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Abstract: A reliable strategy for improving the stability and shelf life of protein-stabilized systems
is by covalently attaching the protein onto a polysaccharide. In this study, ovalbumin (OVA) was
modified with dextran (DEX) of different molecular weights by the Maillard reaction, and was
used to enhance the stability of emulsions loaded with resveratrol. The surface hydrophobicity,
thermal stability, and FT-IR spectroscopy of the OVA–DEX conjugates were evaluated. The results
showed that the surface hydrophobicity of OVA decreased, while the thermal stability of OVA
was significantly improved after DEX covalent modification. The OVA–DEX1k-stabilized emulsion
exhibited high encapsulation efficiency of resveratrol, with the value of 89.0%. In addition, OVA–DEX
was considerably more effective in droplet stabilization against different environmental stresses
(heat, pH, and ionic strength). After 28 days of storage at 25 ◦C, the OVA-stabilized emulsion
showed faster decomposition of resveratrol, whereas the OVA–DEX-conjugate-stabilized emulsion
had approximately 73% retention of resveratrol. Moreover, the antioxidant activity of resveratrol-
loaded emulsions stabilized by OVA–DEX was higher during storage under different temperatures.
These results proved that the OVA–DEX conjugates had the potential to form stable, food-grade
emulsion-based delivery systems against environmental stresses, which strongly supports their
potential in the field of food and biomedical applications.

Keywords: antioxidant; emulsion; ovalbumin–dextran conjugate; resveratrol; stability

1. Introduction

Resveratrol, a hydrophobic non-flavonoid polyphenolic compound, is widely present
in berries, nuts, and tubers [1]. Resveratrol has gained significant attention in recent years
due to its potential health benefits, including antioxidant, anti-inflammatory, anti-tumor,
cardioprotective, and neuroprotective activities [2,3]. Despite its numerous advantages,
resveratrol faces certain limitations that hinder its applicability in the food and pharma-
ceutical industries [4]. One major obstacle is its poor solubility in water, which makes it
difficult to dissolve in aqueous formulations. Additionally, resveratrol has low stability and
can readily degrade when exposed to acidic conditions or thermal treatment, diminishing
its effectiveness over time [4]. Hence, a suitable vehicle should be performed to enhance
the solubility and stability of resveratrol for the purpose of ultimately maximizing its
beneficial effects.

Emulsion is generally known for their ability to enhance the water solubility, stability,
and bioavailability of liposoluble bioactive compounds [5,6]. In emulsions, proteins are
commonly employed as emulsifiers [7]. The hydrophobic regions of protein molecules can
adsorb onto the surface of hydrophobic substances, aiding in their dispersion in water. How-
ever, proteins are susceptible to thermal treatment, changes in pH and ionic strength, and
may even undergo denaturation and aggregation, leading to phase separation in protein-
stabilized systems [6–8]. To improve the stability of emulsions, protein–polysaccharide
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conjugation is utilized. The protein component of protein–polysaccharides conjugates ad-
sorbs onto the surface of oil droplets, stabilizing the oil–water interface and preventing the
further coalescence of the oil droplets. On the other hand, the polysaccharide component of
the copolymer not only possesses water solubility but also creates a strong steric hindrance
effect to prevent oil droplet aggregation [9,10]. Thus, protein–polysaccharide conjugates
exhibit enhanced stability against heat and changes in pH and ionic strength, and they are
commonly used for encapsulating hydrophobic active substances such as curcumin [11],
lutein [10], and β-carotene [12]. For example, Xu et al. successfully stabilized β-carotene
using a whey protein isolate–beet pectin conjugate, which not only improved the physical
stability of the emulsion but also delayed the degradation of β-carotene [12].

Ovalbumin (OVA), a glycosylated globulin derived from chicken egg white [13],
possesses excellent functional properties such as emulsification, thickening, gelling, and
foaming [14]. It serves as a suitable carrier for bioactive substances, significantly enhancing
water solubility and stability of curcumin under light condition [15]. However, OVA has
poor thermal stability and may precipitate near its isoelectric point [16]. Glycosylation
modification of OVA through the Maillard reaction could effectively improve its processing
characteristics, including thermal and pH stability [14,17]. Dextran (DEX) is a reducible
polysaccharide that can covalently bind to proteins, enhancing their functional properties
such as emulsification and gelling [18,19]. Dextran presents with a variety of molecular
weights ranging from 1 to 440 MDa [20], among which dextrans with 1 kDa, 10 kDa, and
70 kDa molecular weights are widely used in the food and pharmaceutical industry due to
their satisfactory safety [21], benefits in nutraceuticals encapsulation [20,22,23], and poten-
tial effects for health [24,25]. For example, a protamine and BSA–dextran complex emulsion
was prepared to improve the oral bioavailability and anti-tumor efficacy of paclitaxel [22].
Fan et al. also demonstrated that β-carotene-loaded nano-emulsions, stabilized with whey
protein–dextran conjugates, led to the enhanced in vitro bioaccessibility of β-carotene in the
gastrointestinal tract [26]. Although these results suggested that protein–dextran conjugates
were suitable for encapsulating liposoluble bioactive compounds, the stability of emul-
sions against external environmental stresses (such as high temperature, freeze–thawing,
different pH condition, and high ionic strength) still need further investigation for their
applications in the food processing and handling industry.

