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Abstract: Milk is one of the most valuable products in the food industry with most milk production
throughout the world being carried out using conventional management, which includes intensive
and traditional systems. The intensive use of fertilizers, antibiotics, pesticides and concerns regarding
animal health and the environment have given increasing importance to organic dairy and dairy
products in the last two decades. This review aims to compare the production, nutritional, and
compositional properties of milk produced by conventional and organic dairy management systems.
We also shed light on the health benefits of milk and the worldwide scenario of the organic dairy
production system. Most reports suggest milk has beneficial health effects with very few, if any,
adverse effects reported. Organic milk is reported to confer additional benefits due to its lower
omega-6–omega-3 ratio, which is due to the difference in feeding practices, with organic cows
predominantly pasture fed. Despite the testified animal, host, and environmental benefits, organic
milk production is difficult in several regions due to the cost-intensive process and geographical
conditions. Finally, we offer perspectives for a better future and highlight knowledge gaps in the
organic dairy management system.

Keywords: organic; milk; dairy; composition; milk production systems

1. Introduction

Milk is among the most versatile and valuable foods in the food industry. In 2018,
global milk production reached 843 billion liters, with an estimated value of USD 307 billion
and is projected to grow by 22% by 2027 [1]. Approximately 80% of yearly milk production
comes from cows, with the rest from other dairy animals like buffaloes, goats, camels, and
sheep, according to the Food and Agriculture Organization [2]. Milk is also an essential
component of the human diet, consumed by 80% of the world’s population [3]. Milk and
dairy products are important sources of macro and micronutrients, including high-quality
proteins, fats, calcium, potassium, phosphorus, vitamin D, riboflavin, and vitamin B12 [4,5].
The majority of global milk production is carried out using traditional and intensive systems,
collectively referred to as the conventional milk production system [5]. For the purposes of
this review, the conventional milk production system, unless otherwise defined, will refer to
milk produced from traditional and intensive milk production systems. The intensive use of
mechanization, artificial fertilizers, pesticides and antibiotics within the conventional milk
production system has raised substantial concerns for the environment, animal welfare,
and consumer health [6]. Misuse of these practices can lead to soil, water and air pollution,
increased antibiotic resistance spread, loss of biodiversity, and elevated greenhouse gas
(GHG) emissions [7]. Moreover, the conventional milk production system, which prioritizes
high productivity and profitability, may compromise the nutritional quality of milk and
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dairy products [8]. The intensification and environmental repercussions of conventional
agriculture, coupled with heightened consumer awareness of animal welfare and demand
for safer and healthier food options, have prompted a re-evaluation of agricultural policy [9].
This shift has given rise to more environmentally and animal-friendly practices, such as
organic agriculture [10,11].

The FAO of the United Nations (UN) broadly defines organic agriculture as “a system
that relies on ecosystem management rather than external agricultural inputs” [12]. Organic
agricultural production is an alternative farming system rooted in the ethos of sustainable
production [13]. The objective is to prioritize the health and welfare of animals, ensuring
clean and sanitary conditions for their shelter and nourishment, along with effective waste
management [14]. Organic production promotes preventive health measures without the
constant use of stimulants or antibiotics, allowing animal access to pastures and providing
them with a diet consisting entirely of organic ingredients for optimal nutrition and wellbe-
ing [15]. In contrast to conventional agricultural production, the use of artificial fertilizers,
pesticides, herbicides, genetically modified organisms (GMOs), and antibiotics is banned
or restricted in organic agricultural production [16,17]. According to the International
Foundation for Organic Agriculture (IFOAM) in 2021, organic agriculture was practiced in
191 countries, on more than 76 million hectares of agricultural land by at least 3.7 million
farmers, and the size of the organic market reached 125 billion euros [18].

The intake of organic milk, whether in its natural state or as part of dairy products
such as pasteurized whole milk, yogurt, cheese, curd, cream cheese and butter continues
to grow worldwide [19]. Today, milk and dairy are the most in-demand organic products
after organic fruits and vegetables in the organic food market [20]. Organic milk and dairy
products, once available only in a few specialized shops, are now widely available to meet
increasing consumer demand [21]. In recent years, research on organic milk and dairy
products has also increased [22]. Several studies have reported compositional differences
between organic and conventional milk [23,24]. For instance, organic milk has consistently
been reported to contain significantly higher levels of whey proteins, total polyunsaturated
fatty acids (PUFA), n-3 PUFA and vitamin E (α-tocopherol) [25,26]. Organic milk production
has also been reported to influence the microbial content of milk [27]. Compositional
differences have been linked to conditions associated with organic production such as
breed, environment, health status, and feeding regime [25]. The health benefits of milk are
associated with the various bioactives mentioned and can be direct, such as contributing
to nutrient uptake, bone health and bone density development, and immunomodulatory
potential with effects reported starting from as early as childhood [28], while other benefits
can be indirect through the gut microbiota by exerting probiotic potential. Organic dairy
production is free from antibiotics and chemicals, thus helping in the reduction in antibiotic
resistance gene generation and spread. Further, the low ratio of omega 6 to omega 3 fatty
acids, and the higher PUFA content are associated with health benefits, though some results
are debated [29,30].

Despite the known benefits of organic farming practices, the debate over the advan-
tages of organic milk and dairy products compared to their conventional counterparts
persists [31]. Organic farming presents challenges for farmers involving changes in animal
husbandry, land, and crop management [21]. Furthermore, the switch is cost intensive,
resulting in comparatively low yields and higher estimated product prices [32]. In addition,
adhering to strict, mandatory, and country-specific regulations for organic farming and
food production, makes the transition a demanding process [33]. Consumers also often
express skepticism due to the high prices of organic dairy products and the lack of definitive
studies showcasing their benefits [34]. However, as sustainability concerns continue to gain
global attention, the organic dairy market is expected to grow [21].

In light of this information, this review aims to explore the latest research on the
production and composition of milk produced using organic agricultural practices. We com-
pare organic and conventional milk production systems in terms of practices and impact



Foods 2024, 13, 550 3 of 23

on the quality of milk. Furthermore, we discuss the human health benefits of organic milk
and dairy products and the future challenges and prospects of organic dairy management.

2. An Introduction to Organic Milk Production

In this section, we provide an introduction to organic milk production and present
the regulatory frameworks and principles that guide this farming practice. For this review,
organic milk production, unless otherwise defined, will refer to milk from dairy cattle.

Organic Milk Production Regulations

Organic milk production is permissible exclusively on certified farms, depending
on individual countries’ regulations or organizational certifications [35]. Despite sharing
fundamental principles, the specifics of organic milk production regulations exhibit notable
variations globally, primarily regarding the rules governing pasture access, nutrition,
use of antibiotics, and conventional to organic status conversion period, as detailed in
Table 1. Subsequently, organic milk products produced in one country may not retain
their organic status when exported to another country with distinct legal requirements [21].
Therefore, the diversity in organic regulations may contribute to the variability in organic
milk composition between countries [36].

