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Abstract: Previous meta-analyses of multiple studies have suggested that dietary intake and blood
concentrations of carotenoids, as well as dietary supplement of certain carotenoids, play a role in
reducing the risk of cancer. However, the conclusions of these studies have been subject to controversy.
We conducted an umbrella review of meta-analyses to comprehensively analyze and evaluate the
evidence pertaining the association between carotenoids and cancer outcomes. We searched PubMed,
Web of Science, Embase, and Cochrane Library databases of meta-analyses and systematic reviews up
to June 2023. Our selection criteria encompassed meta-analyses of cohort and case-control studies, as
well as randomized controlled clinical trials, which investigated the associations between carotenoids
and cancer risk. We also determined the levels of evidence for these associations with AMSTAR 2
criteria. We included 51 eligible articles, including 198 meta-analyses for qualitative synthesis in the
umbrella review. Despite the presence of moderate to high heterogeneity among the studies, dietary
intake, supplementation, and blood concentrations of carotenoids were inversely associated with the
risk of total cancer, and certain specific cancers of lung, digestive system, prostate, breast, head and
neck, and others. Subgroup analysis also showed that individual carotenoids (α-carotene, β-carotene,
β-cryptoxanthin, lutein, zeaxanthin, and lycopene) offer certain protection against specific types
of cancers. However, high doses of carotenoid supplements, especially β-carotene, significantly
increased the risk of total cancer, lung cancer, and bladder cancer. Our umbrella meta-analysis
supported that high intake of dietary carotenoids as a whole food approach could be more beneficial
in reducing cancer risk. Concurrently, the findings suggest that the efficacy of single-carotenoid
supplementation in cancer prevention remains a subject of controversy.

Keywords: carotenoids; cancer; supplement risk; meta-analysis; umbrella review

1. Introduction

The precise pathogenic mechanisms underlying carcinogenesis remain elusive, but
current theories suggest that it is a multistep process characterized by the accumulation of
cellular injuries at various biological levels, including genetic and epigenetic changes [1].
Diet and dietary supplements are widely recognized as potential inhibitors of carcinogenic
process [2]. Accumulating evidence from epidemiologic studies demonstrates that high
consumption of fruits and vegetables is protective against numerous types of cancer [3,4].
Carotenoids, natural fat-soluble pigments found abundantly in yellow, orange, and red
fruits and vegetables (such as oranges, tomatoes, and carrots), constitute an important
part of the human diet with intense antioxidant properties [5,6]. Since the human body
does not synthesize carotenoids, they must be obtained from dietary sources or supple-
ments. Carotenoids are categorized into two groups: hydrocarbons, such as α-carotene,
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β-carotene, and lycopene, and xanthophylls, such as β-cryptoxanthin, lutein, zeaxanthin,
and lycopene [7]. Multiple carotenoids, such as α-carotene, β-carotene, β-cryptoxanthin,
lutein, zeaxanthin, and lycopene, which are acquired through diet, can be examined in
plasma and tissues [8]. Numerous epidemiological studies have found that a higher dietary
consumption of carotenoids is associated with a lower risk of several chronic diseases [9,10].

Carotenoids have been shown to possess antioxidant potential and immunoenhancing
properties in both in vitro and in vivo studies. These compounds can reduce chromosome
aberrations, inhibit the formation of malignant tumors, decrease DNA damage, regulate
gap-junction communication between cells, and reduce cell proliferation and transforma-
tion [11]. However, the precise contribution of dietary carotenoids or serum carotenoids
to the risk of various cancer types remains a subject of controversy due to inconsistent
findings from epidemiologic studies. Furthermore, it is important to note that the cur-
rent meta-analysis focuses on published studies that presented their results primarily
through randomized/fixed-effect sizes, 95% CIs, and p-values, which were susceptible to
small-study effects and heterogeneity [12]. Therefore, there is a need for a systematic and
comprehensive approach to provide a clearer understanding of the relationship between
carotenoids and cancer risk.

The growing number of meta-analyses in the field of human health outcomes does
not always translate into improved medical guidance, as these studies often come with
certain limitations. Recognizing these limitations, Ioannidis et al. [13] first introduced
the concept of umbrella reviews back in 2009. Recently, umbrella reviews have provided
systematic computation and evaluation of meta-analyses and have been widely used to
assess associations between various factors (nutrition, risk factors, behaviors) and human
health outcomes, including mortality, cardiovascular disease, type 2 diabetes mellitus, and
multiple cancers, thereby improving the accuracy and strength of results [14–17]. To the
best of our knowledge, no previous umbrella reviews of meta-analyses have investigated
the association between carotenoids and cancer risk. To further understand and reassess
the association, we conducted the first-ever such umbrella review by collecting all avail-
able meta-analyses to explore potential strategies for cancer prevention, and enhance the
strength and validity of the evidence.

2. Materials and Methods

The present umbrella review of meta-analyses was performed in accordance with the
guidelines in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [18]. We are registered in PROSPERO (Registration No. CRD42023417600).

2.1. Literature Search Strategy

We performed an umbrella review of the systematic reviews and meta-analyses on
associations between carotenoid consumption and cancer risk. Two investigators (J.S.,
J.G.) performed the search from PubMed, Web of Science, Embase, and Cochrane Li-
brary databases limited to English up to June 2023. The search terms were as follows:
“(carotenoids OR α-carotene OR alpha carotene OR beta carotene OR β-carotene OR zeta
Carotene OR ζ-carotene OR β-cryptoxanthin OR lutein OR zeaxanthin OR lycopene OR
phytoene OR phytofluene OR violaxanthin OR neoxanthin OR astaxanthin) AND (cancer
OR tumor OR neoplasm OR neoplasia) AND (systematic review OR meta-analysis)”. The
references of all identified articles were also manually viewed.

2.2. Eligibility and Inclusion/Exclusion Criteria

Systematic reviews or meta-analyses assessing associations between carotenoid con-
sumption and cancer risk were included. The inclusion criteria were as follows: (i) meta-
analyses of cohort and case-control studies and randomized controlled trials (RCTs) in-
vestigating the effect of dietary, blood, and supplement of carotenoids on the cancer risk;
(ii) considering the incidence or mortality of cancer as the outcome; (iii) reporting the effect



Foods 2024, 13, 1321 3 of 25

sizes (OR, odds ratio; RR, relative risk; HR, hazard ratio) and corresponding confidence
intervals (CIs); (iv) published in English.