The focus of the current work was the utilization of protein–polysaccharide Mail-
lard conjugates (OVA–DEX conjugates) as emulsifiers to modulate the physicochemical
stability, especially under external environmental stresses, and antioxidant capacity of
resveratrol-loaded emulsions in vitro. In this study, the structure of OVA–DEX conjugates
was characterized by sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) and Fourier-transform infrared (FT-IR) spectroscopy. The effect of OVA–DEX on the
stability and antioxidant activity of resveratrol-loaded emulsion was further investigated
by particle size, droplet size, polydispersity index (PDI), turbidity value, and resvera-
trol residual content. This study presented detailed information that using OVA–DEX
conjugates as emulsifiers led to notable improvements in the resistance of emulsions to
specific environmental factors, making them ideal for applications in the pharmaceutical
and food industries.

2. Materials and Methods
2.1. Materials

Ovalbumin (OVA, ≥90%), dextran (DEX, ≥95%, 1–70 kDa), resveratrol (≥98%),
medium chain triglyceride (MCT), and potassium ferricyanide were purchased from Shang-
hai Yuan Ye Biotech Co., Ltd. (Shanghai, China). ABTS (2,2′-azinobis (3-ethylbenzothiazoline-
6-sulfonic acid) ammonium salt) and potassium persulfate were obtained from Aladdin
Reagent Co., Ltd. (Shanghai, China). O-Phthalaldehyde (OPA) was purchased from Mack-
lin (Shanghai, China). All other reagents used were of analytical grade.
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2.2. Preparation and Characterization of OVA–DEX Conjugate
2.2.1. Preparation of OVA–DEX Conjugate

The OVA–DEX conjugate was prepared according to the published method with slight
modification [27,28]. Briefly, OVA was dissolved in ultrapure water and stirred magnet-
ically for 3 h at room temperature. It was stored overnight at 4 ◦C and then centrifuged
at 6000 rpm for 10 min at 4 ◦C to remove any insoluble material. Quantitation of OVA
in the solution was determined using UV absorbance at 280 nm (NanoPhotometer-N50,
IMPLEN, Germany) [29]. The concentration of OVA in the supernatant was adjusted to
10 mg/mL. DEX (the molecular weight is 1, 10, and 70 kDa, respectively) and OVA were
dissolved in ultrapure water at a ratio of 1:1 (w/w) and stirred at room temperature for
3 h to achieve a concentration of 10 mg/mL of OVA. According to the method reported
previously [26,30–32], the mixture was freeze-dried and incubated at 60 ◦C and 79% rel-
ative humidity (in a desiccator with a saturated KBr solution) for 24 h, 48 h, and 72 h,
respectively. The incubated samples were dialyzed against deionized water at 4 ◦C [33,34],
and then freeze-dried to obtain OVA–DEX conjugates (the conjugates were given the names
OVA–DEX1k, OVA–DEX10k, and OVA–DEX70k).

2.2.2. SDS-PAGE

SDS-PAGE was used to confirm the formation of OVA–DEX conjugates based on
differences in their molecular weight according to the method reported previously [26].
Briefly, sample solutions with the protein concentration of 2 mg/mL were mixed with
4×SDS loading buffer and heated in boiling water for 10 min. The samples were cooled
to room temperature and loaded onto SDS gels previously prepared on a SE-260 system
(Hoefer, San Francisco, CA, USA). A voltage of 80 V was applied to the gels for 20 min and
then increased to 120 V until the end. The gels were stained with Coomassie brilliant blue
R250 for 1 h and scanned for photos after destaining.

2.2.3. Grafting Degree (GD)

The GD was estimated by measuring the free amino groups using OPA assay, according
to a published method with slight modification [26]. In brief, 80 mg OPA was dissolved in
2 mL of methanol and mixed with 50 mL of borate buffer (100 mM). Subsequently, 5 mL
of SDS (20%, w/v) and 200 µL of 2-mercaptoethanol were added into the above solution
and then diluted to 100 mL with distilled water. Then, 200 µL of the sample (5 mg/mL
protein) was mixed with 4 mL OPA reagents and kept at room temperature for 2 min. The
absorbance at 340 nm was measured with the Infinite M200 Pro microplate reader (Tecan,
Switzerland). The GD was calculated using Equation (1):

GD (%) =
A0 − A1

A0
×100 (1)

where A0 is the absorbance of OVA and A1 is the absorbance of the OVA–DEX conjugates.

2.2.4. Fourier Transforms Infrared (FT-IR) Spectroscopy

The FT-IR spectra of OVA and OVA–DEX conjugates were carried out using an infrared
spectrometer equipped with a DTGS detector and single reflection diamond ATR accessory
(Bruker, Germany) [35]. For each spectrum, the samples were recorded at a resolution of
4 cm−1 from 600 to 4000 cm−1.