Table 1. Country-specific organic dairy farming regulations regarding pasture access, forage feeding,
antibiotic usage, and conventional to organic status conversion period. Adapted from [36].

Country Pasture Access Nutrition Antibiotics Use Organic Conversion
Period Regulation

European
Union

Year-round, weather
permitting

≥60% of daily dry matter
intake must consist of

roughage, fresh or dried
fodder, or silage.

Permitted under veterinary
recommendation. ≥2 day milk
withdrawal. ≥3 treatments or
≥1 treatment (if productive
lifecycle is <1 y) will cause

animal to lose its organic status.

Land conversion period
of 24-months. Animals
must be under organic

management
≥6 months.

Regulation (EU)
2018/848 of the

European Parliament
and of the Council.

United States ≥120 days annually

≥30% of daily dry matter
intake must come from

pasture during
grazing season.

Prohibited. Usage will cause
animal to lose its organic status.

Animals must be under
organic management

≥12 months.

Organic foods
production act

provisions 2023.

Canada ≥120 days annually

≥30% of daily dry matter
intake must come from
pasture during grazing

season. 60% of dry matter
intake consists of hay,

fresh/dried fodder, or silage.

Permitted under veterinary
recommendation. ≥30 day milk

withdrawal. ≥2 treatments,
12 month transition period

before regaining organic status.

Animals must be under
organic management

≥12 months.

Organic Production
Systems General

Principles and
Management Standards

2021.

Japan ≥2 days per week,
year-round

≥50% of daily dry matter
intake must consist of

roughage, fresh or dried
fodder, or silage.

Permitted under veterinary
recommendation.

Animals must be under
organic management

≥6 months.

Japanese Agricultural
Standard for Organic
Livestock Products,

2018.

New Zealand ≥150 days annually

≥50% of daily dry matter
intake must consist of

roughage, fresh or dried
fodder, or silage.

Prohibited. Usage will cause
animal to lose its organic status.

Animals must be under
organic management

≥12 months.

AsureQuality Organic
Standard For Primary

Producers, 2018.

Australia Year-round, weather
permitting

100% of daily dry matter
intake must be sourced from
organic or bio-dynamic feed.

Permitted under veterinary
recommendation. 180 day

transition period before
regaining organic status.

Animals must be under
organic management

≥6 months.

National Standard for
Organic and

Bio-Dynamic Produce,
2022.

China Year-round, weather
permitting

≥60% of daily dry matter
intake must consist of

roughage, fresh or dried
fodder, or silage.

Permitted under veterinary
recommendation.

Animals must be under
organic management

≥6 months.

China Organic Standard
GB/T 19630-2019.

India Year-round, weather
permitting

≥85% of daily dry matter
intake must be sourced from

organic feed

Permitted under veterinary
recommendation.

Land conversion period
of 24 months. Animals
must be under organic

management
≥6 months.

Agricultural and
Processed Food
Products Export

Development Authority
(APEDA) 2018.
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3. Milk Production Systems

Traditional and intensive milk production systems are collectively referred to as the
conventional milk production system. The conventional system dominates milk production
practices worldwide, primarily focusing on high productivity [21]. The intensive system
is principally performed in developed countries, while milk production in developing
countries is carried out in an extensive (traditional) manner [37,38]. The organic milk
production sector is experiencing rapid growth, surpassing the expansion rate of other
dairy sectors worldwide [21,39]. A summary of the major distinctions between organic and
conventional milk production systems is provided in Table 2.

3.1. Conventional Systems
3.1.1. Traditional System

The traditional system relies on pasture as a low-cost primary feed source [40]. Farm-
ing practices are primarily determined by the climate and available resources in a given
region. Therefore, the traditional system is primarily employed in temperate climates, such
as in Ireland and New Zealand, which leads to a seasonal milk supply. Cows are kept
outdoors, grazing on pasture during the warmer months of the year. In the winter months,
cows are dried off and housed indoors and are fed a diet of primarily pasture-based silage
and hay, which is cut and ensiled from surplus pasture earlier in the year. Their feed is
typically administered ad libitum (without specialized equipment and calculation of feed
rations). When pasture-based feeds alone fail to meet energy requirements of the animal,
concentrate supplements are also provided. The ration is not consistent in this feeding
system, making it challenging to achieve a balanced diet and can potentially hinder high
milk yields [41]. The traditional system offers cows a more natural environment than
the intensive system, allowing the expression of normal behaviors [42]. Pasture-based
feeding systems have also been demonstrated to beneficially affect the nutritional quality
of milk and dairy products [43]. Milk and dairy products obtained from pasture-based
diets have larger proportions of beneficial nutrients for human consumption such as PUFA,
conjugated linoleic acid (CLA) and n-3 fatty acids than cows fed concentrate diets [44–48].
While the intensive milk production system is supplanting the traditional system, the latter
is expected to dominate for the foreseeable future in developing countries [37,38].

3.1.2. Intensive System

The intensive system is based on the use of a total mixed ration (TMR) diet adminis-
tered using a feed truck. The intensive system is primarily performed in countries with
climates which make pasture difficult to grow, including the United States, China, and
large areas of Europe [49,50]. TMR is a mixture of roughage (grass/maize/corn silage) as
well as concentrate feeds supplemented with vitamins and minerals [45]. TMR feeding
offers greater opportunities to enhance intake rates and meet nutritional needs more effec-
tively [51]. Furthermore, this system protects animals from extreme weather conditions [52].
The number of dairy cow farms employing the intensive milk production system has grown
significantly over the last 20 years [49]. Animal welfare concerns continue to grow regard-
ing indoor TMR feeding systems. These include increased incidences of lameness [53],
mastitis [54], mortality [55] and aggressive behavior due to reduced space [42]. Indoor
TMR feeding systems also restrict the animals’ ability to express their natural foraging
behavior [42]. The development of the partial mixed ration (PMR) feeding system may
alleviate some of these concerns. The PMR system combines indoor TMR feeding with
the outdoor grazing of fresh pasture by alternating the feeding approaches. PMR feeding
has been shown to increase levels of CLA, α-linolenic acid (ALA), vaccenic acid and PUFA
significantly compared to TMR feeding [56], in addition to non-significant differences in
milk yield and protein content [56].
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3.2. Organic System

Organic milk production is based on maximizing milk production in an environmen-
tally sustainable way, while prioritizing the health and wellbeing of animals. Distinctive
variances exist between organic and conventional milk production systems, each pre-
senting its own set of advantages and drawbacks. No single production system can be
deemed ideal, as milk production is an ongoing process. The merits of either system hinge
on a comprehensive evaluation encompassing longitudinal sustainability, environmental
impact, economic factors, and social considerations. There are several fundamental dif-
ferences between organic and conventional milk production systems [21,23]. In contrast
to the conventional systems, the organic system prioritizes the utilization of native cattle
breeds [57]. Crops must be fertilized organically, and the use of synthetic and chemical
fertilizers, herbicides and pesticides is prohibited, which has been shown to have beneficial
effects on soil composition and functionality compared to conventional systems [58,59].
Animals must be provided with organic feed containing ingredients sourced from organic
agricultural production, while the inclusion of natural non-agricultural substances is also
permitted. For example, vitamins and minerals are sourced from natural substances such
as sprouted grains, cod liver oil, and brewer’s yeast. In general, a minimum of 60% of
the feed must be sourced from the corresponding farm. Additionally, a minimum of 60%
of the dry matter in the feed ration must consist of roughage, green fodder, dried fodder,
or silage. During the summer season, cows are provided unrestricted access to pasture
vegetation, predominantly comprising low grasses (50%), tall grasses (30%), and legumes
(10–20%) [23].