The exclusion criteria were as follows: (i) meta-analyses of non-observational studies
or non-RCT; (ii) without original data to analyze the summary risk estimate, 95% CIs;
(iii) systematic reviews without meta-analysis; (iv) articles, letters, editorials, and conference
abstracts; (v) duplicated publications.

A detailed flow chart of the screening and selection process of eligible articles is
presented in Figure 1.
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2.3. Ata Extraction and Quality Assessment

Two investigators (Y.W. and Y.X.) independently extracted the following information
from each eligible paper: the first author’s name, publication year, type of cancer outcomes,
type of carotenoids, study design (cohort, case control, RCTs), number of cases/control or
total participants, meta-analysis metric, OR/RR/HR and CIs, number of included studies
in meta-analysis, effect model, and assessment tool of the original study.

A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR 2) was used to evaluate
the methodological quality of eligible meta-analyses [19]. A total of 16 items, including
7 critical and 9 non-critical domains, constituted the AMSTAR 2. According to the quality
of each item, we further scored each eligible meta-analysis into High, Moderate, Low, or
Critical low quality.

2.4. Data Analysis

In this umbrella review, we extracted OR/RR/HR and 95% CI data from each eligible
meta-analysis to re-analyze the association between consumption of carotenoids and cancer
risk. I2 and Cochran Q tests were used to assess the heterogeneity between included stud-
ies [20]. I2 > 50% and p value < 0.10 indicated significant heterogeneity and calculated with
the random-effects model; otherwise, the fixed-effects model was performed. Publication
bias and the small-study effect were assessed by the Egger test and funnel plot [21]. For
heterogeneity and publication bias, a p value < 0.05 was adopted as a significance threshold
as the result of the small-study effects. For other tests, a significance threshold at the level
of p value < 0.05 was considered. Moreover, subgroup evaluation was carried out by the
type of carotenoids, such as α-carotene, β-carotene, ζ-carotene, and lycopene. All statistical
analyses were evaluated with Comprehensive Meta Analysis (CMA) version 3.3.
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3. Results
3.1. Study Identification

A total of 1135 articles were initially identified from four databases (PubMed, Web of
Science, Cochrane Library, and Embase databases), and 51 eligible articles with 198 meta-
analyses were included in our review after exclusions (Table 1). All eligible articles were
published between 2000 and 2023. Our study aimed to systematically categorize 198 meta-
analyses into eight distinct categories of cancer risk. These categories included total cancer,
lung cancer, digestive system cancer, prostate cancer, breast cancer, bladder cancer, head
and neck cancer, and gynecologic/skin/blood cancer [22–73]. Due to the limited number
of meta-analyses available, gynecologic/skin/blood cancer was evaluated as a group.

Table 1. Summary of the meta-analyses of carotenoids and cancer risk.

Author & Year Type of
Cancer N Type of

Studies
Type of

Carotenoids
Type of
Metrics

Summary Effect
Size (95% CI) Model I2 Egger’s

p Value
Statistically
Significant

Deng et al., 2023 a
[72]

gastric
cancer 3 CC, cohort α-carotene

blood OR 0.78 (0.58, 1.05) fixed 0.42 0.407 No

Deng et al., 2023 b
[72]

gastric
cancer 4 CC, cohort β-carotene

blood OR 0.69 (0.40, 1.16) random 0.7 0.942 No

Zhang et al., 2023
[73] total cancer 18 RCT β-carotene

supplement RR 1.02 (0.99, 1.05) random 0.26 0.03 No

Yin et al., 2022 a [70]
digestive
system
tumors

5 RCT β-carotene
blood OR 0.72 (0.46, 1.11) random 0 NR No

Yin et al., 2022 b [70]
digestive
system
tumors

5 RCT lycopene
blood OR 0.93 (0.81, 1.08) random 0 NR No

Corbi et al., 2022 a
[68]

colorectal
cancer 2 RCT β-carotene

supplement RR 0.97 (0.68, 1.38) random 0 NR No

Corbi et al., 2022 b
[68]

esophagus
and

stomach
cancer

2 RCT β-carotene
supplement RR 0.93 (0.82, 1.06) random 0 NR No

Corbi et al., 2022 c
[68]

prostate
cancer 3 RCT β-carotene

supplement RR 0.93 (0.73, 1.18) random 0 NR No

Corbi et al., 2022 d
[68] lung cancer 5 RCT β-carotene

supplement RR 1.14 (1.02, 1.27) random 0.03 NR Yes

Corbi et al., 2022 e
[68]

urinary
tract cancer 2 RCT β-carotene

supplement RR 0.82 (0.55, 1.21) random 0 NR No

Corbi et al., 2022 f
[68]

pancreatic
cancer 2 RCT β-carotene

supplement RR 0.85 (0.62, 1.16) random 0 NR No

Corbi et al., 2022 g
[68] total cancer 13 RCT β-carotene

supplement RR 0.98 (0.90, 1.07) random 0.37 NR No

Zhang et al., 2022
[71]

brain
cancer 7 CC, cohort β-carotene

intake RR 0.78 (0.66, 0.93) random 0 NR Yes

Kordiak et al., 2022
[69] lung cancer 8 RCT β-carotene

supplement RR 1.16 (1.06, 1.26) fixed 0 NR Yes

Li et al., 2020 [66] esophageal
cancer 15 CC β-carotene

intake OR 0.62 (0.50, 0.77) random 0.708 0.252 Yes

Wu et al., 2020 a [67] bladder
cancer 11 CC, cohort β-carotene

intake RR 0.88 (0.76, 1.03) random 0.748 0.07 No

Wu et al., 2020 b [67] bladder
cancer 3 CC, cohort β-carotene

blood RR 0.36 (0.12, 1.07) random 0.852 0.07 No

Aune et al., 2018 a
[62] total cancer 3 cohort

total
carotenoid

intake
RR 0.93 (0.82, 1.06) random 0 0.42 No

Aune et al., 2018 b
[62] total cancer 5 cohort

total
carotenoids

blood
RR 0.74 (0.60, 0.90) random 0 0.39 Yes

Aune et al., 2018 c
[62] total cancer 4 cohort β-carotene

intake RR 0.90 (0.81, 1.00) random 0 0.02 No

Aune et al., 2018 d
[62] total cancer 6 cohort β-carotene

blood RR 0.76 (0.65, 0.89) random 0 0.22 Yes

Aune et al., 2018 e
[62] total cancer 2 cohort α-carotene

blood RR 0.62 (0.40, 0.96) random 0 NR Yes

Aune et al., 2018 f
[62] total cancer 2 cohort

β-
cryptoxanthin

blood
RR 0.83 (0.60, 1.15) random 0 NR No
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Table 1. Cont.