2.2.5. Surface Hydrophobicity (H0)

The H0 of OVA and OVA–DEX conjugates was measured with 1-aniline naphthalene-
8-sulfonate (ANS) as a fluorescence probe [36]. Briefly, the samples were diluted with
phosphate-buffered solution (10.0 mM, pH 7.4) to a concentration of 0.01–0.05 mg/mL.
Subsequently, 20 µL of ANS (8.0 mM) was added to 4 mL of the sample solution and
reacted at room temperature for 2 min. The fluorescence intensity was recorded by an
FL-970 fluorescence spectrophotometer (Techcomp, Shanghai, China) at the excitation
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wavelength of 370 nm, emission wavelength range of 400–600 nm, and a scanning speed
of 600 nm/min. H0 was expressed as the slope of the linear regression of the fluorescence
intensity against protein concentration.

2.2.6. Heat Stability and Thermal Analysis

The thermal transition temperature was determined using the TG-DTA8122 thermo-
gravimetric analyzer (Rigaku, Tokyo, Japan), following a method previously reported [37].
To elucidate, the samples were placed into an aluminum pan and heated gradually from
30 to 210 ◦C at a speed of 5 ◦C/min. A sealed empty aluminum pan was employed as
the reference.

The heat stability analysis was conducted according to the published method with
slight modification [34,38]. In brief, the powders of OVA and OVA–DEX conjugate were
diluted with deionized water to the concentration of 2 mg/mL, respectively. The solutions
were separately heated in a water bath at 50, 60, 70, 80, 90, and 100 ◦C for 10 min, and
then cooled down to room temperature. Subsequently, aggregates were precipitated by
centrifuging at a speed of 10,000 rpm for 10 min. The absorbance at 280 nm was measured
to estimate the concentration of soluble protein in the supernatant. The heat stability of
each sample was calculated using Equation (2):

Heat stability (%) =
C1

C0
×100 (2)

where C0 is the initial concentration of OVA and C1 indicates the concentration of OVA in
the supernatant.

2.3. Fabrication and Characterization of Emulsion
2.3.1. Emulsion Fabrication

The resveratrol-loaded emulsions were prepared following the method presented by
Wang et al. [11]. In brief, resveratrol was added into a mixed-oil solvent of 90% MCT and
10% ethanol (v/v) with resveratrol concentration of 5 mg/mL, and the oil solution was
stirred in the dark for 1 h until the resveratrol was completely dissolved. Subsequently,
the oil solution was added into the conjugate aqueous solution (10 mg/mL protein con-
centration) with 5% oil volume fraction. The mixture was pre-emulsified by stirring at
10,000 rpm/min for 2 min, and then emulsified using the AH100B high-pressure homog-
enizer (ATS Engineering Inc., Brampton, ON, Canada) at 600 bar for 7 cycles at 4 ◦C to
obtain fine emulsions.

2.3.2. Encapsulation Efficiency (EE)

For the investigation of the EE, the emulsion was mixed with 75% ethanol in a 19:1
(v/v) ratio to fully dissolve the resveratrol. The absorbance at 306 nm was measured, and a
standard curve was created using the same measurement procedure. The EE was calculated
by Equation (3):

EE (%) =
C3

C2
×100 (3)

where C3 is the amount of encapsulated resveratrol and C2 is the initial amount of resveratrol.

2.3.3. Droplet Size and Polydispersity Index (PDI)

The freshly prepared emulsions were diluted with deionized water by 400 times
to avoid multiple scattering effects before measurement. The droplet size and PDI of
emulsions were measured on were assessed by nanoparticle tracking analysis using a
Nanosight NS300 system (Malvern, UK) at 25 ◦C. Three replicate samples per emulsion
were evaluated, and each sample was analyzed five times with the instrument to determine
mean particle size.
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2.3.4. Turbidity

The turbidity was determined at 600 nm using a spectrophotometer according to the
method described by Zhu et al. [39]. The emulsions were diluted with the ultrapure water
and the results were expressed as Equation (4):

T = 1.302 × AV
I

(4)

where A is the absorbance of the diluted emulsions at 600 nm, V is the dilution factor, and I
is the optical path (0.01 m).

2.3.5. Rheological Properties

The rheological properties of the samples were determined following the method
presented by Mirarab et al. [40–42]. The rheological properties of the emulsions were
determined using a MCR 301 rheometer (Anton Paar, Graz, Austria). The measuring
system was equipped with a 50 mm diameter parallel plate geometry and the gap between
plates was 1 mm. A measure of 1 mL of the emulsion was placed onto the test disk,
and a thin layer of silicone oil was placed on the periphery surface of the solution held
between the plates to prevent the moisture loss of the samples during the measurement. To
determine the linear viscoelastic region (LVR), the strain sweep test was elevated over a
strain range of 0.01–100% at a fixed frequency of 1 Hz. Dynamic oscillatory measurements
of storage modulus (G′) and loss modulus (G′′) were performed from 0.1 to 10 Hz at a fixed
strain of 1% within the LVR.

2.4. Storage Stability

The freshly prepared emulsions were placed in 50 mL tubes and stored at 25 ◦C for up
to 28 days. For the indicated time points, the emulsion was mixed with 75% ethanol in a 19:1
(v/v) ratio to fully dissolve the resveratrol. The absorbance at 306 nm was measured, and a
standard curve was created using the same measurement procedure. The chemical stability
of resveratrol in each sample was expressed as the resveratrol retention and calculated
using Equation (5), as follows:

Resveratrol retention (%) =
C4

C3
× 100 (5)

where C3 is the amount of resveratrol in freshly prepared samples and C4 is the amount of
resveratrol in samples after storage for the indicated time points.