On organic farms, the duration of pasture feeding frequently extends beyond 180 days,
whereas on traditional farms, it typically does not exceed 140 days [36]. Organic pas-
tures stand out for their rich sward biodiversity, encompassing various species of grasses,
legumes, and herbs. This diversity directly contributes to the nutritional value and quality
of fodder and milk produced [43,59]. During autumn and winter, cattle are required to be
provided with roughage, comprising silage made from combinations of cereals and legumes
or haylage. The inclusion of beets or potatoes in the cattle’s diet is reserved for the winter
season [60]. Similar to traditional farming methods, grazing access has been shown to
benefit the welfare and behavior of organic cows compared to conventional systems [61,62].
However, organic farms still show a need for improvement, especially regarding animal
health [62]. The main problems faced by organic and conventional systems are analogous,
with mastitis and lameness identified as particular areas for improvement [63].The use of
GMOs, growth stimulants, and synthetic amino acids is also prohibited in organic agricul-
ture [33], while antibiotics may only be utilized in emergencies for veterinary indication.
The rise of antimicrobial resistance (AMR) attributed to the excessive use of antibiotics
in food-producing animals has become a significant concern [64], especially concerning
the risk of developing newly resistant bacteria that could be transmitted from animals to
humans [65]. Encouragingly, organic farming has been demonstrated to markedly decrease
the occurrence of AMR in dairy cattle compared to conventional farming, globally [66].
Finally, pasture-based systems have been demonstrated to emit less GHG emissions, such
as methane (CH4) and carbon dioxide (CO2), than conventional farms [67,68].

Table 2. Management Practices of Organic and Conventional Milk Production Systems. Adapted
from [69].

Milk Production System

Management Practice Organic Conventional

Pasture access Required Not required

Nutrition All feed must be certified organic Concentrate feed

Antibiotics use In emergencies, for veterinary indication Allowed, for veterinary indication
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Table 2. Cont.

Milk Production System

Parasiticide use In emergencies, for veterinary indication Allowed, for veterinary indication

Growth Hormone use Prohibited Allowed, for veterinary indication

Weed Management Crop rotation, hand weeding, mulches Chemical Herbicides

Pest Management
Crop rotation, Companion Planting, trap crops,
promotion of beneficial insects and natural
predators

Chemical Pesticides

Green House Gas Emissions Lower per unit of area Higher per unit of area

Fertilizers Organic fertilizers only High dependence on synthetic NPK
fertilizers

Genetically Modified Organisms Prohibited Allowed

Synthetic food Additives Prohibited Allowed

Milk Yields Lower on average Higher on average

Shelf Life Higher on average Lower on average

Product Price Higher on average Lower on average

Soil Impact Reduced soil loss, increased organic matter,
water-holding capacity and microbial diversity

Increased soil loss and erosion, lower
water holding capacity, lower carbon
storage and microbial diversity

Water Consumption Lower Higher

Energy Usage Low intensity of energy use (higher energy
efficiency)

High intensity of non-renewable energy
use (agrochemicals, machinery, water
pumping etc.)

Impact on Landscape Larger floral and faunal biodiversity. Diverse
agricultural landscapes

Loss of biodiversity in agricultural
landscapes, Unified agricultural
landscapes (monocultures)

4. Impact of Production Systems on Farm Performance and Raw Milk Composition

The composition and physical characteristics of milk exhibit considerable variability,
influenced by factors such as environment, age, breed, nutrition, parity, stage of lactation,
and health [70]. Numerous studies have compared the quantity and quality of raw milk
produced using organic or conventional milk production systems [23]. The gross chemical
and physical composition of raw milk produced using organic and conventional milk
production systems is shown in Table 3.

4.1. Milk Yield

The primary determinant of the financial success of dairy cow farms is their level of
productivity. Organic dairy production has consistently been reported to have reduced milk
yields compared to conventional milk production systems [68]. Organic herds generally
attain lower milk yields, ranging from 15% to 28% less compared to the yields of a typical
conventional cow [23]. Such stark differences in milk yield are typically traced to lower
energy intake, through either less concentrated feeding or lower energy content in forages
from organic systems [71]. Furthermore, practices such as adjusting grain feeding levels,
selecting breeds to enhance cow milk yield, and employing fossil fuel-based fertilizers to
boost forage yields are typically linked to the increased yields in conventional systems [36].
Therefore, lower milk yield, and thus lower profitability of organic milk production, could
pose obstacles to the continued growth of the organic dairy industry worldwide [72].
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4.2. Udder Health and Somatic Cell Count (SCC)

Somatic cell count (SCC) serves as a crucial diagnostic parameter for assessing the
wellbeing of the mammary gland [73]. An SCC surpassing 400,000 cells per milliliter
of milk signifies gland inflammation. Inflammation has detrimental consequences on
the overall productivity of cows, impacting both the nutritional quality of milk and its
suitability for processing [74]. Factors related to management, such as milking hygiene and
the cleanliness of cows, play a role in the occurrence of udder infections. These infections
can impact both milk yield and composition [75]. Elevated SCC can exhibit a negative
correlation with both the yields and percentages of milk protein and fat [76]. Therefore,
any conclusions regarding compositional differences between organic and conventionally
produced milk should consider udder health as a contributing factor [23]. Conflicting
results have been reported regarding increased or decreased SCCs when comparing organic
and conventional dairy production systems [23]. Importantly, in most studies which
reported significant differences in SCC, the levels were still below 400,000 cells per mL in
both conventional and organic milk. At present, the employed farming system appears
to have less influence on udder health compared with management factors (e.g., routine
teat dipping and seeking veterinary treatment) and animal level variables (e.g., parity,
breed) [36,77–79]. Hence, making a generalization about whether organic farmers have a
lower tolerance for poor udder health is not feasible due to potential variations in ethical
considerations and divergent regulations regarding the use of antibiotics as a treatment
option for organic cows among different countries [63]. Therefore, establishing a definitive
relationship between SCC and the production system is challenging.

4.3. Microbiological Quality

The total bacterial count (TBC) is the most widely used measure of microbial quality of
raw milk and is measured using several methods including the standard plate count (SPC),
plate loop count (PLC), Petrifilm (3M) aerobic count, and flow cytometry methodologies
(e.g., Bactoscan, Foss Analytica, Hillerød, Denmark l) [80]. While specific values for SPC
vary worldwide, high-quality raw milk should always have a low TBC [81]. Similar to
milk SCCs, contradictory results have been reported regarding increased or decreased
TBCs when comparing raw milk produced using organic and conventional systems [23].
Differing TBCs across studies have been attributed to management factors and animal-level
variables [36,77–79].