Author & Year Type of
Cancer N Type of

Studies
Type of

Carotenoids
Type of
Metrics

Summary Effect
Size (95% CI) Model I2 Egger’s

p Value
Statistically
Significant

Aune et al., 2018 g
[62] total cancer 3 cohort lycopene

blood RR 0.81 (0.54, 1.21) random 0.655 0.13 No

Psaltopoulou et al.,
2018 [65]

non-
Hodgkin’s
lymphoma

3 CC Lycopene
intake RR 1.00 (0.86, 1.16) random 0 NR No

He et al., 2018 a [64]
breast
cancer

mortality
5 CC, cohort β-carotene

intake RR 0.70 (0.50, 0.99) random 0.375 NR Yes

He et al., 2018 b [64]
breast
cancer

mortality
3 CC, cohort α-carotene

intake RR 0.97 (0.71, 1.32) random 0.054 NR No

He et al., 2018 c [64]
breast
cancer

mortality
3 CC, cohort

β-
cryptoxanthin

intake
RR 0.77 (0.53, 1.10) random 0.198 NR No

He et al., 2018 d [64]
breast
cancer

mortality
3 CC, cohort lutein intake RR 0.81 (0.42, 1.57) random 0.769 NR No

He et al., 2018 e [64]
breast
cancer

mortality
3 CC, cohort lycopene

intake RR 0.74 (0.53, 1.03) random 0 NR No

Catano et al., 2018
[63]

prostate
cancer 24 CC, cohort lycopene

intake RR 0.90 (0.85, 0.95) random 0.04 NR Yes

Chen et al., 2017 a
[56]

non-
Hodgkin’s
lymphoma

8 CC, cohort α-carotene
intake RR 0.87 (0.78, 0.97) random 0 >0.05 Yes

Chen et al., 2017 b
[56]

non-
Hodgkin’s
lymphoma

10 CC, cohort β-carotene
intake RR 0.80 (0.68, 0.94) random 0.557 >0.05 Yes

Chen et al., 2017 c
[56]

non-
Hodgkin’s
lymphoma

7 CC, cohort
β-

cryptoxanthin
intake

RR 0.87 (0.75, 1.01) random 0.252 >0.05 No

Chen et al., 2017 d
[56]

non-
Hodgkin’s
lymphoma

7 CC, cohort lycopene
intake RR 0.99 (0.88, 1.12) random 0 >0.05 No

Chen et al., 2017 e
[56]

non-
Hodgkin’s
lymphoma

7 CC, cohort
lutein and
zeaxanthin

intake
RR 0.82 (0.69, 0.97) random 0.448 >0.05 Yes

Panic et al., 2017 a
[58]

colorectal
cancer 3 CC

total
carotenoid

intake
OR 0.89 (0.69, 1.14) random 0 NR No

Panic et al., 2017 b
[58]

colorectal
cancer 3 CC α-carotene

intake OR 0.58 (0.33, 1.03) random 0.849 NR No

Panic et al., 2017 c
[58]

colorectal
cancer 6 CC β-carotene

intake OR 0.64 (0.38, 1.08) random 0.913 NR No

Panic et al., 2017 d
[58]

colorectal
cancer 2 CC

β-
cryptoxanthin

intake
OR 0.47 (0.12, 1.90) random 0.965 NR No

Panic et al., 2017 e
[58]

colorectal
cancer 4 CC lycopene

intake OR 0.92 (0.46, 1.83) random 0.947 NR No

Panic et al., 2017 f
[58]

colorectal
cancer 4 CC

lutein and
zeaxanthin

intake
OR 0.78 (0.56, 1.09) random 0.727 NR No

Panic et al., 2017 g
[58]

colon
cancer 3 CC β-carotene

intake OR 0.78 (0.50, 1.24) random 0.868 NR No

Panic et al., 2017 h
[58]

colon
cancer 2 CC lycopene

intake OR 0.95 (0.79, 1.15) random 0 NR No

Panic et al., 2017 i
[58]

colon
cancer 2 CC

lutein and
zeaxanthin

intake
OR 0.89 (0.77, 1.03) random 0 NR No

Panic et al., 2017 j
[58]

rectal
cancer 2 CC β-carotene

intake OR 1.13 (0.85, 1.51) random 0 NR No

Panic et al., 2017 k
[58]

rectal
cancer 2 CC lycopene

intake OR 0.82 (0.57, 1.16) random 0 NR No

Panic et al., 2017 l
[58]

colorectal
cancer 2 cohort

total
carotenoid

intake
OR 1.06 (0.89, 1.27) random 0 NR No

Panic et al., 2017 m
[58]

colorectal
cancer 2 cohort α-carotene

intake OR 1.00 (0.84, 1.18) random 0 NR No

Panic et al., 2017 n
[58]

colorectal
cancer 4 cohort β-carotene

intake OR 0.88 (0.72, 1.07) random 0.371 NR No
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Table 1. Cont.

