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Abstract: Data processing and data extraction are the first, and most often crucial, steps in metabolomics
and multivariate data analysis in general. There are several software solutions for these purposes
in GC-MS metabolomics. It becomes unclear which platform offers what kind of data and how that
information influences the analysis’s conclusions. In this study, selected analytical platforms for
GC-MS metabolomics profiling, SpectConnect and XCMS as well as MestReNova software, were
used to process the results of the HS-SPME/GC-MS aroma analyses of several blackberry varieties.
In addition, a detailed analysis of the identification of the individual components of the blackberry
aroma club varieties was performed. In total, 72 components were detected in the XCMS platform,
119 in SpectConnect, and 87 and 167 in MestReNova, with automatic integral and manual correction,
respectively, as well as 219 aroma components after manual analysis of GC-MS chromatograms. The
obtained datasets were fed, for multivariate data analysis, to SIMCA software, and underwent the
creation of PCA, OPLS, and OPLS-DA models. The results of the validation tests and VIP-pred. scores
were analyzed in detail.

Keywords: multivariate data analysis; metabolomics platforms; headspace solid-phase micro extraction;
volatile compounds; gas chromatography mass spectrometry; blackberries aroma

1. Introduction

Metabolomics has been employed in a variety of applications, including the discov-
ery of biomarkers and enzymes in food and nutrition, plant biotechnology, and health.
Metabolomics is described as the comprehensive, simultaneous examination of many
metabolites in biological systems, and it has emerged in a wide range of research areas.
Huge progress in this area has been aided by the development of high-resolution analytical
techniques such as nuclear magnetic resonance (NMR) and mass spectrometry (MS), which
allow for the examination of a wide range of metabolites at various concentration levels.
Multivariate data analysis is an essential tool for the analysis of large and complex data
sets [1,2]. With this approach, the analysis of large and complex data sets is feasible [3]. It
was developed in parallel with the development of computation and computers. In order to
adequately process a large data set, such as the metabolome, the application of multivariate
analysis is necessary. Additionally, the large number of MS databases that make it easier to
analyze and identify compounds greatly facilitates this process. The metabolome is very
complex, and therefore there is a justified need to develop methods that will facilitate its
interpretation and processing in order to discover metabolites of importance [4–6]. One of
the most important steps is the initial processing of raw data in order to obtain a reliable
model using a multivariate analysis [7,8]. In addition, depending on the analytical tech-
nique used, it is necessary to establish procedures and workflows for research [9]. There
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are a number of platforms in use today that lead to the fast and efficient processing of
large amounts of data, as well as their preparation for further metabolome analysis [10].
High resolving power, robustness, good reproducibility, selectivity, and high sensitivity are
characteristics that make GC-MS an excellent analytical platform. Electron ionization (EI)
is most often used because there are a large number of mass spectra libraries that facilitate
the analysis. The results of GC-MS analysis consist of m/z values, retention times, and
intensities of different peaks [11]. The fluctuations in the chromatograms’ retention times,
which are particularly noticeable when a high number of samples is used, could be an
issue [12]. Therefore, it is necessary to properly process the obtained raw data in order to
obtain valid datasets [13]. Some of the basic steps are baseline corrections to define the
area for peaks of importance, as well as alignment to avoid shifting retention times and to
ensure the uniformity of the entire data set. There are a number of ways to process raw
GC-MS results, using different platforms and software to prepare them for multivariate
analysis [14,15].

In order to characterize cultivars, it is necessary to take into consideration the entire
profile during the analysis in order to draw appropriate conclusions and understand the
correlation of all metabolites in the metabolome [16]. The whole chromatogram (for all
detected m/z values) is significant for nontargeted metabolomic investigations, which
motivates attempts to choose experimental conditions that enhance metabolite peak ac-
cessibility [17]. Accurate analysis of all of these data is usually accompanied by some
difficulties. It could be challenging to discern certain “real” chromatographic peaks from
noise. Sometimes the separate MS scans contain peaks from coeluting mixtures of metabo-
lites that are not chromatographically separated. Hence, peak enumeration which separates
“true” peaks from noise in a chromatogram, and spectral deconvolution which, according
to the recent literature, is becoming more and more common, are the first processing steps
that follow the storage of raw GC-MS data [18]. These steps yield putative pure spectra
from two overlapping peaks. These procedures can be carried out either using commercial
software designed for a particular manufacturer’s equipment or using freely accessible
software such as AMDIS [19]. In previous works, the main focus of the researchers was on
the dominant components of aroma. They observed them as markers for the recognition
of certain types of fruit [20] or geographical origin [21]. In plant metabolomics of fruit
varieties, differences in genetic variability can be ruled out due to the dominant vegeta-
tive method of propagation (cloning) [22]. However, differences in replicants of the same
type of sample can often have bigger effects on the main compounds than differences
between samples. This is mostly because of different levels of maturity or stress-causing
environmental factors like sunlight, humidity, pathogen exposure, and so on [23]. For this
reason, the scaling and preprocessing of data are equally as important as the degree of
sensitivity and selectivity of the applied instrumental technique and the applied statistical
platform [24,25].