2.5. Physicochemical Stability
2.5.1. Effect of Thermal Treatment

The freshly prepared resveratrol emulsions were subjected to a water bath at 50 ◦C
or 90 ◦C for 10 min and then cooled down immediately to room temperature. For the
freeze–thaw treatment, the resveratrol emulsions were placed in bottles, frozen, and stored
at −18 ◦C for 2 days. Then, the emulsions were thawed at 25 ◦C for 12 h. The treated
emulsions were stored for particle sizes and PDI measurements.

2.5.2. Effect of pH

The newly produced resveratrol emulsions were diluted to the optimal concentration
using the PBS buffer solution (137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic,
and 1.8 mM potassium phosphate monobasic, pH 7.4). Then, the pH of the emulsions
was adjusted to 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0 using 0.1 mol/L HCl or 0.1 mol/L NaOH
solutions, separately. Subsequently, the emulsions were transferred to the test tubes and
stored at ambient temperature for 5 h for droplet size, PDI, and turbidity value assays.



Foods 2024, 13, 1246 6 of 19

2.5.3. Effect of Ionic Strength

The resveratrol emulsions were freshly prepared and transferred to glass test tubes.
Then, NaCl solutions with concentrations ranging from 1 to 5 mol/L were added to each
test tube; subsequently, the above samples were stored at room temperature for droplet
size, PDI, and turbidity value measurements.

2.6. Antioxidant Activity Test
2.6.1. ABTS Radical Scavenging

The antioxidant activity of emulsion was determined using the ABTS radical scav-
enging assay as described by Kevij et al., with slight modifications [41]. Briefly, a 7.0 mM
ABTS cation radical solution was dissolved in water and allowed to react with a 2.45 mM
potassium persulfate solution in a dark room for 16 h. Afterward, the ABTS solution was
diluted with water to reach an initial absorbance of 0.7 ± 0.02 at 734 nm. Then, 0.2 mL of
the supernatant of each sample was then mixed with 3.0 mL of ABTS working solution.
The absorbance was measured at 734 nm, and the scavenging activity was calculated using
Equation (6):

ABTS scavenging activity (%) =
A2 − (A4 − A 3)

A2
× 100 (6)

where A2 is the absorbance of ABTS solution diluted with water, A3 is the absorbance of
samples, and A4 is the absorbance of the mixture of sample and ABTS solution.

2.6.2. Reducing Power Assay

The ability of emulsions to reduce Fe3+ was evaluated following the method of Kevij
et al. [41]. Briefly, 0.5 mL of the emulsion sample was mixed with 1.25 mL phosphate
buffer (0.2 M, pH 6.6) and 1.25 mL of potassium ferricyanide (10 g/L). After incubation in
a water bath for 20 min at 50 ◦C, 1.25 mL of trichloroacetic acid 10% (w/v) was added to
the mixture. Immediately after shaking, the mixture was centrifuged at 1500× g for 10 min
and 1.25 mL of the upper layer of each sample was mixed with 1.25 mL of distilled water
and 0.25 mL of 0.1% (w/v) FeCl3. After 10 min of incubation at room temperature, the
absorbance of the sample solutions was measured at 700 nm. High absorbance indicated
high reducing power.

2.6.3. DPPH Scavenging Capacity

The DPPH scavenging capacity of emulsions was measured according to the method
reported in [43], with slight modifications. Briefly, 1 mL of emulsion was added to 2 mL
of DPPH solution and immediately stirred. After being stored at room temperature for 30
min in the dark, the absorbance value at 517 nm was measured using a spectrophotometer.
The DPPH radical scavenging activity (%) was calculated using Equation (7):

ABTS scavenging activity (%) =
A5 − (A7 − A 6)

A5
× 100 (7)

where A5 is the absorbance of DPPH solution diluted with water, A6 is the absorbance of
samples, and A7 is the absorbance of the mixture of sample and DPPH solution.

2.7. Statistical Analysis

All samples were conducted at least three times, and the results are given as
mean ± standard deviations (SD). Statistical comparisons were determined using the
SPSS 20.0 package (IBM, Armonk, NY, USA). Significant between-group differences were
determined using one-way analysis of variance and Tukey’s post hoc test. A p value < 0.05
was considered to be statistically significant.
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3. Results and Discussion
3.1. Preparation and Characterization of OVA–DEX Conjugate
3.1.1. SDS-PAGE and Grafting Degree Analysis

The SDS-PAGE electrophoresis analysis was crucial in determining the occurrence of
covalent binding and evaluating the molecular weight of the conjugates after grafting [44].
After the grafting reaction of DEX and OVA, SDS-PAGE electrophoresis was performed
on the conjugates. The results were shown in Figure 1A: lane 1 served as the standard
protein marker and lane 2 represented the OVA protein. It was observed that the OVA–DEX
conjugates presented a higher molecular weight than that of OVA, and the molecular weight
of the copolymer increased with prolonged reaction time, especially in the OVA–DEX1k
and OVA–DEX10k conjugates. The grafting degree analysis further confirmed that DEX
with a molecular weight of 1 kDa presented the highest degree of grafting with OVA at
the same reaction time, indicating a greater extent of DEX undergoing covalent binding
with OVA (Figure 1B). Consistently with the studies conducted by Kim et al. [45] and Yan
et al. [35], the results of SDS-PAGE and grafting degree analysis confirmed that there was
indeed covalent binding between OVA and DEX through the grafting reaction.
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3.1.2. FT-IR Analysis