Author & Year Type of
Cancer N Type of

Studies
Type of

Carotenoids
Type of
Metrics

Summary Effect
Size (95% CI) Model I2 Egger’s

p Value
Statistically
Significant

Panic et al., 2017 o
[58]

colorectal
cancer 2 cohort

β-
cryptoxanthin

intake
OR 1.14 (0.62, 2.08) random 0.695 NR No

Panic et al., 2017 p
[58]

colorectal
cancer 3 cohort lycopene

intake OR 0.94 (0.71, 1.24) random 0.622 NR No

Panic et al., 2017 q
[58]

colorectal
cancer 3 cohort

lutein and
zeaxanthin

intake
OR 0.92 (0.77, 1.09) random 0.132 NR No

Cui et al., 2017 [57] prostate
cancer 2 RCT lycopene

supplement RR 0.70 (0.27, 1.85) fixed 0.416 0.788 No

Schwingshackl et al.,
2017 a [61]

total cancer
mortality 3 RCT β-carotene

supplement RR 1.12 (0.91, 1.38) random 0.21 NR No

Schwingshackl et al.,
2017 b [61] total cancer 2 RCT β-carotene

supplement RR 1.09 (0.96, 1.23) random 0.3 NR No

Park et al., 2017 [59] bladder
cancer 3 RCT β-carotene

supplement RR 1.44 (1.00, 2.09) fixed 0 NR Yes

Rowles et al., 2017 a
[60]

prostate
cancer 21 CC, cohort lycopene

intake RR 0.88 (0.79, 0.99) random 0.567 0.13 Yes

Rowles et al., 2017 b
[60]

prostate
cancer 17 CC, cohort lycopene

blood RR 0.88 (0.79, 0.98) random 0.262 0.064 Yes

Chen et al., 2016 a
[51]

pancreatic
cancer 3 CC, cohort

β-
cryptoxanthin

intake
OR 0.70 (0.56, 0.88) random 0.284 NR Yes

Chen et al., 2016 b
[51]

pancreatic
cancer 6 CC, cohort lycopene

intake OR 0.85 (0.73, 1.00) random 0 NR No

Chen et al., 2016 c
[51]

pancreatic
cancer 4 CC, cohort α-carotene

intake OR 0.86 (0.56, 1.33) random 0.78 NR No

Chen et al., 2016 d
[51]

pancreatic
cancer 9 CC, cohort β-carotene

intake OR 0.74 (0.56, 0.98) random 0.696 NR Yes

Chen et al., 2016 e
[51]

pancreatic
cancer 5 CC, cohort

lutein and
zeaxanthin

intake
OR 0.82 (0.58, 1.15) random 0.747 NR No

Zhou et al., 2016 a
[55]

gastric
cancer 13 CC

total
carotenoid

intake
OR 0.62 (0.56,

0.686428571) random 0.626 NR Yes

Zhou et al., 2016 b
[55]

gastric
cancer 13 CC β-carotene

intake OR 0.52 (0.46, 0.59) random 0.249 NR Yes

Zhou et al., 2016 c
[55]

gastric
cancer 4 CC a-carotene

intake OR 0.58 (0.44, 0.76) random 0.623 NR Yes

Zhou et al., 2016 d
[55]

gastric
cancer 5 CC lycopene

intake OR 0.94 (0.73, 1.21) random 0.696 NR No

Zhou et al., 2016 e
[55]

gastric
cancer 5 CC lutein intake OR 0.89 (0.68, 1.15) random 0.549 NR No

Zhou et al., 2016 f
[55]

gastric
cancer 8 cohort

total
carotenoid

intake
OR 0.82 (0.73, 0.93) random 0.467 NR Yes

Zhou et al., 2016 g
[55]

gastric
cancer 8 cohort β-carotene

intake OR 0.74 (0.61, 0.91) random 0.645 NR Yes

Zhou et al., 2016 h
[55]

gastric
cancer 4 cohort α-carotene

intake OR 0.79 (0.59, 1.07) random 0.384 NR No

Zhou et al., 2016 i
[55]

gastric
cancer 4 cohort lycopene

intake OR 0.80 (0.60, 1.07) random 0 NR No

Zhou et al., 2016 j
[55]

gastric
cancer 5 cohort lutein intake OR 0.95 (0.77, 1.18) random 0.454 NR No

Abar et al., 2016 a
[50] lung cancer 7 CC, cohort

β-
cryptoxanthin

blood
RR 0.72 (0.45, 1.14) random 0.69 0.23 No

Abar et al., 2016 b
[50] lung cancer 6 CC, cohort lycopene

blood RR 0.68 (0.54, 0.87) random 0 0 Yes

Abar et al., 2016 c
[50] lung cancer 7 CC, cohort α-carotene

blood RR 0.70 (0.48, 1.01) random 0.61 0.64 No

Abar et al., 2016 d
[50] lung cancer 14 CC, cohort β-carotene

blood RR 0.71 (0.56, 0.91) random 0.55 0.28 Yes

Abar et al., 2016 e
[50] lung cancer 6 CC, cohort

lutein and
zeaxanthin

blood
RR 0.86 (0.67, 1.11) random 0 NR No
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Table 1. Cont.

Author & Year Type of
Cancer N Type of

Studies
Type of

Carotenoids
Type of
Metrics

Summary Effect
Size (95% CI) Model I2 Egger’s

p Value
Statistically
Significant

Abar et al., 2016 f
[50] lung cancer 5 CC, cohort

total
carotenoids

blood
RR 0.64 (0.44, 0.93) random 0.23 0.3 Yes

Lodi et al., 2016 [53] oral cancer 2 RCT
β-carotene or
carotenoids
supplement

RR 0.71 (0.24, 2.09) fixed 0 NR No

Wang et al., 2016 [54] colorectal
cancer 15 CC, cohort lycopene

intake RR 0.94 (0.80, 1.10) random 0.805 0.864 No

Huang et al., 2016 a
[52]

pancreatic
cancer 23 CC, cohort

total
carotenoid

intake
OR 0.77 (0.67, 0.89) random 0.569 0.17 Yes

Huang et al., 2016 b
[52]

pancreatic
cancer 14 CC, cohort β-carotene

intake OR 0.78 (0.66, 0.92) random 0.481 NR Yes

Huang et al., 2016 c
[52]

pancreatic
cancer 6 CC, cohort α-carotene

intake OR 0.88 (0.66, 1.18) random 0.686 NR No

Huang et al., 2016 d
[52]

pancreatic
cancer 7 CC, cohort

lutein and
zeaxanthin

intake
OR 0.80 (0.61, 1.05) random 0.679 0.664 No

Huang et al., 2016 e
[52]

pancreatic
cancer 8 CC, cohort lycopene

intake OR 0.84 (0.73, 0.97) random 0 0.857 Yes

Huang et al., 2016 f
[52]

pancreatic
cancer 5 CC, cohort

β-
cryptoxanthin

intake
OR 0.86 (0.67, 1.12) random 0.573 0.522 No

Yu et al., 2015 [49] lung cancer 18 CC, cohort β-carotene
intake RR 0.768 (0.68, 0.87) random 0.559 0.464 Yes