Blackberries are widely consumed fruits that are employed in many different processed
goods. Both consumers and food suppliers place a great deal of importance on fruit
quality, with premium fruits typically having greater market potential. As a result, berry
growers worldwide seek berries that are large, firm, flavorful, and nutrient-rich [26].
With their bioactive components, which include phenolic acids and flavonoids [27], they
have strong antioxidant activity [28] and help prevent a variety of ailments. Up to now,
blackberries have been the subject of extensive studies using liquid chromatography with
mass spectrometry and multivariate data analysis [27–30]. To the best of our knowledge,
this is the first time that a metabolomic approach has been used in the analysis of blackberry
aroma, as well as the first time that the results of different platforms for preprocessing
GC-MS results have been compared.

This paper presents the influence of different online analytical platforms for data
“extraction” and MestReNova software integration solutions on the results of a multivariate
analysis for determining the aroma profile of different blackberry cultivars that were grown
in the Zeleni Hit Company experimental field, near Belgrade. The headspace solid-phase
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microextraction coupled to the gas chromatography-mass spectrometry (HS-SPME/GC-
MS) method was used to track the changes. Non-target quantitative component profiling,
to investigate the aroma profiles of different blackberry cultivars, was used. Six blackberry
cultivars, Columbia Star [31], Loch Ness [32], Nachez [33], Ouachita [34], Prime-Ark 45 [35],
and Von [36], were analyzed on three different platforms: MestReNova 12.0 with automatic
and manual corrections of detected peaks, XCMS online [37], and SpectConnect [38], in or-
der to compare their results and identify an optimal solution for GC-MS data preprocessing.
The criteria for comparison were the number of identified peaks, the quality of the peaks,
and the results of statistical analyses. The peak numbers and identification were validated
through the manual check of one representative chromatogram of each cultivar. In total,
269 compounds were detected and 216 were identified. The methylundecanoate was used
as an internal standard for the normalization and quantification of each compound.

2. Materials and Methods
2.1. Sample Collection and Preparation

In July 2021, in the experimental field of the Zeleni Hit DOO (Batajnički put ZH,
Belgrade 11080) company fruits were collected from the six blackberry varieties Loch Ness,
Ouachita, Nachez, Von, Prime-Ark 45, and Columbia Star. The samples were stored in
plastic sterile bottles at a temperature of −18 ◦C until analysis.

In headspace vials was placed 2 g from each sample, 100 mg of NaCl (Sigma-Aldrich,
Saint Louis, MO, USA), and 1 µL of methyl undecanoate solution in dichloromethane (Poly-
Science Corp. Niles, IL, USA) with a concentration of 2 ppm. The vials were tightly closed
and incubated in a water bath at 60 ◦C for 30 min. During incubation in the empty space
of the vial, fiber emerged for the solid-phase microextraction with polydimethylsiloxane
(PDMS) as an adsorbent. A manual SPME arrow injection kit was used for incubation and
the injection of concentrated blackberries into the GC-MS inlet. After injection, the fiber
was kept in the heated inlet for 20 s before starting the analysis for desorption, and for
another four minutes after starting the analysis, to condition it for the next sample. Blank
samples were measured every day before measuring berry samples.