The microbiome consists of the microbiota and its “theatre of activity,” encompassing
the collective nucleic acids (including viruses and bacteriophages), structural components,
and microbial metabolites associated with the microbiota [82]. The existence of a com-
mensal microbiota on the bovine teat canal and teat skin is widely acknowledged [83,84].
However, the demonstration of a commensal bovine milk microbiome has been disputed by
methodological issues, sampling difficulty, and a lack of consistency among studies [85,86].
Previous studies have shown that diet has a direct impact on the gut, rumen, and milk mi-
crobiota of bovines [87–89]. To our knowledge, only one study has compared the microbiota
of dairy cows from conventional and organic farming [27]. This study demonstrated that
the microbiome of the cow’s gut and milk was significantly different between agricultural
management systems, while no differences were found in the microbial communities of
soil and silage [27]. Milk samples from organic farms were significantly associated with
the family Rhodobacteraceae and elevated levels of Ruminococcaceae. Furthermore, there was
a notable association of the fungi Dothideomycetes, Tremellomycetes, and Pleosporales
with milk samples from organic farms. Fungi within these classes are commonly associated
with plant pathogens that thrive on wood debris or decaying leaves. Nevertheless, their
presence has been reported in the dairy farm environment [90] and on shelves used for
ripening cheese [91].
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4.4. Mastitis

Mastitis stands out as the most widespread and economically impactful disease in
dairy cattle globally, primarily attributed to diminished milk production, discarded milk,
premature culling, and associated treatment expenses [92]. Bovine mastitis is a polymicro-
bial disease with the principal etiological agents being Staphylococcus aureus, Streptococcus
dysgalactiae, and Streptococcus uberis [93]. Although treatment with antibiotics is the last
resort for organic farmers, their usage is permitted under the prescription of a veterinar-
ian [78]. Antibiotics are currently the preferred treatment for mastitis control on both
organic and conventional farms [94]. While the epidemiology of mastitis on organic farms
has not been extensively studied, available reports suggest that organic farms have an ele-
vated prevalence of Staphylococcus aureus compared with conventional dairy farms [95–98].
The incidence of clinical mastitis on organic dairy farms has been reported to be lower than
on conventional farms [99–101]. Additionally, no differences have been found in the inci-
dence of subclinical mastitis [102] or individual SCC [103] on organic versus conventional
farms. Such reports suggest that there may be differences in mastitis epidemiology between
conventional and organic dairy farms. Future studies are needed to assess the antimicrobial
resistance profiles and ubiquity of antibiotic-resistant bacteria, such as Methicillin-resistant
Staphylococcus aureus (MRSA) in mastitic milk from conventional and organic dairy farms.

4.5. Volatile Organic Compounds

Milk contains low concentrations of volatile organic compounds (VOCs) which are in-
fluenced by several variables, such as environment, breed, and lactation stage [104]. VOCs
have consistently been associated with the sensory profiles of milk products, especially
odors and flavors [105]. VOCs emanate in milk via metabolic processes of the cow (e.g.,
rumen gases, blood, etc.) or can be infused into milk through animal feed, which influences
the flavor of dairy products [106–108]. There have been conflicting reports regarding varia-
tion in the VOC composition of milk produced using the organic and intensive production
systems have been reported [36,109–111]. VOCs markers, such as terpenes, warrant further
exploration for their potential to authenticate dairy products [26,70,112].

Animal feeding systems (pasture or TMR) have been shown by numerous studies
to alter the sensory characteristics of milk and dairy products [113]. Some studies have
found little differences in the flavor and texture of milk and dairy products produced
using organic and conventional systems [36,109,114]. Studies have also indicated that raw
organic milk was creamier and tended to have greater ‘hay’ and ‘grass’ flavor notes than
conventional milk [115]. Irrespective of production system, a stronger odor of milk, butter,
and cheese (more intense ‘animal’ notes) has repeatedly been reported when cows are
pasture-fed vs. fed on conserved forages [46,116].

4.6. Protein

The total protein and casein content of organic and conventionally produced milk is
typically reported to not differ significantly [117–119]. Whey proteins, while making up
only 20–25% of the total protein, constitute a crucial group of milk proteins (the remaining
75–80% is casein). Albumins, i.e., α-lactalbumin (α-LA), β-lactoglobulin (β-LG), and
bovine serum albumin (BSA), make up approximately 75% of whey proteins. Other
minor whey proteins include bacteriostatic substances, i.e., immunoglobulins, lactoferrin,
lactoperoxidase, and lysozyme, which constitute 1–2% of total milk proteins. These proteins
exhibit diverse positive effects on the human body, encompassing antimicrobial (antiviral
and antibacterial), anticancer, immunomodulatory, and antioxidant properties. Whey
proteins serve as an excellent source of energy, essential amino acids, and peptides [120].
The concentration of whey proteins and albumins in organic and conventionally produced
milk is largely similar in studies to date [117,121,122]. Recent studies have indicated that
concentrations of lactoferrin and lysozyme are significantly higher in milk on organic farms
than on conventional farms [121,123]. Lysozyme is an antimicrobial enzyme that induces
cell lysis by hydrolyzing the peptidoglycan layer of both gram-positive and gram-negative
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bacterial cells. When ingested, lactoferrin induces various beneficial biological effects, such
as enhancing iron absorption, modulating the immune system, boosting the antimicrobial
activity of lysozyme, and promoting the growth of epithelial cells and fibroblasts [124].

4.7. Vitamins

Vitamin A (retinol) serves as the precursor to a group of compounds known as
retinoids, which exhibit the biological activity associated with vitamin A. Vitamin A en-
compasses a group of analogous fat-soluble vitamins that play ubiquitous roles in the
human body, such as enhancing vision, cell differentiation, embryogenesis, reproduction,
growth and immune system functioning [125]. In general, foods of animal origin provide
preformed vitamin A as retinyl esters while plant-derived foods provide precursors of
vitamin A, i.e., carotenoids. Only carotenoids with a β-ionone ring (e.g., β-carotene) can
function as precursors of vitamin A [126]. In cow’s milk, vitamin A is typically found in the
forms of retinol or β-carotene [126]. The concentration of vitamin A and carotenoids in milk
is significantly influenced by the carotenoid content of the animal’s diet. Milk from animals
fed on pasture generally contains higher levels of carotenes compared to milk from animals
fed on concentrate feeds [117]. Vitamin E constitutes a group of fat-soluble molecules
which primarily act as antioxidants in cell membranes where the primary function is to
prevent oxidative damage by trapping reactive oxyradicals [127]. Vitamin E is also essential
for body functions in both bovines and humans such as growth, reproduction, immunity
prevention, and protection of tissues [128]. β-carotene and Vitamin E concentrations differ
significantly in raw milk depending on the diet [25]. The dairy industry is interested in a
high content of vitamin E and β-carotene, as they can prevent the spontaneous oxidation of
milk and fatty acids [129]. Vitamin D3 plays a crucial role in the metabolism of calcium and
phosphorus, contributing to the proper mineralization of bones and teeth. Additionally, it
exhibits immunomodulatory and anti-cancer properties. In the case of animals spending
time at pasture, ultraviolet (UV) rays from sunlight induce the synthesis of vitamin D3
from 7-dehydrosterol present in the skin. Therefore, milk from cows that spend more time
outdoors at pasture is expected to be a more valuable source of this vitamin. Numerous
studies have reported higher vitamin D3 levels in milk from cows of organic and traditional
production systems compared to intensive systems [117,122,130].

