond, and disulfide bond increased significantly (p < 0.05) after conjugation with
MCP, especially the hydrogen bond. The reason may be that MCP possessed abundant
hydroxyl groups, which could promote the formation of hydrogen bonds between hydroxyl
groups in MCP and amino and carboxyl groups in WPI. Moreover, heat treatment may
cause the WPI conformation to unfold, exposing internal sulfhydryl and hydrophobic
groups, which could enhance hydrophobic interaction, and disulfide bond. Therefore,
hydrophobic interaction, hydrogen bond and disulfide bond played the main role in the
formation process of WPI-MCP conjugate.

3.4. Morphology

Figure 3 depicted the microscopic morphology of WPI and WPI-MCP emulsions.
WPI was marked in red and the oil phase in green (Figure 3a). The oil droplets were
encapsulated, and O/W emulsions were formed. The results showed that the WPI-MCP
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conjugates were surface active and had a tendency to adsorb to the oil-water interface.
According to Figure 3b, the diameter of emulsion droplets increased with increased MCP
concentration, which may be caused by the thick coating formed by the binding of protein
with polysaccharide. The WPI-MCP conjugate formed a dense filling layer on the surface of
the spherical oil droplets. This interfacial structure created a physical barrier to flocculation,
coalescence, and Ostwald maturation of Pickering emulsion.
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3.5. Rheological Property

As shown in Figure 4a, the apparent viscosity of WPI-MCP emulsions containing 0%,
0.05%, 0.1%, 0.2%, and 0.3% MCP (w/v) was investigated. The viscosity of the emulsion
decreased significantly when the shear rate increased, which indicated the emulsions
exhibited shear thinning properties [36,37]. This phenomenon can be attributed to the
gradual disruption of flocculated droplets and the alignment of droplets and polymers with
the water flow [38]. When the emulsion was subjected to shear, the originally entangled
macromolecules separated, the resistance to flow was reduced, and then the viscosity
decreased. Similar phenomena have been previously reported [39]. When the concentration
of MCP increased, apparent viscosity also increased. This was because the higher the
polysaccharide concentration, the high molecular weight molecules in the emulsion were
more likely to collide with each other, resulting in increased flow resistance and viscosity.
Jiang et al. [40] suggested that MCP was a thickening agent, and when MCP was cross-
linked with WPI, independently moving molecules were restricted, resulting in enhanced
apparent viscosity and pseudoplastic properties.

The G′and G′′ values at 0.1–10 rad/s oscillation frequencies were shown in Figure 4b.
It was clear that G′ was higher than G” in the oscillation frequency range for all samples,
indicating the elastic gel-like structure formed [41]. Moreover, there was a tendency for G′

and G′′ to increase with increasing MCP concentration, and similar results were found by
Lv et al. [42] in their study of WPI-chitosan emulsion, suggesting the Pickering emulsion
gel structure was enhanced. The value of G′ increased gradually with increasing particle
concentration, but to a lesser extent, indicating that they were essentially covalent “physical”
crosslinks. Also, since MCP had higher viscosity at higher concentrations, increasing MCP
concentration may also help to enhance the gel structure.
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3.6. Size, Zeta Potential and EE of β-Carotene Emulsions

As shown in Table 2, the average particle size of the WPI β-carotene emulsion and
WPI-MCP β-carotene emulsion were 175.5 ± 2.79 nm and 235 ± 2.03 nm. The larger
average size may be due to the ability of the covalently bound WPI-MCP to form a macro-
molecular stabilization layer around the WPI layer. PDI values (<0.3) implied that the
emulsions had a narrow particle size distribution. The WPI β-carotene emulsion showed
higher zeta potential than the WPI-MCP β-carotene emulsion. This may be due to the
partial adsorption of the anion on the MCP molecule onto the surface of the WPI particles.
Conjugation of whey proteins with inulin has also been reported to lose WPI positive
charge [43]. The absolute values of zeta potential for both emulsions were greater than
30 mV, indicating that the electrostatic repulsion present between droplets can maintain
the emulsion stability and WPI-MCP β-carotene emulsion could be more stable [44]. EE
of WPI β-carotene emulsion and WPI-MCP β-carotene emulsion were 86.68 ± 2.45 and
87.18 ± 0.67 respectively, showing that there was no significant difference (p > 0.05).

Table 2. The size, PDI, zeta potential and EE of β-carotene emulsions.

Emulsifiers Size (nm) PDI Zeta Potential
(mV) EE (%)

WPI 175.5 ± 2.79 a 0.29 ± 0.02 a −32.93 ± 1.05 b 86.68 ± 2.45 a

WPI-MCP 235.0 ± 2.03 b 0.29 ± 0.04 a −37.87 ± 0.95 a 87.18 ± 0.67 a

Note: The data are presented as means ± SD. Different superscripts (a–b) in same column represent statistically
significantly different (p < 0.05).