FT-IR spectroscopy is widely used to study the functional groups and chemical bonds
in molecules, as well as the composition of the secondary structure of proteins [44]. In the
range of 3300 to 3200 cm−1, free hydroxyl had stretching vibration absorption [17]. As
shown in Figure 2, the conjugates exhibited a peak broadening and a band shift towards
higher wavenumbers compared to OVA at wavenumbers of 3300–3200 cm−1. This could be
attributed to the formation of covalent bonds between the protein and the polysaccharide,
which increased the hydroxyl content in the conjugates [17]. The characteristics of the
absorption band of the Amide I (1700–1600 cm−1) and Amide II (1600–1500 cm−1) were
associated with the C=O stretching vibration, the C-N stretching, and the N-H bending of
proteins, respectively [46,47]. The absorption band observed at the range of 1200–1000 cm−1

corresponded to the stretching vibration of the polarity C-O bond [17]. The characteristic
absorption within the range of 1200–1000 cm−1 was enhanced with different degrees in
the OVA–DEX conjugates compared to pure OVA, confirming the successful access of DEX
molecules to the protein molecules through covalent bonding in the conjugates [17]. Fourier
self-deconvolution and Gaussian function were then utilized to analyze the secondary
structure of amide I band (Figure S1). The results showed that the secondary structure of
the conjugates presented an increase in α-helices and random coil compared with OVA
(Table S1), which was consistent with the previous results of Yan et al. [35].
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Figure 2. Fourier transform infrared spectra analysis. (A) FTIR spectra of native OVA, DEX1k,
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3.1.3. Surface Hydrophobicity

The surface hydrophobicity has an important impact on the surface properties of
proteins. For OVA, over half of the 385 amino acid residues are hydrophobic, and these
residues are hidden inside the protein. When the hydrophobic groups were exposed to
a polar environment or the structure of protein unfolds, the surface hydrophobicity of
the protein would change [48]. As shown in Figure 3, compared with OVA, the surface
hydrophobicity of OVA–DEX with different molecular weights gradually decreased with
the prolonged reaction time of the Maillard reaction. This could be attributed to the fact
that the highly branched DEX brings in more hydrophilic hydroxyl groups, which further
increased the hydrophilicity of the OVA and reduced the surface hydrophobicity. The
results showed that, after 72 h of the Maillard reaction, the surface hydrophobicity of
the conjugates was significantly reduced compared to OVA (p < 0.05), since DEX made it
more difficult for the ANS probe to bind to the hydrophobic regions inside the OVA. In
addition, as a result of heating, the OVA protein unfolded and the hydrophobic structure
exposed, which further reduced the surface hydrophobicity of the OVA protein after
reacting with DEX.
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3.1.4. Heat Stability and Thermal Analysis

As previously reported, OVA might form aggregates and even a gel when subjected
to high temperatures due to the heat-denaturation-coupled aggregation of OVA [34,49,50].
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Thus, studying the heat stability of OVA and OVA–DEX conjugates is important in evaluat-
ing their ability to maintain the thermal stability of the emulsion. As shown in Figure 4A,
when the temperature was below 70 ◦C, fewer proteins were precipitated from the system,
indicating that OVA and OVA–DEX could maintain the stability of the system. However, as
the temperature exceeded 70 ◦C, the stability of OVA decreased, which is in agreement with
the results of a previous report [50]. The OVA–DEX conjugates were soluble after heating
the solution at 100 ◦C for 10 min, whereas most of the intact OVA was precipitated at 90 ◦C.
Consistently with previous research [34], the results revealed that the DEX modification
of OVA might be effective in improving the heat stability of the protein. Furthermore,
the DSC analysis was used to determine the thermal properties of OVA and OVA–DEX
conjugates. As shown in Figure 4B, OVA exhibited a peak transition at 97.9 ◦C, which was
in line with the previous research [17,51]. The peak transition temperature (Tp) of OVA–
DEX conjugates was 105.9, 108.9, and 109.5 ◦C for the OVA–DEX1k, OVA–DEX10k, and
OVA–DEX70k conjugates, respectively; this means that the thermal stability of OVA was
improved by glycosylation modification. The previous research conducted by Geng et al.
discovered similar findings, specifically indicating that conjugation with carboxymethyl
cellulose increased the denaturation temperature of OVA [17]. Overall, the heat stability
and thermal analysis revealed that covalent grafting of DEX could enhance the heat stability
and increase the denaturation temperature of the OVA protein.
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3.2. Fabrication and Characterization of Emulsion
3.2.1. Encapsulation Efficiency