Leoncini et al., 2015 a
[47]

oral cavity
and

pharynx
2 CC

total
carotenoids

intake
OR 0.48 (0.19, 1.27) random 0.933 NR No

Leoncini et al., 2015
b [47] larynx 1 CC

total
carotenoid

intake
OR 0.40 (0.19, 0.83) random NR NR Yes

Leoncini et al., 2015 c
[47]

head and
neck cancer 1 CC α-carotene

intake OR 1.30 (0.66, 2.55) random NR NR No

Leoncini et al., 2015
d [47]

oral cavity
and

pharynx
2 CC α-carotene

intake OR 0.57 (0.41, 0.79) random 0 NR Yes

Leoncini et al., 2015 e
[47] larynx 2 CC α-carotene

intake OR 0.46 (0.20, 1.06) random 0.831 NR No

Leoncini et al., 2015 f
[47]

head and
neck cancer 1 CC β-carotene

intake OR 1.39 (0.72, 2.67) random NR NR No

Leoncini et al., 2015
g [47]

oral cavity
and

pharynx
2 CC β-carotene

intake OR 0.57 (0.14, 2.38) random 0.939 NR No

Leoncini et al., 2015
h [47]

epilarynx
and hy-

popharynx
1 CC β-carotene

intake OR 0.76 (0.47, 1.23) random NR NR No

Leoncini et al., 2015 i
[47] oral cavity 1 CC β-carotene

intake OR 1.01 (0.68, 1.51) random NR NR No

Leoncini et al., 2015 j
[47] larynx 3 CC β-carotene

intake OR 0.58 (0.22, 1.55) random 0.914 NR No

Leoncini et al., 2015
k [47]

head and
neck cancer 1 CC

β-
cryptoxanthin

intake
OR 0.30 (0.15, 0.60) random NR NR Yes

Leoncini et al., 2015 l
[47]

oral cavity
and

pharynx
2 CC

β-
cryptoxanthin

intake
OR 0.46 (0.29, 0.74) random 0.518 NR Yes

Leoncini et al., 2015
m [47] larynx 2 CC

β-
cryptoxanthin

intake
OR 0.41 (0.33, 0.51) random 0 NR Yes

Leoncini et al., 2015
n [47]

head and
neck cancer 1 CC lycopene

intake OR 0.60 (0.32, 1.11) random NR NR No

Leoncini et al., 2015
o [47]

oral cavity
and

pharynx
4 CC lycopene

intake OR 0.74 (0.56, 0.98) random 0.145 NR Yes

Leoncini et al., 2015
p [47] larynx 4 CC lycopene

intake OR 0.50 (0.28, 0.89) random 0.659 NR Yes

Leoncini et al., 2015
q [47]

head and
neck cancer 1 CC

lutein and
zeaxanthin

intake
OR 0.95 (0.52, 1.73) random NR NR No
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Leoncini et al., 2015 r
[47]

oral cavity
and

pharynx
2 CC

lutein and
zeaxanthin

intake
OR 0.51 (0.22, 1.18) random 0.83 NR No

Leoncini et al., 2015 s
[47] larynx 2 CC

lutein and
zeaxanthin

intake
OR 0.60 (0.27, 1.32) random 0.858 NR No

Wang et al., 2015 a
[48]

prostate
cancer 11 CC, cohort α-carotene

blood RR 0.91 (0.72, 1.15) random 0.491 NR No

Wang et al., 2015 b
[48]

prostate
cancer 13 CC, cohort β-carotene

blood RR 0.96 (0.81, 1.14) random 0.188 NR No

Wang et al., 2015 c
[48]

prostate
cancer 15 CC, cohort lycopene

blood RR 0.81 (0.69, 0.96) random 0.233 NR Yes

Wang et al., 2015 d
[48]

prostate
cancer 12 CC, cohort α-carotene

intake RR 0.87 (0.76, 0.99) random 0.1551 NR Yes

Wang et al., 2015 e
[48]

prostate
cancer 19 CC, cohort β-carotene

intake RR 0.90 (0.81, 1.01) random 0.2602 NR No

Wang et al., 2015 f
[48]

prostate
cancer 13 CC, cohort lycopene

intake RR 0.88 (0.76, 1.02) random 0.2361 NR No

Chen et al., 2015 [46] prostate
cancer 13 CC, cohort lycopene

intake RR 0.91 (0.82, 1.01) random 0.455 0.22 No

Li et al., 2014 a [42] gastric
cancer 20 CC, cohort β-carotene

intake OR 0.59 (0.49, 0.70) random 0.687 NR Yes

Li et al., 2014 b [42] gastric
cancer 8 CC, cohort α-carotene

intake OR 0.69 (0.52, 0.93) random 0.584 NR Yes

Li et al., 2014 c [42] gastric
cancer 5 CC, cohort β-carotene

blood OR 0.83 (0.57, 1.19) random 0.622 NR No

Li et al., 2014 d [42] gastric
cancer 3 CC, cohort α-carotene

blood OR 0.79 (0.47, 1.31) random 0.53 NR No

Li et al., 2014 [43] ovarian
cancer 10 CC, cohort lycopene

intake OR 0.963 (0.86, 1.08) random 0.116 0.406 No

Tang et al., 2014 a
[44]

bladder
cancer 4 CC, cohort

total
carotenoid

intake
RR 0.67 (0.55, 0.82) random 0 NR Yes

Tang et al., 2014 b
[44]

bladder
cancer 8 CC, cohort α-carotene

intake RR 0.87 (0.76, 0.99) random 0.272 NR Yes

Tang et al., 2014 c
[44]