3.7. Oxidative Stability

In Figure 5, the WPI emulsion showed the highest POV and TBARS values during
accelerated oxidation, suggesting it had the weakest oxidative stability. The reason may
be that oil droplets were heavily accumulated and exposed to air, and the free radicals
in the oil were oxidized by contacting with O2 in the air [45]. However, the POV and
TBARS values of WPI-MCP emulsion decreased significantly, which may be due to the
antioxidant capacity of the hydroxyl structure of MCP. Another reason could be that the
covalent binding of MCP with WPI increased the thickness of the interfacial layer and then
prevented contact between O2 in the air and free radicals in the oil, thus inhibiting the
lipid oxidation reaction. Additionally, it was known from Section 3.5 that the viscosity
of the emulsion increased in the presence of MCP, which could inhibit the movement of
oxidizing radicals and metal ions, leading to high oxidative stability [46]. Notably, when
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β-carotene was added to the emulsion, the POV and TBARS values were significantly
lower than that of the emulsion without β-carotene, indicating that β-carotene had strong
antioxidant properties. There was no significant difference in POV and TBARS values
between WPI-MCP β-carotene emulsion and WPI β-carotene emulsion for most of the time
(p < 0.05), which could be caused by the strong antioxidant capacity of β-carotene. In the
WPI β-carotene emulsion and WPI-MCP β-carotene emulsion systems, it was mainly the
β-carotene that acted as an antioxidant. From the above results, it can be seen that small
molecule antioxidants, and polysaccharides with antioxidant properties can improve the
oxidative stability of emulsions and help to extend the shelf life of emulsions.
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3.8. Chemical Stability of β-Carotene

Due to the presence of a large number of unsaturated double bonds in β-carotene
(Figure 1a), it is susceptible to oxidation and trans-isomerization under the action of light,
heat, and oxygen. Generally, the degradation of β-carotene leads to the formation of multi-
plex degradation compounds, including isomers (13-cis-β-carotene, 13,15-di-cis-β-carotene,
etc.), epoxides (β-carotene 5,6-epoxide, β-carotene 5,8-epoxide, etc.), apocarotenones, apoc-
arotenals and short-chain cleavage products (β-cyclocitral, β-ionone, ionene, 5,6-epoxi-β-
ionone, dihydroactinidiolide, 4-oxo-ionone, etc.) [47,48]. Therefore, the effects of different
temperatures and stabilizer types on the chemical stability of β-carotene emulsions were
investigated over a storage time of 28 days. As shown in Table 3, the retention of β-carotene
in the samples tended to decrease during storage under all storage conditions. After
one week of storage, no major degradation of β-carotene had yet occurred. During the
14 days of storage, there was no significant difference in β-carotene retention between
WPI β-carotene emulsion and WPI-MCP β-carotene emulsion stored at 4 ◦C, while β-
carotene retention in WPI-MCP β-carotene emulsion at 25 ◦C was higher than that in WPI
β-carotene emulsion (p < 0.05), indicating WPI-MCP emulsion had better protection effect
for β-carotene. After 28 days of storage, β-carotene in emulsion stabilized by WPI at 25 ◦C,
WPI-MCP at 25 ◦C, WPI at 4 ◦C, and WPI-MCP at 4◦C was 71.8 ± 4.42%, 73.57 ± 3.46%,
78.7 ± 14.03%, and 86.33 ± 6.44% of the initial levels, respectively. B-carotene in WPI-MCP
emulsion at 4 ◦C was significantly higher than that at 25 ◦C, indicating β-carotene was
sensitive to the temperature. Moreover, there was no significant difference in β-carotene
retention between WPI β-carotene emulsion and WPI-MCP β-carotene emulsion when
stored at the same temperature for 28 days, while WPI-MCP β-carotene emulsion had a
larger average value. These results indicated that storage temperature was an important
factor in determining the stability of β-carotene. Compared to WPI emulsion, WPI-MCP
emulsion had more potential to improve β-carotene stability, but the protection effect still
needed to be improved.
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Table 3. β-carotene retention rate of emulsions during storage.

Systems
β-carotene Retention Rate at Different Storage Times (%)

0 Day 7 Day 14 Day 21 Day 28 Day

WPI β-carotene emulsion stored at 4 ◦C 100 a 97.36 ± 0.3 a 90.73 ± 11.98 ab 89.13 ± 12.53 ab 78.7 ± 14.03 ab

stored at 25 ◦C 100 a 98.53 ± 0.51 b 88.1 ± 1.75 a 80.93 ± 3.4 a 71.8 ± 4.42 a

WPI-MCP β-carotene emulsion stored at 4 ◦C 100 a 97.1 ± 0.2 a 96.3 ± 3.96 b 98.03 ± 0.06 b 86.33 ± 6.44 b

stored at 25 ◦C 100 a 98.07 ± 0.75 ab 99 ± 6.05 b 78.8 ± 1.8 a 73.57 ± 3.46 a

Note: The data are presented as means ± SD. Different superscripts (a–b) in same column represent statistically
significantly different (p < 0.05).

4. Conclusions

In this work, the WPI-MCP conjugates with lower surface hydrophobicity than WPI
were prepared, and there were hydrophobic interactions, hydrogen bonds, and disulfide
bonds in the conjugation process. The WPI and WPI-MCP emulsions were O/W emulsions.
The increased MCP concentration led to increased viscosity, enhanced gel structure, and
increased size of droplets. The POV and TBARS values of the WPI-MCP emulsion were
lower than those of the WPI emulsion, indicating improved oxidative stability. The ability
of WPI-MCP emulsion to protect β-carotene from degradation still needs to be improved.
This work provided references for the development of emulsion stabilized by protein-
polysaccharide conjugate and the theoretical basis for the potential application of WPI-MCP
conjugate on anti-lipid oxidant in the emulsion.
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