2.2. GC-MS Analysis

The Agilent 7890B GC system (Agilent Technologies, Santa Clara, CA, USA) equipped
with a 5977 mass selective detector (MSD) was used for aroma compound GC-MS analysis.
For separation, a non-polar HP-5MSI capillary column (30 m × 0.25 mm, 0.25 µm film
thickness) was used. The oven temperature was programmed to increase linearly from
60 ◦C to 240 ◦C at a rate of 3 ◦C/min. Helium was used as a carrier gas, inlet pressure
was constant at 16.7 psi (flow 1.0 mL/min at 210 ◦C), and splitless mode was used. The
MS range was 40–550 amu, the electron ionization energy was 70 eV at 230 ◦C, and the
quadrupole temperature was 150 ◦C. The transfer line temperature was kept at 315 ◦C.

2.3. Data Processing

Library search and mass spectral deconvolution and extraction of the derivatized
compounds were performed using the MSD ChemStation software, version E02.02 (Agilent
Technologies, Santa Clara, CA, USA), the NIST AMDIS (Automated Mass Spectral Decon-
volution and Identification System) software version 2.70, and the commercially available
Adams04, NIST17, and Wiley07 libraries containing approximately 500,000 spectra.

For the eXtensible Computational Mass Spectrometry (XCMS) online platform (Version
3.7.1), using the MSD ChemStation software, all the MS chromatograms were converted
to the AIA format. Based on the R software, the peak picking, nonlinear peak alignment,
and matching of the retention times were then carried out utilizing this platform [39,40].
Using the CentWave feature detection algorithm, the maximum allowed m/z deviation in
consecutive scans was set at 100 ppm. The minimum and maximum chromatographic peak
widths were set at 5 and 10 s, respectively. The minimum difference in m/z for peaks with
overlapping retention times was set at 0.01 and the signal/noise threshold was set at 6. In
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order to create peak density chromatograms and group peaks across samples, 0.5 is the
minimum fraction of samples required in at least one sample group in order for it to be a
valid group. Ten seconds is the allowable retention time deviation for peak alignment. After
being standardized to the content of the internal standard (methylundecanoate), the data
in the table from the XCMS online platform were put through multivariate data analysis.

The SpectConnect (Version 1.0) online platform was used according to the instructions
given in the paper by Styczynski et al. and in online instructions [15,38]. The AMDIS
software (Version 2.73) was used for spectral deconvolution and data set extraction.

The MesReNova 12.0 software was used for the automatic detection and integration
of chromatographic peaks. Peaks were detected in the range from 2.9 to 45 min with the
highest sensitivity (200), automatic smoothing, and no area threshold (0%). The obtained
tables were merged into one dataset. The siloxane signals that are also present in the blanks
were manually removed. DRS was used for the automatic identification of individual
components in representative chromatograms of each cultivar.

Finally, using the MesReNova 12.0 software, each chromatogram was manually
checked, and the peaks that it did not recognize were additionally integrated. Every
pick from one representative chromatogram from each cultivar was manually checked
for MS fragmentation pattern matching as well as for retention indexes with NIST17 and
Wiley07 library data.

Multivariate data analysis was performed using SIMCA software (version 15, Umet-rics,
Umeå, Sweden). The GC-MS data were mean-centered and scaled using the square root of the
standard deviation as the scaling factor (Pareto). For the MesReNova data sets, Excel 16 was
used for the normalization of the content of the internal standard (methyl-undecanoate).

3. Results and Discussion

Ten replicates (one berry in the stage of technological maturity) of each cultivar were
analyzed using the headspace SPME GC-MS instrumental technique. The obtained data
were processed using online platforms (SpectConnect and XCMS), with the fact that the
SpectConnect platform provides the possibility of using different data sets to obtain models
(relative abundance—RA, integrated signal—IS, and base peak—AM) and compare them
with semimanual and manual processed data from the utilization of the MestReNova
software. The PCA, PLS-DA, and OPLS-DA models were generated and the main statistical
parameters of each of them are presented in Table 1. According to the initial PCA model
cultivars, Loch Ness had the most unique data set; it has been separated most in relation to
the others in the score plot. For this reason, it was chosen for comparison with the others by
making individual pairs in OPLS-DA models. Each OPLS-DA model was validated with
CV-ANOVA (see Table 1) and permutation test. In order to compare the results of those
models, VIP-predictive plots were analyzed.

In comparison to SpectConnect (119) and XCMS (72), the highest number of volatile
components (peaks) was observed, after manual evaluation of the chromatograms (167), as
twice as much (87) as in automatic peak detection with the highest sensitivity. In the further
detailed investigation of the Total Ion Chromatogram (TIC) using the AMDIS deconvolution
algorithm, 269 compounds were detected. The 219 volatile components were identified, but,
for 50 minor (less than 5%) compounds, it was not possible to accomplish an identification
due to a low ion abundance (concentration) and/or the lack of reference spectra in the
libraries and retention indexes (see Supporting Information Table S1).