bladder
cancer 12 CC, cohort β-carotene

intake RR 0.89 (0.82, 0.97) random 0.386 NR Yes

Tang et al., 2014 d
[44]

bladder
cancer 6 CC, cohort

β-
cryptoxanthin

intake
RR 0.86 (0.73, 1.00) random 0 NR No

Tang et al., 2014 e
[44]

bladder
cancer 6 CC, cohort

lutein and
zeaxanthin

intake
RR 0.93 (0.70, 1.24) random 0.582 NR No

Tang et al., 2014 f
[44]

bladder
cancer 6 CC, cohort lycopene

intake RR 0.95 (0.82, 1.10) random 0 NR No

Tang et al., 2014 g
[44]

bladder
cancer 2 CC, cohort

total
carotenoids

blood
RR 0.43 (0.20, 0.93) random 0.273 NR Yes

Tang et al., 2014 h
[44]

bladder
cancer 4 CC, cohort α-carotene

intake RR 0.56 (0.37, 0.85) random 0.51 NR Yes

Tang et al., 2014 i [44] bladder
cancer 4 CC, cohort β-carotene

blood RR 0.41 (0.05, 3.36) random 0.724 NR Yes

Tang et al., 2014 j [44] bladder
cancer 4 CC, cohort

β-
cryptoxanthin

blood
RR 0.62 (0.06, 6.41) random 0.674 NR No

Tang et al., 2014 k
[44]

bladder
cancer 4 CC, cohort

lutein and
zeaxanthin

blood
RR 0.50 (0.12, 0.87) random 0.502 NR Yes

Tang et al., 2014 l [44] bladder
cancer 4 CC, cohort lycopene

blood RR 0.60 (0.17, 2.08) 0.61 NR No

Zhang et al., 2014
[45] melanoma 8 CC, cohort β-carotene

intake OR 0.87 (0.62, 1.20) random 0.719 0.69 No

Ge et al., 2013 a [40] esophageal
cancer 13 CC, cohort β-carotene

intake OR 0.58 (0.44, 0.77) random 0.782 0.114–0.962 Yes

Ge et al., 2013 b [40] esophageal
cancer 3 CC α-carotene

intake OR 0.81 (0.70, 0.94) fixed 0 0.114–0.962 Yes

Ge et al., 2013 c [40] esophageal
cancer 2 CC, cohort lycopene

intake OR 0.75 (0.64, 0.88) fixed 0 0.114–0.962 Yes
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Ge et al., 2013 d [40] esophageal
cancer 3 CC, cohort

β-
cryptoxanthin

intake
OR 0.80 (0.66, 0.97) random 0.509 0.114–0.962 Yes

Ge et al., 2013 e [40] esophageal
cancer 2 CC

lutein and
zeaxanthin

intake
OR 0.71 (0.59, 0.87) fixed 0 0.114–0.962 Yes

Xu et al., 2013 [41] colorectal
adenoma 8 CC lycopene

intake RR 0.87 (0.67, 1.13) random 0.44 NR No

Chen et al., 2013 a
[39]

prostate
cancer 5 CC, cohort lycopene

intake OR 0.93 (0.86, 1.01) random 0.18 NR No

Chen et al., 2013 b
[39]

prostate
cancer 9 CC, cohort lycopene

blood OR 0.97 (0.88, 1.07) random 0 NR No

Zhang et al., 2012 a
[38]

cervical
cancer 5 CC

total
carotenoids

blood
OR 0.48 (0.30, 0.77) random 0.69 NR Yes

Zhang et al., 2012 b
[38]

cervical
cancer 8 CC

total
carotenoid

intake
OR 0.51 (0.35, 0.73) random 0.82 NR Yes

Zhang et al., 2012 c
[38]

cervical
cancer 3 CC

total
carotenoid

intake
OR 0.60 (0.43, 0.84) random 0.51 NR Yes

Hu et al., 2012 a [37] breast
cancer 10 CC α-carotene

intake OR 0.82 (0.70, 0.97) random 0.6632 0.3 Yes

Hu et al., 2012 b [37] breast
cancer 25 CC β-carotene

intake OR 0.76 (0.67, 0.86) random 0.6767 0.01 Yes

Hu et al., 2012 c [37] breast
cancer 6 cohort α-carotene

intake OR 0.91 (0.85, 0.98) random 0 0.54 Yes

Hu et al., 2012 d [37] breast
cancer 10 cohort β-carotene

intake OR 0.95 (0.90, 1.00) random 0 0.48 No

Aune et al., 2012 a
[35]

breast
cancer 3 CC, cohort

total
carotenoid

intake
RR 0.95 (0.84, 1.08) random 0.66 NR No

Aune et al., 2012 b
[35]

breast
cancer 7 CC, cohort

total
carotenoid

blood
RR 0.74 (0.57, 0.96) random 0.53 NR Yes

Aune et al., 2012 c
[35]

breast
cancer 10 CC, cohort β-carotene

intake RR 0.93 (0.88, 0.98) random 0 NR Yes

Aune et al., 2012 d
[35]

breast
cancer 14 CC, cohort β-carotene

blood RR 0.82 (0.64, 1.04) random 0.55 NR No

Aune et al., 2012 e
[35]

breast
cancer 2 CC, cohort β-carotene

supplement RR 1.08 (0.96, 1.22) random 0 NR No

Aune et al., 2012 f
[35]

breast
cancer 6 CC, cohort α-carotene

intake RR 0.93 (0.86, 1.01) random 0.16 NR No

Aune et al., 2012 g
[35]

breast
cancer 12 CC, cohort α-carotene

blood RR 0.80 (0.68, 0.95) random 0.15 NR Yes

Aune et al., 2012 h
[35]

breast
cancer 6 CC, cohort

β-
cryptoxanthin

intake
RR 1.02 (0.95, 1.09) random 0 NR No

Aune et al., 2012 i
[35]

breast
cancer 10 CC, cohort

β-
cryptoxanthin

blood
RR 0.89 (0.76, 1.05) random 0 NR No

Jeon et al., 2011 a [33] total cancer 6 RCT β-carotene
supplement RR 1.08 (0.99, 1.18) random 0.54 0.41 No