Encapsulation efficiency is a crucial parameter in determining the quality of emulsion.
The emulsions embedded with resveratrol were prepared using high-pressure homogeniza-
tion based on the scheme depicted in Figure 5A. The appearance photograph was presented
in Figure 5B and the EEs of emulsions stabilized with OVA, OVA–DEX1k, OVA–DEX10k,
and OVA–DEX70k conjugates were determined, as shown in Figure 5C. The results demon-
strated that the encapsulation efficiency of resveratrol in the OVA-stabilized emulsion was
only 77.3%, which was remarkably low compared with those of the emulsions prepared
with the OVA–DEX1k or OVA–DEX10k conjugates. Particularly, the emulsion stabilized
with OVA–DEX1k exhibited a much greater efficiency in encapsulating resveratrol, with an
EE value of 89.0%. These findings indicated that OVA–DEX conjugates were beneficial for
the encapsulation of resveratrol, and the conjugates with a higher degree of grafting had a
superior encapsulation effect on resveratrol.
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lation efficiency of resveratrol in the emulsions stabilized by OVA, OVA–DEX1k, OVA–DEX10k, and
OVA–DEX70k conjugates. Different letters have significant differences (p < 0.05).

3.2.2. Storage Stability

The freshly produced emulsions prepared by OVA, unreacted OVA and DEX, and the
OVA–DEX conjugates were uniform in appearance and had particle sizes of 301.8–343.3 nm
(Figures 6A,B and S2). After storage at 25 ◦C for 14 days, the average particle size of the
OVA-stabilized emulsion increased to 1291.7 nm and the emulsion exhibited a more pro-
nounced phase separation, indicating a tendency for particle aggregation into larger sizes
(Figure 6A,B). The emulsion prepared using unreacted OVA and DEX as emulsifier system
displayed an average particle size of 846.3 nm (Figure S2A,B). As for the emulsions made by
the OVA–DEX1k, OVA–DEX10k, and OVA–DEX70k conjugates, the droplet size increased
to 350.3 nm, 573.3 nm, and 638.7 nm, respectively, which were significantly lower than that
of the OVA-stabilized emulsion or the DEX-stabilized emulsion (Figure 6B). Consistently
with previous research, the results demonstrated that the storage stability of emulsions was
enhanced by addition of polysaccharides, and protein–polysaccharide-conjugate-stabilized
emulsions displayed even better stability during storage at 25 ◦C [52]. When stored at
25 ◦C for a duration of 28 days, the OVA–DEX-stabilized emulsions displayed a much
smaller droplet size compared to the OVA-stabilized emulsion. It is worth noting that
the emulsion created using the OVA–DEX1k conjugate exhibited the smallest average
particle size of 402.0 nm, even after being stored for 28 days. This improved storage sta-
bility could be attributed to the fact that the Maillard reaction that occurred between the
polysaccharides and the proteins increased the repulsion effect between the particles in the
emulsion, thereby forming a stable system that prevented the excessive coagulation of the
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particles [28]. Overall, these findings suggested that DEX effectively prevented particle
aggregation in the emulsion, and the OVA–DEX1k conjugate performed better in terms of
stability under room temperature.
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Next, we examined the effect of the OVA–DEX conjugates on the retention of resver-
atrol during long-term storage at room temperature. As shown in Figures 6C and S2C,
after storage at 25 ◦C for 7 days, the retention of resveratrol in the emulsions prepared
by OVA, unreacted OVA and DEX, OVA–DEX1k, OVA–DEX10k, and OVA–DEX70k was
72.1%, 76.0%, 87.7%, 84.3%, and 86.3%, respectively. The higher retention of resveratrol in
the OVA–DEX-stabilized emulsion was probably due to the fact that the dense network
formed by copolymer reduced the precipitation of oil solution that encapsulated resveratrol,
thereby preventing the oxidative degradation of resveratrol [26]. After 28 days of storage at
25 ◦C, the emulsion stabilized solely with OVA showed faster decomposition of resveratrol,
with only 50.8% retention of resveratrol remaining. In contrast, the use of OVA–DEX
conjugates as the emulsifiers resulted in the retention of approximately 73% for resveratrol
(Figure 6C). Considering the results of the average particle size of the emulsions, using
OVA–DEX conjugates as emulsifiers enhanced the stability of the emulsion and reduced the
degradation of resveratrol during storage at room temperatures, thereby ensuring better
long-term stability.