By comparing the models obtained using different datasets and their major statistical
parameters, it can be noticed that the highest coefficient of determination (R2) has a model
with the XCMS data set and SpectConnect—base peak data set models with an R2 value
of about 0.9. In the remaining applied models, the R² value was from 0.516 to 0.766. A
similar trend was observed with the predictive ability of the models (Q2) (see Table 1). The
major reason for that could be the number of variables as well as the data type that was
used to generate the data set. Specifically, in the XCMS platform the abundance of the
base ion was extracted instead of the total ion current. In that instance, the noise detection
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threshold is rather high, particularly for GC-overlapped analytes. This reduces the number
of detected metabolites that would be subject to multivariate analysis but provides models
with high statistical significance. Although it is quite intuitive and easy to use, this platform
is not the most suitable for the metabolomic analysis of GC-MS results, where the electron
impact ionization technique is used and plant extracts are the subject of analysis. On the
contrary, the application of this platform to the analysis of compounds of similar polarity
(e.g., aromas) gives reliable results [41].

Table 1. The main statistical parameters of the obtained model with different platforms.

Platform (No.
Variables) Model

No. of Components
(pred. + orth. in Y) R2 X R2 Y Q2 CV-ANOVA Comparison ofF p

XCMS
(72)

PCA 6 0.931 0.863 all
PLS-DA 9 0.950 0.952 0.893 15.05 1 × 10−31 all

OPLS-DA

1 + 2 0.923 0.994 0.963 52.6 6.32 × 10−9 Loch Ness/Columbia star
1 + 1 0.901 0.986 0.978 155.3 1.98 × 10−11 Loch Ness/Von
1 + 3 0.873 0.994 0.963 40.4 5.50 × 10−7 Loch Ness/Prime-Ark 45
1 + 3 0.958 0.993 0.967 45.7 2.89 × 10−7 Loch Ness/Nachez
1 + 1 0.901 0.963 0.944 54.5 5.34 × 10−8 Loch Ness/Ouachita

SpectConnect—relative
abundance

(119)

PCA 6 0.712 0.531 all
PLS-DA 7 0.729 0.935 0.879 18.2 1 × 10−31 all

OPLS-DA

1 + 1 0.681 0.994 0.979 175.9 2.08 × 10−12 Loch Ness/Columbia star
1 + 1 0.656 0.992 0.981 190.1 1.18 × 10−12 Loch Ness/Von
1 + 2 0.588 0.994 0.961 52.8 2.22 × 10−8 Loch Ness/Prime-Ark 45
1 + 1 0.702 0.991 0.964 101.5 1.14 × 10−10 Loch Ness/Nachez
1 + 1 0.593 0.992 0.971 123.7 2.71 × 10−11 Loch Ness/Ouachita

SpectConnect
-integrated signal

(119)

PCA 6 0.711 0.532 all
PLS-DA 9 0.761 0.961 0.898 13.9 1 × 10−31 all

OPLS-DA

1 + 1 0.678 0.994 0.981 189.3 1.22 × 10−12 Loch Ness/Columbia star
1 + 1 0.655 0.992 0.981 189.8 1.19 × 10−12 Loch Ness/Von
1 + 2 0.585 0.994 0.962 54.2 1.87 × 10−8 Loch Ness/Prime-Ark 45
1 + 1 0.705 0.99 0.965 103.5 9.81 × 10−11 Loch Ness/Nachez
1 + 1 0.592 0.993 0.973 137 1.29 × 10−11 Loch Ness/Ouachita

SpectConnect—base
peak
(119)

PCA 6 0.706 0.531 all
PLS-DA 9 0.758 0.958 0.889 13.1 1 × 10−31 all

OPLS-DA

1 + 1 0.67 0.996 0.98 187.9 1.28 × 10−12 Loch Ness/Columbia star
1 + 1 0.64 0.994 0.98 184.3 1.48 × 10−12 Loch Ness/Von
1 + 2 0.582 0.995 0.956 46.8 4.64 × 10−8 Loch Ness/Prime-Ark 45
1 + 1 0.689 0.99 0.964 100.7 1.2 × 10−10 Loch Ness/Nachez
1 + 1 0.61 0.992 0.975 144.7 8.68 × 10−12 Loch Ness/Ouachita