Jeon et al., 2011 b
[33]

total cancer
mortality 4 RCT β-carotene

supplement RR 1.00 (0.87, 1.15) fixed 0 0.41 No

Myung et al., 2011 a
[34]

cervical
neoplasm 9 CC β-carotene

intake OR 0.68 (0.55, 0.84) fixed 0.321 NR Yes

Myung et al., 2011 b
[34]

cervical
neoplasm 5 CC lycopene

intake OR 0.54 (0.39, 0.75) fixed 0.044 NR Yes

Ilic et al., 2011 [32] prostate
cancer 3 RCT lycopene

supplement RR 0.67 (0.36, 1.23) random 0 0.859 No

Druesne-Pecollo
et al., 2010 a [30] total cancer 8 RCT β-carotene

supplement RR 1.01 (0.98, 1.04) fixed NR NR No

Druesne-Pecollo
et al., 2010 b [30] lung cancer 8 RCT β-carotene

supplement RR 1.13 (1.04, 1.23) fixed NR NR Yes

Druesne-Pecollo
et al., 2010 c [30]

stomach
cancer 7 RCT β-carotene

supplement RR 0.99 (0.86, 1.13) fixed NR NR No

Druesne-Pecollo
et al., 2010 d [30]

pancreas
cancer 4 RCT β-carotene

supplement RR 0.99 (0.73, 1.36) fixed NR NR No
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Druesne-Pecollo
et al., 2010 e [30]

colon-
rectum
cancer

7 RCT β-carotene
supplement RR 0.96 (0.85, 1.09) fixed NR NR No

Druesne-Pecollo
et al., 2010 f [30]

prostate
cancer 5 RCT β-carotene

supplement RR 0.99 (0.91, 1.07) fixed NR NR No

Druesne-Pecollo
et al., 2010 g [30]

breast
cancer 4 RCT β-carotene

supplement RR 0.96 (0.85, 1.08) fixed NR NR No

Druesne-Pecollo
et al., 2010 h [30]

non
melanoma 4 RCT β-carotene

supplement RR 0.99 (0.93, 1.05) fixed NR NR No

Druesne-Pecollo
et al., 2010 i [30]

basal cells
cancer 3 RCT β-carotene

supplement RR 1.00 (0.93, 1.07) fixed NR NR No

Druesne-Pecollo
et al., 2010 j [30]

squamous
cells cancer 3 RCT β-carotene

supplement RR 0.99 (0.86, 1.14) fixed NR NR No

Druesne-Pecollo
et al., 2010 k [30] melanoma 3 RCT β-carotene

supplement RR 0.98 (0.65, 1.46) fixed NR NR No

Jiang et al., 2010 [31] prostate
cancer 3 RCT β-carotene

supplement RR 0.97 (0.90, 1.05) random 0 NR No

Veloso et al., 2009 a
[29] total cancer 11 cohort β-carotene

intake/blood OR/RR 1.01 (0.88, 1.16) NR NR NR No

Veloso et al., 2009 b
[29] total cancer 9 cohort lycopene

intake/blood OR/RR 0.99 (0.94, 1.05) NR NR NR No

Veloso et al., 2009 c
[29] total cancer 7 cohort α-carotene

intake/blood OR/RR 0.91 (0.78, 1.05) NR NR NR No

Veloso et al., 2009 d
[29] total cancer 7 cohort

β-
cryptoxanthin
intake/blood

OR/RR 1.08 (0.95, 1.23) NR NR NR No

Veloso et al., 2009 e
[29] total cancer 17 Nested CC β-carotene

intake/blood OR/RR 0.98 (0.86, 1.11) NR NR NR No

Veloso et al., 2009 f
[29] total cancer 14 Nested CC lycopene

intake/blood OR/RR 0.87 (0.77, 0.99) NR NR NR Yes

Veloso et al., 2009 g
[29] total cancer 14 Nested CC α-carotene

intake/blood OR/RR 0.96 (0.79, 1.17) NR NR NR No

Veloso et al., 2009 h
[29] total cancer 17 Nested CC

β-
cryptoxanthin
intake/blood

OR/RR 0.94 (0.83, 1.07) NR NR NR No

Veloso et al., 2009 i
[29] total cancer 29 CC β-carotene

intake/blood OR/RR 0.73 (0.64, 0.83) NR NR NR Yes

Veloso et al., 2009 j
[29] total cancer 24 CC lycopene

intake/blood OR/RR 0.76 (0.64, 0.91) NR NR NR Yes

Veloso et al., 2009 k
[29] total cancer 20 CC α-carotene

intake/blood OR/RR 0.75 (0.64, 0.88) NR NR NR Yes

Veloso et al., 2009 l
[29] total cancer 20 CC

β-
cryptoxanthin
intake/blood

OR/RR 0.74 (0.63, 0.88) NR NR NR Yes

Bandera et al., 2009
[28]

endometrial
cancer 8 CC, cohort β-carotene

intake OR 0.88 (0.79, 0.98) random 0.777 NR Yes

Gallicchio et al., 2008
a [26] lung cancer 8 cohort

total
carotenoids

intake
RR 0.79 (0.71, 0.88) random 0 NR Yes

Gallicchio et al., 2008
b [26] lung cancer 11 cohort β-carotene

intake RR 0.92 (0.83, 1.02) random 0 NR No

Gallicchio et al., 2008
c [26] lung cancer 6 RCT β-carotene

supplement RR 1.10 (0.89, 1.36) random NR NR No

Gallicchio et al., 2008
d [26] lung cancer 4 cohort

total
carotenoids

serum
RR 0.70 (0.44, 1.11) random 0.46 NR No

Gallicchio et al., 2008
e [26] lung cancer 10 cohort β-carotene

serum RR 0.84 (0.66, 1.07) random 0 NR No

Tanvetyanon et al.,
2008 [27] lung cancer 4 CC, cohort β-carotene

intake OR 1.21 (1.09, 1.34) random 0.325 NR Yes

Bjelakovic et al., 2006
[25]

colorectal
adenoma 4 RCT β-carotene

supplement RR 0.93 (0.67, 1.30) random 0.651 NR No

Bjelakovic et al., 2004
[23]

gastrointestinal
cancers 5 RCT β-carotene

supplement RR 0.99 (0.85, 1.15) fixed 0.173 NR No

Etminan et al., 2004 a
[24]

prostate
cancer 10 CC, cohort lycopene

intake RR 0.89 (0.81, 0.98) random NR NR Yes
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Etminan et al., 2004 b
[24]

prostate
cancer 7 CC, cohort lycopene

blood RR 0.74 (0.59, 0.92) random NR NR Yes

Gandini et al., 2000
[22]

breast
cancer 11 CC, cohort β-carotene

intake RR 0.82 (0.76, 0.88) random NR NR Yes

N, number of meta-analyses; RCT, randomized controlled trial; CC, case control; CI, confidence interval; OR, odds
ratio; RR, relative risk; NR, not reported.