4.8. Carbohydrates

Lactose is the main carbohydrate in milk and is generally reported to not significantly
differ in the feeding system [23]. Oligosaccharides are the third most abundant solid compo-
nent found in milk, after lactose and lipids [131]. These structurally and biologically diverse
molecules, despite being resistant to human digestive enzymes, are linked to numerous ben-
eficial functions [132]. Organic and conventional pasture-based farming systems have been
demonstrated to not significantly influence oligosaccharide abundance [110]. However, lev-
els of specific oligosaccharides were increased in organic milk irrespective of sampling date
or farm set [110], specifically, trisaccharides with three hexose units (3 Hex), trisaccharides
with three hexose units and one N-acetylneuraminic acid unit (3 Hex, 1 NeuAc), tetrasac-
charides with four hexose units and one N-acetylhexosamine unit (4 Hex, 1 HexNAc),
and trisaccharides with three hexose units and two N-acetylhexosamine units (3 Hex,
2 HexNAc) [110].

4.9. Fats

The total fat content of organic and conventionally produced milk is typically re-
ported to not differ significantly. Milk fat consists of over 400 different fatty acids. The
predominant fatty acids in milk are saturated fatty acids (SFA), with unsaturated fatty acids,
including monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA),
following. Nevertheless, recent scientific advancements have suggested that trans fatty
acids and certain saturated fatty acids in milk may have beneficial effects [113,133,134].
The concentrations of individual fatty acids in milk fat are affected by factors such as cow



Foods 2024, 13, 550 10 of 23

breed, stage of lactation, genetics, and diet [113,135]. The composition and quantity of fatty
acids in milk are primarily dictated by the feeding system [25,136].

Fresh herbs and grasses in the cow’s diet contribute a significantly higher quantity of
unsaturated fatty acids, whereas maize silage has a greater concentration of linoleic acid [113].
The TMR feeding system markedly diminishes the fat and fatty acid content in milk, attributed
to the insufficient dietary fiber and elevated starch levels in the diet [137,138]. Organic milk
has consistently been shown to contain a more favorable fatty acid profile than conventional
milk [139], containing more PUFAs, including omega-6 and omega-3 [24,139–141] and a lower
ratio of omega-6 to omega-3 fatty acids, which is beneficial for human health [139,142–146].
The omega-6 to omega-3 fatty acid ratio in bovine milk essentially characterizes the concentra-
tions of linoleic acid versus α-linolenic acid, as they represent the most abundant omega-6
and omega-3 fatty acids, respectively.

Forage is abundant in α-linolenic acid, while cereals such as barley, maize, oats, and
soybean contain higher quantities of linoleic acid [147]. A lower omega-6 to omega-3
fatty acid ratio is therefore suggestive of a forage-based diet [113]. Organic milk has also
been shown to contain higher Conjugated Linoleic Acid (CLA) content than conventional
milk [148,149]. The consumption of milk and dairy products rich in CLA is linked to
beneficial effects on human health, including improved brain function, antiatherogenic
effects, and lower levels of blood lipids [150,151]. CLA also demonstrates anti-carcinogenic,
immunostimulatory, and weight-reducing properties [151].

4.10. Minerals and Heavy Metals

The mineral content of milk is influenced by a variety of factors including animal diet,
genetics, breed, feeding system, and the surrounding environment [152]. The concentration
of minerals in milk is primarily contingent on their levels in fodder [153,154]. The mineral
content of forage is determined by the mineral content of soil and pasture, which is
influenced by fertilizers, the amount of sewage sludge generated, soil type, or the proximity
of mining and industrial areas [36]. In conventional farming, soil fertility can be increased
by using mineral fertilizers enriched with selected microelements [155]. Cow diets are also
supplemented with mineral mixtures to increase the mineral content of milk produced [23].
Both of these methods are restricted in organic farming; therefore, on-farm fodder is the
main source of minerals [23]. Green forage from legume plants offers substantial amounts
of calcium and magnesium. Cereal grains provide phosphorus, wheat bran serves as a
source of magnesium, and green forage contains smaller amounts of sodium [23]. Organic
milk has generally been reported to contain a marginally lower mineral content than
conventionally produced milk, with the difference primarily attributed to management
practices [24,25,156,157]. These practices include selenium supplementation to improve
reproductive performance, iodine-containing teat dipping as a disinfectant after milking,
and mineral supplementation [24,25,156,157]. Toxic elements, including heavy metals,
such as lead, chromium, mercury, and cadmium may also be present in milk and dairy
products [158]. Such heavy metals are non-essential elements, have no biological role
in mammals, and can cause toxic effects even at very low concentrations [159]. The
main source of heavy metals in agricultural systems is fertilizer [160]. Numerous studies
have reported significantly higher levels of heavy metals in conventionally produced
milk [119,161,162].

Table 3. Concentrations of select macronutrients, micronutrients, and general antimicrobial peptides
present in raw milk produced using organic, traditional and intensive systems. Traditional milk
refers to milk produced using the traditional milk production system. Intensive milk refers to milk
produced using the intensive milk production system.

Organic System Conventional Systems

Proteins Organic Milk Traditional Milk Intensive Milk

Total Protein (%) 3.1–3.26 3.1–3.24 3.48
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Table 3. Cont.