MNOVA-automatic
(87)

PCA 7 0.610 0.276 all
PLS-DA 5 + 3 0.687 0.912 0.813 11.0 1 × 10−31 all

OPLS-DA

1 + 2 0.689 0.996 0.952 43.1 7.72 × 10−9 Loch Ness/Columbia star
1 + 1 0.566 0.974 0.923 45.1 3.44 × 10−8 Loch Ness/Von
1 + 1 0.516 0.972 0.934 53.0 1.14 × 10−8 Loch Ness/Prime-Ark 45
1 + 1 0.651 0.983 0.948 68.4 1.90 × 10−9 Loch Ness/Nachez
1 + 2 0.582 0.996 0.964 57.8 1.27 × 10−8 Loch Ness/Ouachita

MNOVA-manual
corrected

(167)

PCA 7 0.698 0.547 all
PLS-DA 7 0.691 0.923 0.863 18.6 1 × 10−31 all

OPLS-DA

1 + 2 0.766 0.999 0.987 196.3 1.43 × 10−11 Loch Ness/Columbia star
1 + 1 0.667 0.992 0.963 97.4 1.53 × 10−10 Loch Ness/Von
1 + 2 0.542 0.998 0.948 39.9 1.24 × 10−11 Loch Ness/Prime-Ark 45
1 + 1 0.692 0.993 0.961 91.5 2.39 × 10−10 Loch Ness/Nachez
1 + 1 0.605 0.994 0.962 94.8 1.85 × 10−10 Loch Ness/Ouachita

To overcome the problems of peak overlapping, the SpectConnect platform used NIST
software, which extracts individual component spectra from gas chromatography/mass spec-
trometry (GC-MS) data files by deconvolution and ion-counting noise procedures (Figure 1).
As a result of the SpectConnect platform, three similar datasets based on relative abun-
dance (RA), integrated signals (ISs), and base peak (AM), as well as retention time (RT),
were obtained, showing changes in retention times for individual compounds in different
chromatograms. Comparing the major statistical parameters generated from datasets of the
SpectConnect platform, there are no significant differences. On the other hand, automatic
integration in the MestReNova software provides average sensitivity compared to the previ-
ously mentioned platforms, while manual correction was able to detect even the smallest peak.
When the SIMCA model statistical parameters were compared, there were no big differences
between the obtained models when the PCA model for MNOVA-automatic was excluded.



Foods 2024, 13, 1222 6 of 11Foods 2024, 13, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 1. Expanded region of the SPME GC-MS chromatogram of the Ouachita cultivar sample with 
the results of the MestReNova, SpectConect (with AMDIS preprocessing), and XCMS software. A: 
p-Cymene, B: 2-Ethyl-1-hexanol, and C: Limonene. 

For the Ouachita cultivar sample, an example of the expanded region of the SPME 
GC-MS chromatogram displays the output data for every tested software solution. Auto-
matic integration without manual correction and TIC checks resulted in the absence of 

Figure 1. Expanded region of the SPME GC-MS chromatogram of the Ouachita cultivar sample with
the results of the MestReNova, SpectConect (with AMDIS preprocessing), and XCMS software. A:
p-Cymene, B: 2-Ethyl-1-hexanol, and C: Limonene.
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For the Ouachita cultivar sample, an example of the expanded region of the SPME GC-
MS chromatogram displays the output data for every tested software solution. Automatic
integration without manual correction and TIC checks resulted in the absence of component
C and its contribution to the peak of component B. In relation to that, the XCMS platform
recognized all three components and expressed their abundance through the base ion peak
of each. It can be seen from Figure 1 that, although there is a slight weighting of each of the
observed components, the XCMS platform does not recognize this and very directly sets
limits for each of them. At the end, the SpectConect platform, using AMDIS deconvolution,
separates the superimposed ion currents of the different compounds and gives the total
areas for each of them.