3.2.3. Physicochemical Stability
Effect of Thermal Treatment

The O/W emulsions are thermodynamically unstable systems and can easily be
disrupted by environmental factors [53]. In this study, the effects of different thermal
treatments at 50 ◦C, 90 ◦C, and freeze–thawing on the stability of emulsions were investi-
gated. As shown in Figure 7A, the particle sizes between the emulsions had diminutive
differences, whereas the PDI values of emulsions stabilized by the OVA–DEX conjugates
were notably lower than that of the OVA-stabilized emulsion. After thermal treatment at
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90 ◦C, the droplet size of the OVA-stabilized emulsion increased to 555.3 nm, while the
particle size of the OVA–DEX prepared emulsions remained below 300 nm (Figure 7B).
It is important to note that, even after the heating treatment at 90 ◦C, the PDI value of
the OVA–DEX1k emulsion remained around 0.2, suggesting that the stability of the OVA–
DEX1k emulsion was maintained (Figure 7B). Such a condition might be attributed to the
following factors: the grafted DEX created a barrier layer around the proteins, preventing
them from coming into direct contact and forming aggregates when exposed to thermal
treatment [54]. Moreover, the conjugated DEX might form a thick interface layer as the
protective coating on the surface of oil droplets, which weakened the sensitivity of the
proteins to high temperatures [55].
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The freeze–thaw treatment may cause high instability of the oil phase in the emulsion
system, leading to the phase separation of the emulsion. The addition of polysaccharides
in the emulsion might increase the adsorption of oil droplets, therefore reducing their
precipitation [56]. The results of freezing and thawing treatment of the emulsion revealed
that the particle size and PDI value of the OVA-stabilized emulsion were 433.7 nm and
0.39, respectively, which were markedly higher than those of the OVA–DEX-prepared
emulsions (Figure 7C). This indicated that the inclusion of the OVA–DEX conjugates in the
emulsion formulation enhanced the stability of the resveratrol emulsion under freeze–thaw
conditions. The above results demonstrated that the emulsions prepared by the OVA–DEX
conjugates exhibited better stability under various thermal conditions, including 50 ◦C and
90 ◦C heating treatments, as well as the freeze–thaw treatment.

Effect of pH

The stability of the emulsions under different pH environmental treatments becomes
crucial to for their application in food processing and in vivo digestive systems. As shown
in Figure 8A,B, within the pH range of 3–5, the average particle size and PDI of the
OVA-stabilized emulsion increased significantly. This suggested that OVA underwent
deformation or even aggregation at low pH levels, leading to noticeable phase separation
in the emulsion. Fortunately, the particle size of the emulsion prepared using OVA–DEX
conjugates as an emulsifier remained between 200 and 300 nm, and the PDI value was also
within the acceptable range of 0.2–0.4 (Figure 8A,B). In addition, considering the turbidity
(T) value, it was observed that, within the pH range of 3–5, the T value of the OVA emulsion
increased significantly, indicating a decrease in the overall emulsion stability (Figure 8C).
The isoelectric point of OVA was reported to be approximately 4.5–4.7; here, OVA was
electrically neutral and might lose its emulsifying capability, leading to droplets aggregation
or creaming [16,57,58]. As depicted in Figures 8D and S3, when the pH value was around
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the isoelectric point of OVA, the emulsion prepared with OVA and the unreacted OVA–
DEX mixture showed evident phase separation, while the emulsions prepared with the
OVA–DEX copolymers remained homogeneous and stable. The average particle size and
PDI of the emulsion prepared by the unreacted OVA and DEX were markedly decreased
compared with OVA-stabilized emulsion. As expected, the OVA–DEX conjugate-stabilized
emulsions exhibited even lower particle size and PDI. This could be due to the fact that
the addition of DEX to OVA-stabilized emulsions, either conjugated or unconjugated with
the proteins, improved the pH stability of emulsions [59–61]. Consistently with previous
reports, the above results indicated that the emulsions stabilized using the protein and
polysaccharide complexes prepared by Maillard reaction showed high tolerance when
the pH was close to the isoelectric point of 4.5–4.7 [26,52]. Within the pH range of 6–9,
although the particle size and PDI of the emulsion tended to stabilize, the T values of
the OVA–DEX copolymer emulsions were notably lower than that of the OVA-stabilized
emulsion, indicating that the stability of the OVA–DEX-stabilized emulsions was superior
to that of the OVA-stabilized emulsion. One possible explanation for this improvement
was that the hydrophilic polysaccharides present on the surface of the emulsion delivery
system played a crucial role in providing strong steric repulsion, thus preventing droplet
aggregation [62]. Therefore, using OVA–DEX conjugates as emulsifiers could enhance the
stability of emulsions specifically at low pH and improve their resistance to the destabilizing
effects caused by changes in pH value.
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Figure 8. Effects of different pH values on (A) particle size, (B) PDI, and (C) turbidity of emulsions
stabilized by OVA and OVA–DEX conjugates. (D) The representative image of emulsions at a pH
value of 5.

Effect of Ionic Strength

Na+ is commonly used as a food additive in the food processing and handling industry.
Therefore, it is important to understand the effects of different Na+ concentrations on the
stability of emulsions. Figure 9 showed that as the Na+ concentration increased, the average
particle size and PDI values of the resveratrol emulsion increased gradually. Among the
different emulsions, the emulsion embedded with OVA exhibited higher droplet size and
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PDI than the OVA–DEX-stabilized emulsion, indicating the weaker resistance of OVA-
stabilized emulsion to Na+. Specifically, when exposed to 5 mol/L Na+, the particle size of
the emulsion followed the following order: OVA > OVA–DEX70k > OVA–DEX10k > OVA–
DEX1k. The PDI value of the OVA-stabilized emulsion reached 0.83. However, the PDI
values of the OVA–DEX70k and OVA–DEX10k-stabilized emulsions fell between 0.25 and
0.50, and the PDI of OVA–DEX1k-stabilized emulsion remained within the narrower range
of 0.10 to 0.25. It was hypothesized that the higher degree of grafting DEX contributed to
increased ion resistance in the emulsion, which enhanced the stability of the emulsion in
high-Na+-concentration environments. In combination with the results of the droplet size
and PDI, it could be seen that OVA–DEX conjugates, especially the OVA–DEX1k conjugate,
maintain the better stability of the emulsion in high Na+ concentrations.
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3.2.4. Antioxidant Activity Test