Organic System Conventional Systems

Casein (%) 2.54 2.52 2.78

Whey protein (%) 0.72–0.84 0.72–0.84 0.70–0.82

β-Lactoglobulin (g/L) 3.32–3.35 3.26–3.58 3.01–3.28

α-Lactalbumin (g/L) 1.07–1.19 1.05–1.21 0.98–1.14

Bovine serum albumin (g/L) 0.43 0.44 0.41–0.49

Lactoferrin (mg/L) 123.8–125.9 109.80–130.62 94.01–121.23

Lysozyme (µg/L) 11.14 9.92–10.71 6.90–12.13

Vitamins Organic Milk Traditional Milk Intensive Milk

Vitamin A (retinol) (mg/L) 0.468–0.800 0.410–0.556 0.347–0.465

β-carotene (mg/L) 0.195–0.580 0.231–0.252 0.175–0.190

Vitamin E (α-tocopherol) (mg/L) 1.358–2.655 1.656–1.953 1.075–1.302

Vitamin D3 (cholecalciferol) (µg/L) 0.461–0.768 0.610–1.212 0.589–0.700

Carbohydrates Organic Milk Traditional Milk Intensive Milk

Lactose (%) 4.80–5 4.7–5 nd

3 Hex (Trisa) (m/z) 60.82–61.11 51.37–55.86 nd

3 Hex, 1 NeuAc (m/z) 11.83–14.60 9.24–12.42 nd

4 Hex, 1 HexNAc (m/z) 0.87–0.93 0.63–0.69 nd

3 Hex, 2 HexNAc (m/z) 0.31–0.33 0.25 nd

Fat Organic Milk Traditional Milk Intensive Milk

Fat (%) 3.7–4 3.8–4 3.8–4

SFAs (g/100 g) 66.28 59.03–64.74 67.69–71.41

MUFAs (g/100 g) 26.11–34.07 30.33–32.16 21.87–28.15

Oleic acid (c9 C18:1) 20 16.10–22.66 16.16–17.20

Vaccenic acid (t11 C18:1) (g/100 g) 1.22–2.00 1.18–7.00 0.80–2.00

PUFAs (g/100 g) 3.85–5.36 3.69–5.32 1.65–3.77

Eicosapentaenoic acid, EPA (C20:5 n-3) (g/100 g) 0.05 0.08 0.05

Conjugated linoleic acid, CLA (cis9 trans11) (g/100 g) 0.83–1.53 0.54–0.93 0.42–1.19

Linoleic acid, LA (C18:2 n-6) (g/100 g) 0.59–2.08 1.17–2.18 1.4–2.39

α-linolenic acid, ALA (C18:3 n-3) (g/100 g) 0.44–1.05 0.49–1.25 0.39–0.42

γ-linolenic acid, GLA (C18:3 n-6) (g/100 g) 0.11 0.13 0.12

Proportion 18:3n3: 18:3n6 1.35 0.60–2.77 1.26

Minerals and Heavy Metals Organic Milk Conventional Milk

Calcium (mg/L) 971.33–1161 1170–1417.76

Iron (mg/L) 0.26–0.67 0.26–0.47

Manganese (mg/L) 0.023–0.047 0.022–0.139

Copper (mg/L) 0.023–0.084 0.038–0.161

Iodine(mg/L) 0.013–0.283 0.071–6.540

Aluminium (mg/L) 0.76 0.63

Potassium (mg/L) 1509–1896.92 1514–1844.37

Sodium (mg/L) 366.59 476.35
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Table 3. Cont.

Organic System Conventional Systems

Magnesium (mg/L) 86.21 113.87–118.50

Zinc (mg/L) 2.86–3.96 2.96–4.39

Selenium (mg/L) 0.002–0.020 0.008–0.040

Cobalt (mg/L) 0.001 0.001

Strontium (mg/L) 0.166 0.202

Ranges are shown where available. Values for the traditional system and intensive system are shown where
available. Values obtained from [23,110,142,144,163–165]. Abbreviations: Trisa, Trisaccharides; Hex, glucose or
galactose; HexNAc, N-acetylglucosamine or N-acetylgalactosamine; NeuAc, N-acetylneuraminic acid (sialic acid);
(m/z), mass divided by charge number; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty
acids; SFAs, saturated fatty acids; nd, no data.

5. Perceived Health Benefits of Organic and Conventional Milk

Milk and dairy products provide several health benefits beginning from the early stages
of life. Recommendations based on guidelines for several countries across the globe include
milk and other dairy products as part of daily healthy eating [166]. Research over the
past two decades has delineated the associations between milk consumption and health
benefits. Some of the highest increases in the numbers of diseases worldwide are seen
concerning obesity, type 2 diabetes, and cancer. A recent meta-analysis reported that children
consuming higher dairy intake had lower incidence of overweight compared to those having
lower dairy intake [167]. However, another meta-analysis failed to show any association in
children, though a slight positive association with a protective effect of dairy consumption
was reported in adolescence [167]. Other comprehensive short-term studies even report the
role of dairy products in facilitating weight loss in an energy-restricted diet, though long-
term studies fail to provide convincing results for the same [168,169]. Similarly, other meta-
analyses reported only a slight positive effect or no effect of dairy on diabetes [170,171] and
mixed or no association with risk of cardiovascular diseases [170,172]. Another meta-analysis
reported a positive role of dairy (particularly yogurt) in preventing the risk of type 2 diabetes;
however, no association with milk and a negative association with cheese consumption was
reported [173,174]. Furthermore, as observed from several meta-analyses, total dairy, full-fat
dairy, low-fat dairy, milk, cheese, and yogurt consumption have no association with the risk
of coronary heart disease [170,175]; though, controversial results with slightly positive effects
of dairy consumption on preventing risk of cardiovascular disease were reported based on
prospective cohort studies [176,177]. Variations in results based on different dairy products
can be because of their potential impact on the host microbiome, the variations in practices to
prepare them (such as fermented vs. not fermented), and the levels of nutrients in different
dairy products. Inconsistent results observed can also be attributed to the varying nutrient
content of the milk due to the varying laws and practices used by farms around the world.

Similarly, due to the high calcium and magnesium levels in milk, several studies
have associated milk intake in early life with a lower risk of osteoporosis and fracture
incidence [178,179]. Another meta-analysis reported that high dietary calcium through
dairy with or without vitamin D supplementation increases body and lumbar bone mineral
content, though this effect was only seen in children in the low baseline group as opposed
to the high baseline dairy intake group [180]. Similar results of the possible effects of
calcium along with vitamin D supplementation in reducing the risk of osteoporosis and
bone fractures are reported in adults [28]. This points towards the need for further studies
to understand the optimum levels of dairy and calcium intake to support bone mineral
content and density in children. Furthermore, calcium, magnesium, and other nutrients
from milk have similar benefits in adults and contribute to bone health and maintain bone
structure [181,182].

In population studies, the relationship between dairy consumption and cancer risk has
yielded mixed results, with limited and often inconclusive data. The bioactive compounds
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in dairy could have both positive (linked to calcium, lactoferrin, and fermentation products)
and negative (linked to insulin-like growth factor I (IGF-1)) effects on cancer development.
The World Cancer Research Fund (WCRF) continually reviews evidence on diet and cancer
prevention, and some findings suggest that dairy, particularly milk and calcium, may
reduce the risk of colorectal cancer [183]. Similar results were reported by other meta-
analyses [180,184]. However, the evidence regarding breast cancer is inconclusive [183],
although some studies suggest a potential protective effect of dairy intake, especially yogurt
and low-fat dairy [185,186]. While according to the WCRF, 2014 and 2015 reports, and
other observational studies, mixed results with limited evidence have been reported for
associations between dairy and risk of prostrate and bladder cancer [183,187].