Although the parameters of the model and the number of variables as input elements
that are analyzed are important when deciding whether to opt for one, it is also necessary
to consider the variables that the model recognizes as significant for the separation of
certain data sets. Thus, in the mentioned models, a value of 1.3 or more was taken as an
elimination parameter for VIP-predictive, and those variables are given in Table 2. A
criterion for choosing the limit value for VIP-predictive was a number of variables that
were higher than that value in each of the models. A compromise was made between too
few and too many variables that were important for separation. Just by simple counting,
it is clear that the most significant variables for separation are present in the model
with the most input data. The three models based on the SpectConnect platform data,
on the other hand, are different in both the number and types of aroma components
that separate the two varieties (see Table 2). Nevertheless, the observed differences
are not so big. In the OPLS-DA models of the Loch Ness/Columbia star, only E-2-
hexenal appeared in the RA dataset as relevant for separation. Except hexanal, hexenal,
2-heptanone, octanal, nonanal, theaspirane B, and ethyl dodecanoate, in the analysis of
the Loch Ness/Von OPLS-DA model in VIP-pred, 1-hexanol and 2-heptanol were unique
in RA, and 2-heptanol, hexyl acetate, decanal, and 2,6,10-trimethylpentadecane were
unique IS datasets. The ethyl tiglate, myrcene, and heptanone were non-characteristic in
all the Loch Ness/Nachez models; ethyl-benzaote, α-muurolene, (E)-2-hexenal, (Z)-2-
hexen-1-ol, 1,3,8-p-mentatriene, girjunen-β, and (Z)-β-lonone were non-characteristic
in Loch Ness/Prime-Ark 45; and decanal, (Z)-calamene, and ethyl dodecanoate were
non-characteristic in the Loch Ness/Ouachita OPLS-DA models. As we mentioned,
the number of detected and processed variables has decreased, as has the number of
potential biomarkers, or, in this case, chemical constituents of aroma that can be defined
as characteristics of certain varieties. Even so, this had an effect on the total number of
variables with a VIP-pred. score greater than 1.3; however, less than half of them were
also called on other platforms.

Aligning the peaks in MestReNova only by retention times without the possibility
of checking the coincidence of their mass spectra leads to the absence of some of the
components recognized as deserving of stretching by online platforms while detecting even
the smallest peaks increases the probability of finding additional distinguishing markers.
All this resulted in the appearance of new variables that were not recognized on any other
platform/model.

Regardless of all the challenges presented, common factors can be found in the pre-
sented results, which can be unequivocally reliable data that have weight for conclusions.
The only question is for what purpose the research is being carried out in order to choose
the appropriate approach when designing while keeping in mind all the mentioned facts.
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Table 2. The selected variables (compounds) with VIP-predictive value greater than 1.3. obtained on
different platforms.

Platforms Loch Ness/Columbia
Star Loch Ness/Von Loch Ness/Prime-Ark

45 Loch Ness/Nachez Loch Ness/Ouachita

XCMS

Camphene Ethyl butanoate Ethyl butanoate Camphene Ethyl butanoate
Benzaldehyde 2-Heptanone (E)-2-Hexenal Limonene (E)-2-Hexenal
Limonene Limonene 1-Hexanol Nonanal 2-Heptanone
Acetophenone Nonanal 2-Heptanone α-Cubebene β-pinene
Terpinolene Theaspirane A Camphene Sibirene Limonene
Linalol Theaspirane B (E)-2-Heptenal (Z)-Calamenene Nonanal

Nonanal (Z)-Calamenene
(E)-(3,3-Dimethyl-
cyclohexyl-
idene)acetaldehyde

α-Calacorene (Z)-Carveol

Camphor Ethyl dodecanoate Acetophenone Theaspirane A
1-Nonanol Camphor Theaspirane B
Citronellol 1-Nonanol α-Cubebene
Carvone p-Cymen-8-ol Sibirene
Carvacrol Carvone (Z)-Calamenene

Theaspirane A Ethyl dodecanoate
Theaspirane B
2,2,4,4,6,8,8-
Heptamethylnonane
(Z)-β-Ionone

SpectConnect—relative
abundance

(E)-2-Hexenal (E)-2-Hexenal Hexenal 2-Heptanone Pentanal
1-Heptanol 1-Hexanol 1-Hexanol 2-Heptanol Hexanal
Octanal 2-Heptanone 1-Heptanol Ethyl tiglate (E)-2-Hexenal
δ-Carene 2-Heptanol Camphor Myrcene 1-Hexanol
Limonene Octanal Methyl benzoate Nonanal 2-Heptanone
Acetophenone Nonanal Ethylbenzoate (Z)-Carveol (E)-2-Heptenal
Linalol Theaspirane B (Z)-Carveol α-Copaene 1-Heptanol
Nonanal Ethyl dodecanoate Carvone Ethyl decanoate Octanal
Camphor Theaspirane B (Z)-Calamenene Nonanal
Methyl salicylate β-Gurjunene (Z)-Carveol
Carvone (Z)-β-Ionone Theaspirane B
(Z)-β-Ionone α-Muurolene (Z)-Calamenene