The antioxidant properties of different samples were evaluated by the methods of
reducing power test, ABTS radical scavenging, and DPPH scavenging, and the results
are illustrated in Figure 10. For the newly produced emulsions, the OVA–DEX-stabilized
resveratrol emulsions exhibited higher ABTS radical scavenging and stronger reducing
power compared with the OVA-stabilized emulsion. The emulsion prepared using OVA–
DEX10k also showed remarkably improved DPPH scavenging ability compared with the
OVA-stabilized emulsion. After a long period of storage in the dark, the antioxidant activity
of the emulsions diminished to varying degrees. Nonetheless, there was a noticeable trend
in which the OVA–DEX-stabilized emulsions exhibited enhanced antioxidant properties
compared to the OVA-stabilized emulsions when subjected to identical storage conditions.
Specifically, when the emulsion was prepared using OVA–DEX1k, the highest antioxi-
dant capacity was achieved for all the three methods after 28 days of storage at 25 ◦C.
This phenomenon could be attributed to several factors. Firstly, the OVA–DEX-stabilized
emulsion exhibited a superior encapsulation efficiency of resveratrol, leading to a higher
resveratrol content in the emulsion, thereby enhancing its antioxidant ability [63,64]. In
addition, the covalent grafting of DEX onto OVA protein enhanced the repulsion between
droplets in the emulsion, preventing droplet aggregation and improving the stability of
the emulsion [28]. As a result, it prevented resveratrol leakage in the oil solution during
storage and thus inhibited the oxidation degradation of resveratrol [65]. Moreover, the
amount of Maillard reaction products was increased with the increase in browning of the
samples, which resulted in higher antioxidant activity [66]. Therefore, it could be concluded
that OVA–DEX-stabilized emulsions displayed enhanced ABTS cation radical, stronger
reducing activity, and DPPH scavenging ability, indicating that OVA–DEX conjugates
contributed to maintaining the antioxidant properties of resveratrol-loaded emulsion.
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3.2.5. Rheological Properties Analysis

The oscillation test was conducted to gain a better understanding of the relationship
between the internal structure and flow characteristics, such as viscosity and rheological
behavior. The results showed that, as the oscillatory frequency increased, both the G’ and
G” values of the emulsions gradually increased, implying that the particles in the emulsions
became more dispersed and the viscosity of the emulsions decreased [67]. The results of
the shear scanning analysis revealed that the emulsions stabilized with OVA–DEX1k and
OVA–DEX10k exhibited higher values of storage modulus and loss modulus compared
to the emulsion prepared with OVA (Figures 11 and S4). This phenomenon indicates that
the OVA–DEX1k- and OVA–DEX10k-stabilized emulsions had increased viscosity and
were able to slow down the rise of droplets, thereby enhancing the overall stability of the
emulsion. Moreover, the OVA–DEX conjugates, especially OVA–DEX1k and OVA–DEX10k,
have significant potential in improving the stability of the emulsions.
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4. Conclusions

In this study, OVA–DEX conjugates were prepared through the Maillard reaction; then,
SDS-PAGE analysis, FTIR, and surface hydrophobicity and DSC analyses were performed to
assess the structure and characteristics of the conjugates. Subsequently, resveratrol-loaded
emulsions were produced using the high-pressure homogenization method, with OVA or
OVA–DEX conjugates serving as emulsifiers. The encapsulation of resveratrol emulsions
stabilized by OVA–DEX conjugates was higher than that of the emulsions stabilized by OVA;
the physical stability of the emulsions during long-term storage at 25 ◦C was enhanced
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by the OVA–DEX conjugates. This study also demonstrated that the capabilities of OVA–
DEX-conjugate-stabilized emulsions against physicochemical treatments, such as thermal
treatment, changes of pH 3–9, and 1–5 mol/L NaCl solutions, were markedly improved
compared with emulsions stabilized by OVA alone. Furthermore, the reducing power test
and ABTS radical scavenging assay indicated that the antioxidant capacity of resveratrol-
loaded emulsions prepared by OVA–DEX conjugates was sensibly enhanced in the newly
produced emulsions as well as the emulsions stored after 28 days, indicating that OVA–DEX
conjugates contributed to maintaining the antioxidant properties of resveratrol. The results
of this study proved that OVA–DEX conjugates were excellent emulsifiers due to their
notable thermal stability and significant effect in enhancing the physicochemical stability
and antioxidant activity of the resveratrol-loaded emulsions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13081246/s1, Table S1: Secondary structure of native OVA
and OVA–DEX conjugates with different molecular weights after various reaction time. Figure S1:
The deconvolution of the amide-I band of OVA. Figure S2. Storage stability of OVA-, unreacted
OVA and DEX10k-, and OVA–DEX10k-conjugate-stabilized emulsions. Figure S3. Particle size,
PDI, and representative image of emulsions stabilized by OVA, unreacted OVA and DEX10k, and
OVA–DEX10k conjugates at a pH value of 5. Figure S4: The strain sweep test of OVA-stabilized
emulsion over a strain range of 0.01–100% at a fixed frequency of 1 Hz.
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