As reviewed earlier in Section 3, though the nutritional composition of conventional
and organic milk is very similar, studies have reported differences in the levels of these
nutrients in the two milk types. These differences can lead to enhanced health benefits
as perceived and claimed by organic milk. It is important to consider these nutrients in
the recommended daily reference intake, so as to understand the benefits, if any. Studies
regarding the fatty acid composition are fairly consistent due to the direct effect of diet on
milk fatty acid composition; however, protein and carbohydrate compositional results vary
between studies. For instance, as mentioned above, it is now confirmed by several studies
that organic milk contains higher n-3 PUFAs, CLA, and a lower omega-6 to omega-3 ratio
than conventional milk [24,188]. The meta-analysis by Średnicka-Tober et al. also reported
higher levels of α-tocopherol, β-carotene, lutein, and vitamin E in organic than conventional
milk—an imbalance in omega 6–omega 3 ratio is associated with cardiovascular disease
risk, cancer, and hypertension and disease pathogenesis [189]. As reviewed by Givens and
Lovegrove, the differences in fatty acids between organic and conventional systems in the
context of overall diets are important but are minimal, thus further studies with larger
sample sizes are needed to underline the association between organic milk and health
benefits [24]. Similarly, Średnicka-Tober et al. also report lower levels of iodine and higher
levels of iron in organic milk compared to conventional milk [24]. However, milk is not the
primary source of iodine or iron for humans and an otherwise balanced diet must be used
to maintain levels of these nutrients. If milk is the source of iron for individuals, then those
consuming organic milk must consume the appropriate supplements to avoid deficiency.
These differences in nutrients are predicted to be observed under the circumstances of
the switch to organic dairy and can impact health [30]. Some studies suggest the positive
associations of organic dairy consumption with a lower risk of eczema in children [190]
and a higher prevalence of hypospadias in the male offspring of mothers consuming
conventional over organic dairy products [191].

A key characteristic of organic milk farming is avoiding the use of antibiotics and
pesticides, as this can help enhance the efficacy of existing antibiotics in animals and
humans. Even though this might not affect the nutritional composition of milk, it must be
noted that this will lead to a reduction in the generation of new antibiotic resistance genes
(ARGs) and the selection of antibiotic-resistant bacteria, thus lowering the chances of the
spread of ARGs to the calf and the environment. Furthermore, the limited or prohibited
use of antimicrobials and chemicals can positively impact the microbial quality of organic
dairy with lower numbers of antibiotic-resistant bacteria, but safety concerns are prevalent,
such as the risk of foodborne illness [192].

6. Global Market for Organic Milk Products

In the past decade, increasing awareness of self-health and the environment has given
much importance to the holistic approach to organic food production. Consumption of
organic products by consumers relies partly on their behavior with optimistic consumers
more inclined towards organic products than pessimistic consumers, with environmental
concerns driving higher consumption by pessimistic consumers [193]. Overall, the health
benefits, sensory appeal, and quality of organic food products are some of the prominent
factors along with environmental concerns for consumers [194]. Owing to these concerns,
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organic dairy products are no longer confined to first-world countries but form a big market
across populations throughout the world. The global organic dairy market is estimated
to be worth about $54 billion US dollars by 2030, nearly more than double the $24 billion
US dollars in 2021 [195]. Asia is one of the biggest contenders in organic dairy production,
followed by North America.

Organic dairy certification varies between countries; however, some standards as laid
out by the United States Department of Agriculture (USDA) under the Organic Foods
Production Act of 1990 and the National Organic Program (NOP), the European Union
Regulation (2018/848) (https://eur-lex.europa.eu/eli/reg/2018/848/oj, accessed on 14
November 2024), Draft Guidelines of Codex/WHO/FAO and the International Federation
of Organic Agricultural Movements (IFOAM) are similar and accepted on a large scale.
In the East, Southeast, and South Asia, the Asia Regional Organic Standard (AROS) sets
the regulation (https://www.fao.org/family-farming/detail/en/c/282204/, accessed on
8 November 2024). However, to be certified as organic, each farm must comply with the
regulations governing that area. These regulations can vary widely, such as the use of
antimicrobials for the treatment of mastitis in organic dairy farms is strictly prohibited in
the US but permitted under veterinary recommendation in the European Union [196].

Organic dairy is the second most consumed category after fresh fruits and vegetables
in the US, with retail sales totaling approximately $6 billion in 2020. In the US, an increase
in certified organic dairy cows from 2000 to 360, 000 has been observed from 1990 to 2019.
The increase in organic fluid milk sales from 1.92% to 5.5% of the total sales was observed
from 2009 to 2021; though the increase almost plateaued by 2014 in the US [197]. By 2019,
European countries including Austria, Denmark, Germany, and France had the highest
numbers of organic dairy cows in the total dairy herd (Eurostat, ING research). In Europe,
Germany, France, Denmark and Austria also produced the highest volume of organic milk
in 2017 [198]. However, an increase in the number of organic dairy cows from 2012 to
2019 was only about 2%, which is forecasted to be much higher by 2030 [198]. The total
increase in organic milk production from 2007 to 2015 also doubled in Europe, just like in
the US [199]. By 2019, organic milk production in the EU represented 3.5% of total EU milk,
which is also expected to be around 8% by 2031 [200].

India is the largest milk producer in the world, with an increasing demand for organic
dairy. The geographical and climatic conditions in some regions, and the disease-resistant
native breeds in particular provide additional benefits and are well suited for organic
farming. However, cost concerns and limited knowledge of organic farming in small farms
leave a large gap and a plethora of opportunities to maximize the capacity of dairy farming
in India [201,202].

Despite New Zealand and Australia being leading milk producers and exporters in the
world, their contributions to global organic milk were ranked 15th and 20th, respectively,
in 2017 [203]. A decreasing trend in milk production has been reported in Australia over
the last decade. Though the majority of dairies in Australia are in coastal areas, allowing
access to fresh grazed grass, a shift to concentrate feeding has been observed due to cost
and climatic conditions [43]. This could be because of the weather conditions restricting
the production system.

The Japanese Agricultural Standards (JAS) for Organic Agricultural Products was
established in 2000 with further development in 2005, with the addition of the JAS for
Organic Livestock Products. Organic farming is faced with several difficulties in Japan
due to the nature of the climate and crops prone to pests making the use of pesticides
unavoidable to an extent. However, it is strictly regulated by the JAS in Japan and due to
the environment-friendly approach involved, it is projected to increase [204].

7. Future Challenges and Perspectives

The organic dairy production system is associated with several perceived health ben-
efits for consumers, and most importantly with animal health and welfare. However, it
is crucial to acknowledge that the level of animal welfare can differ greatly within each
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production system. At present, there is no substantial evidence to support the claims that an-
imal welfare is better in the organic or conventional system [63]. The prohibitive/restricted
use of antimicrobials has invoked farmers to use various antibiotic alternatives such as
aloe vera and whey-based products for disease treatment [96], and has created opportu-
nities for several antimicrobial alternatives to be used in the dairy industry. However,
the transition from conventional to organic farming is expensive and requires changes
to animal husbandry, farm practices and land management. Along with these changes,
certification and compliance work is very challenging accompanied by higher costs for
animal maintenance [205]. Thus, incentives and support from the government are required,
especially in developing countries, to provide a boost for farmers to switch to organic
farming. This will help meet the challenge of demand and supply of organic dairy, which
might rise with the growing demand for organic food products. Further, studies are also
needed to evaluate the nutritional benefits of organic milk with the recommended daily
dietary intake. Along with this, appropriate education for consumers is necessary, allowing
a well-informed decision among consumers.