Ethyl dodecanoate

SpectConnect—
integrated signal

Hexanal Hexanal Hexanal Heptanone Hexanal
1-Heptanol (E)-2-Hexenal (E)-2-Hexenal 2-Heptanol (E)-2-Hexenal
Octanal 2-Heptanone (Z)-2-Hexen-1-ol Nonanal 1-Hexanol
δ-Carene 2-Heptanol 1-Hexanol (Z)-Carveol 2-Heptanone
Limonene Octanal 1-Heptanol α-Copaene (E)-2-Heptenal
Acetophenone Hexyl acetate Methyl benzoate Ethyl dodecanoate 1-Heptanol
Linalol Nonanal 1,3,8-p-Menthatriene (Z)-Calamenene Octanal
Nonanal Decanal Camphor Nonanal
Camphor Theaspirane B (Z)-Carveol Decanal

Methyl salicylate 2,6,10-
Trimethylpentadecane Carvone (Z)-Carveol

Carvone Theaspirane B Theaspirane B
(Z)-β-Ionone β-Gurjunene Ethyl dodecanoate

(Z)-β-Ionone

SpectConnect—base
peak

Hexanal Hexanal Hexanal 2-Heptanone Pentanal
1-Heptanol Hexenal (E)-2-Hexenal Nonanal Hexanal
Octanal 2-Heptanone (Z)-2-Hexen-1-ol (Z)-Carveol (E)-2-Hexenal
δ-Carene Octanal 1-Hexanol α-Copaene 1-Hexanol
Limonene Nonanal 1-Heptanol Ethyl dodecanoate 2-Heptanone
Acetophenone Theaspirane B Methyl benzoate (Z)-Calamenene (E)-2-Heptenal
Linalol Ethyl dodecanoate 1,3,8-p-Menthatriene 1-Heptanol
Nonanal Camphor Octanal
Camphor (Z)-Carveol Nonanal
Methyl salicylate Carvone (Z)-Carveol
Carvone Theaspirane B Theaspirane B
(Z)-β-Ionone β-Gurjunene (Z)-Calamenene

(Z)-β-Ionone Ethyl dodecanoate

MNOVA-automatic

2-Heptanone (E)-2-Hexenal Ethyl (E)-2-butenoate 2-Heptanone Ethyl (E)-2-butenoate
2-Heptanol Hexyl acetate (E)-2-Hexenal 2-Heptanol (E)-2-Hexenal
(E)-2-Heptenal Linalol Hexyl acetate Camphene 1-Hexanol
Octanal (Z)-3-Nonen-1-ol (E)-2-Nonenal Myrcene (E)-2-Heptenal
Hexyl acetate Decanal Borneol Hexyl acetate β-pinene
2-Ethyl-1-Hexanol α-Muurolene 1-Nonanol γ-Terpinene Hexyl acetate
γ-Terpinene
Ethyl 2-hydroxy-4-
methylpentanoate 4-Phenyldodecane Methyl salicylate Myrtenol Linalol

Linalol Carvone α-Copaene Myrtenol
(E)-2-Nonenal Theaspirane A (Z)-Calamenene Decanal
1-Nonanol Theaspirane B
Decanal
Carvone
(E)-Caryophyllene
(Z)-β-Ionone
Heptadecane
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Table 2. Cont.

Platforms Loch Ness/Columbia
Star Loch Ness/Von Loch Ness/Prime-Ark

45 Loch Ness/Nachez Loch Ness/Ouachita

MNOVA
manual corrected

2-Heptanone (E)-2-Hexenal (E)-2-Hexenal 2-Heptanone Ethyl butanoate

Camphene 2-Heptanone Ethyl
4-methylpentanoate Ethyl tiglate (E)-2-Hexenal

Ethyl 2-hydroxy-4-
methylpentanoate Nonanal 1-Heptanol Camphene 2-Heptanone

Linalol Decanal Hexyl acetate Myrcene 2-Heptanol

Nonanal Nonanoic acid 3-Ethyl-4-methyl-1-
pentanol Hexyl acetate (E)-2-Heptenal

1-Nonanol Theaspirane A Methyl benzoate Nonanal β-pinene
α-Terpineol Theaspirane B Camphor Methyl chavicol Hexanoic acid
Decanal α-Copaene Borneol Verbenone Hexyl acetate

Verbenone 2,6,10-
Trimethyltridecane 1-Nonanol α-Cubebene Decanal

Citronellol Alloaromadendrene Citronellol γ-Nonalactone Citronellol
Geraniol γ-Himachalene Carvone α-Ylangene Theaspirane A
Dehydro-ar-ionene Ethyl dodecanoate Theaspirane A α-Copaene Theaspirane B
(E)-Caryophyllene Theaspirane B Ethyl decanoate γ-Nonalactone
α-Ionone α-Ylangene Sibirene α-Copaene
1-Dodecanol α-Copaene γ-Himachalene β-Gurjunene

(Z)-β-Ionone (E)-Caryophyllene (Z)-Calamenene 2,6,10-
Trimethyltridecane

β-Gurjunene (Z)-Calamenene
2,6,10-
Trimethyltridecane Ethyl dodecanoate

(Z)-β-Ionone
10,11-epoxy-
Calamenene

4. Conclusions

Regardless of how data were extracted from HS-SPME/GC-MS chromatograms, one
must be aware of the limitations of each of the software solutions and present the results
accordingly. Although MestReNova offers a relatively simple solution, a lot of manual work
is needed to correct irregularities, primarily as a result of overlapping peaks. The XCMS
online platform, originally designed for LC-MS data analysis, can also effectively analyze
GC-MS data. It should be noted that, for more intense peaks, a lot of m/z values in the table
are obtained, which need to be reduced according to the mass spectrum of the investigated
compound. However, due to the algorithm’s nature, fewer represented components are
excluded from the matrix and labeled as noise. The SpectConect platform has difficulties
processing a large amount of data due to the limitations of the hardware on which it is
installed, but, with the application of NIST software, it represents an excellent solution for
the metabolomic analyses and identification of individual components in such studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods13081222/s1, Table S1: The HS-SPME/GC-MS aroma analyses
of six blackberry varieties.
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41. Ivanović, S.; Simić, K.; Tešević, V.; Vujisić, L.; Ljekočević, M.; God̄evac, D. GC-FID-MS Based Metabolomics to Access Plum
Brandy Quality. Molecules 2021, 26, 1391. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.lwt.2023.114853
https://doi.org/10.1016/j.foodchem.2024.138778
https://www.ncbi.nlm.nih.gov/pubmed/38394909
https://doi.org/10.1016/j.foodchem.2019.125169
https://raintreenursery.com/products/columbia-star-thornless-blackberry-4-inch-pot
https://raintreenursery.com/products/columbia-star-thornless-blackberry-4-inch-pot
https://raintreenursery.com/products/loch-ness-thornless-blackberry-2yr-bareroot
https://raintreenursery.com/products/loch-ness-thornless-blackberry-2yr-bareroot
https://www.starkbros.com/products/berry-plants/blackberry-plants/natchez-thornless-blackberry
https://www.starkbros.com/products/berry-plants/blackberry-plants/natchez-thornless-blackberry
https://www.starkbros.com/products/berry-plants/blackberry-plants/ouachita-thornless-blackberry
https://www.starkbros.com/products/berry-plants/blackberry-plants/ouachita-thornless-blackberry
https://www.starkbros.com/products/berry-plants/blackberry-plants/prime-ark-45-primocane-blackberry
https://www.starkbros.com/products/berry-plants/blackberry-plants/prime-ark-45-primocane-blackberry
https://www.isons.com/shop/berry-plants/blackberry/von-blackberry-plant/
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
http://spectconnect.mit.edu/index.php
https://doi.org/10.1016/j.jprot.2019.103620
https://doi.org/10.1021/ac051437y
https://www.ncbi.nlm.nih.gov/pubmed/16448051
https://doi.org/10.3390/molecules26051391
https://www.ncbi.nlm.nih.gov/pubmed/33807505

	Introduction 
	Materials and Methods 
	Sample Collection and Preparation 
	GC-MS Analysis 
	Data Processing 

	Results and Discussion 
	Conclusions 
	References