The benefits of organic dairy are suggested to be associated with the feed type; how-
ever, other factors including farm management and breed type are also variables in the
composition of organic and conventional milk [110]. Moreover, the claimed differences
in the composition of organic and conventional milk are sometimes associated with dif-
ferences in the abundance of bacteria such as lactic acid bacteria, which is reported to
be higher in organic dairy favored by higher concentrations of peptides and long-chain
PUFAs [206]. This points towards the need for further studies to understand the additional
probiotic, growth-promoting effects, and microbiological safety of organic dairy products.
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192. Murali, A.P.; Trząskowska, M.; Trafialek, J. Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms 2023,
11, 1557. [CrossRef]

193. Sadiq, M.; Paul, J.; Bharti, K. Dispositional traits and organic food consumption. J. Clean. Prod. 2020, 266, 121961. [CrossRef]
194. Rana, J.; Paul, J. Consumer behavior and purchase intention for organic food: A review and research agenda. J. Retail. Consum.

Serv. 2017, 38, 157–165. [CrossRef]
195. Precedence Research. Organic Dairy Market. 2022. Available online: https://www.precedenceresearch.com/organic-

dairy-market#:~:text=The%20global%20organic%20dairy%20market,10.1%25%20from%202022%20to%202030.&text=The%20
organic%20dairy%20products%20are,reared%20using%20organic%20farming%20techniques (accessed on 1 February 2024).

196. Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F.
Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [CrossRef]
[PubMed]

197. Carlson, A.; Greene, C.; Raszap Skorbiansky, S.; Hitaj, C.; Ha, K.; Cavigelli, M.; Ferrier, P.; McBride, W. US Organic Production,
Markets, Consumers, and Policy, 2000–21; United States Department of Agriculture (USDA): Washington, DC, USA, 2023.

198. Willer, H.; Schaack, D.; Lernoud, J. Organic farming and market development in Europe and the European Union. In The World
of Organic Agriculture. Statistics and Emerging Trends 2019; Research Institute of Organic Agriculture FiBL: Frick, Switzerland;
IFOAM-Organics International: Bonn, Germany, 2019; pp. 217–254.

199. Willer, H.; Sorensen, N.; Yussefi-Menzler, M. The world of organic agriculture 2008: Summary. In the World of Organic Agriculture;
Routledge: London, UK, 2010; pp. 15–22.

200. EU Agricultural Outlook 2021-31: Lower Demand for Feed to Impact Arable Crops. December 2021. Available online: https://
agriculture.ec.europa.eu/news/eu-agricultural-outlook-2021-31-lower-demand-feed-impact-arable-crops-2021-12-09_en (accessed
on 1 February 2024).

201. Maji, S.; Meena, B.S.; Paul, P.; Rudroju, V. Prospect of organic dairy farming in India: A review. Asian J. Dairy Food Res. 2017, 36,
1–8. [CrossRef]

202. Mahesh, M.S. Integrated organic farming and organic milk production: Opportunities and challenges in India. Indian Dairym.
2013, 65, 56–60.

203. KPMG. Global Organic Milk Production Market Report. Available online: https://ciorganicos.com.br/wp-content/uploads/20
20/09/global-organic-milk-production-market-report.pdf (accessed on 1 February 2024).

204. Managi, S.; Yamamoto, Y.; Iwamoto, H.; Masuda, K. Valuing the influence of underlying attitudes and the demand for organic
milk in Japan. Agric. Econ. 2008, 39, 339–348. [CrossRef]

205. McBride, W.D. Characteristics, Costs, and Issues for Organic Dairy Farming; DIANE Publishing: Collingdale, PA, USA, 2010;
Volume 82.

206. Sabunevica, S.; Zagorska, J. Organic Milk as Medium for Lactic Acid Bacteria Growth: A Review. Rural Sustain. Res. 2023, 49,
73–86. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10549-011-1467-5
https://doi.org/10.1016/j.clnu.2022.11.006
https://doi.org/10.1002/jsfa.5639
https://doi.org/10.1051/ocl.2010.0325
https://doi.org/10.1017/S0007114507815844
https://doi.org/10.1016/j.juro.2012.09.116
https://doi.org/10.3390/microorganisms11061557
https://doi.org/10.1016/j.jclepro.2020.121961
https://doi.org/10.1016/j.jretconser.2017.06.004
https://www.precedenceresearch.com/organic-dairy-market#:~:text=The%20global%20organic%20dairy%20market,10.1%25%20from%202022%20to%202030.&text=The%20organic%20dairy%20products%20are,reared%20using%20organic%20farming%20techniques
https://www.precedenceresearch.com/organic-dairy-market#:~:text=The%20global%20organic%20dairy%20market,10.1%25%20from%202022%20to%202030.&text=The%20organic%20dairy%20products%20are,reared%20using%20organic%20farming%20techniques
https://www.precedenceresearch.com/organic-dairy-market#:~:text=The%20global%20organic%20dairy%20market,10.1%25%20from%202022%20to%202030.&text=The%20organic%20dairy%20products%20are,reared%20using%20organic%20farming%20techniques
https://doi.org/10.3168/jds.2015-9377
https://www.ncbi.nlm.nih.gov/pubmed/26342982
https://agriculture.ec.europa.eu/news/eu-agricultural-outlook-2021-31-lower-demand-feed-impact-arable-crops-2021-12-09_en
https://agriculture.ec.europa.eu/news/eu-agricultural-outlook-2021-31-lower-demand-feed-impact-arable-crops-2021-12-09_en
https://doi.org/10.18805/ajdfr.v36i01.7452
https://ciorganicos.com.br/wp-content/uploads/2020/09/global-organic-milk-production-market-report.pdf
https://ciorganicos.com.br/wp-content/uploads/2020/09/global-organic-milk-production-market-report.pdf
https://doi.org/10.1111/j.1574-0862.2008.00337.x
https://doi.org/10.2478/plua-2023-0010

	Introduction 
	An Introduction to Organic Milk Production 
	Milk Production Systems 
	Conventional Systems 
	Traditional System 
	Intensive System 

	Organic System 

	Impact of Production Systems on Farm Performance and Raw Milk Composition 
	Milk Yield 
	Udder Health and Somatic Cell Count (SCC) 
	Microbiological Quality 
	Mastitis 
	Volatile Organic Compounds 
	Protein 
	Vitamins 
	Carbohydrates 
	Fats 
	Minerals and Heavy Metals 

	Perceived Health Benefits of Organic and Conventional Milk 
	Global Market for Organic Milk Products 
	Future Challenges and Perspectives 
	References