3.2. The Quality Assessment of Included Meta-Analyses

In the terms of quality of included meta-analyses, results from the AMSTAR 2 ques-
tionnaire showed that present umbrella meta-analyses included 41 studies assessed as high
quality, 19 studies as moderate quality, and 138 studies as low or critically low quality,
respectively (Table S1).

3.3. Total Cancer Outcomes

A total of 198 effect meta-analyses were reported in all eligible meta-analyses exam-
ining the relationship between dietary consumption/supplementation/blood level and
cancer outcomes. The studies were on total cancer (n = 26) and six other distinct categories
of cancer (n = 172). Our study has revealed a significant correlation between carotenoids
and cancer risk (OR: 0.860; 95% CI: 0.840–0.881; p < 0.001) (Supplemental Files, Figure S1)
with a random-effect model (I2 = 0.766, p < 0.001). Regarding subgroup evaluation, we
observed that total carotenoids (OR: 0.743; 95% CI: 0.675–0.819), α-carotene (OR: 0.838;
95% CI: 0.797–0.881), β-carotene (OR: 0.906; 95% CI: 0.875–0.938), lutein and zeaxanthin
(OR: 0.850; 95% CI: 0.797–0.906), β-cryptoxanthin (OR: 0.785; 95% CI: 0.697–0.883), and
lycopene (OR: 0.886; 95% CI: 0.858–0.916) protected against total cancer (Table 2). The
assessment of publication bias of funnel plot by Egger’s regression test showed evidence of
small-study effect in the present umbrella meta-analysis (p < 0.001), while results from trim
and fill analysis with 75 imputed studies showed that the overall effect was not significantly
confounded by the bias (OR = 0.945; 95% CI: 0.921–0.970).

Table 2. Subgroup analysis of types of carotenoids on various cancers.

Type of Cancer Type of Carotenoids No. of Meta-Analyses OR (95% CI) I2 (p Value)

Total cancer total carotenoids 19 0.743 (0.675–0.819) 0.748 (<0.001)
α-carotene 28 0.838 (0.797–0.881) 0.416 (0.012)
β-carotene 77 0.906 (0.875–0.938) 0.816 (<0.001)
lutein and zeaxanthin 16 0.850 (0.797–0.906) 0 (<0.001)
β-cryptoxanthin 19 0.785 (0.697–0.883) 0.826 (<0.001)
lycopene 39 0.886 (0.858–0.916) 0.391 (0.008)

Lung cancer total carotenoids 3 0.774 (0.700–0.855) 0 (0.518)
α-carotene 1 0.700 (0.480–1.010) NA (NA)
β-carotene 9 0.998 (0.892–1.117) 0.866 (<0.001)
lutein and zeaxanthin 1 0.860 (0.670–1.110) NA (NA)
β-cryptoxanthin 1 0.720 (0.450–1.140) NA (NA)
lycopene 1 0.680 (0.540–0.870) NA (NA)
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Type of Cancer Type of Carotenoids No. of Meta-Analyses OR (95% CI) I2 (p Value)

Digestive system
cancer

total carotenoids 5 0.811 (0.674–0.975) 0.875 (<0.001)

α-carotene 10 0.792 (0.707–0.887) 0.384 (0.102)
β-carotene 22 0.799 (0.717–0.890) 0.810 (<0.001)
lutein and zeaxanthin 8 0.856 (0.794–0.923) 0 (0.528)
β-cryptoxanthin 5 0.790 (0.698–0.894) 0 (0.479)
lycopene 12 0.873 (0.825–0.924) 0 (0.770)

gastric cancer total carotenoids 17 0.749 (0.668–0.841) 0.806 (<0.001)
colorectal cancer total carotenoids 22 0.932 (0.887–0.979) 0 (0.867)
esophageal cancer total carotenoids 7 0.752 (0.671–0.844) 0.653 (0.008)
pancreas cancer total carotenoids 13 0.812 (0.765–0.861) 0 (0.935)

Prostate cancer total carotenoids NA NA NA (NA)
α-carotene 2 0.880 (0.784–0.987) 0 (0.743)
β-carotene 5 0.961 (0.917–1.007) 0 (0.735)
lutein and zeaxanthin NA NA NA (NA)
β-cryptoxanthin NA NA NA (NA)
lycopene 12 0.899 (0.872–0.927) 0 (0.612)

Breast cancer total carotenoids 2 0.862 (0.678–1.094) 0.651 (0.091)
α-carotene 5 0.900 (0.857–0.945) 0.027 (0.391)
β-carotene 8 0.896 (0.833–0.964) 0.764 (<0.001)
lutein and zeaxanthin 1 0.810 (0.420–1.570) NA (NA)
β-cryptoxanthin 3 0.944 (0.824–1.081) 0.525 (0.122)
lycopene 1 0.740 (0.530–1.030) NA (NA)

Bladder cancer total carotenoids 2 0.631 (0.469–0.849) 0.167 (0.273)
α-carotene 2 0.731 (0.479–1.115) 0.746 (0.047)
β-carotene 5 0.931 (0.774–1.120) 0.585 (0.047)
lutein and zeaxanthin 2 0.908 (0.687–1.200) 0 (0.403)
β-cryptoxanthin 2 0.859 (0.734–1.005) 0 (0.784)
lycopene 2 0.944 (0.816–1.093) 0 (0.478)

Head and neck cancer total carotenoids 2 0.428 (0.239–0.767) 0 (0.766)
α-carotene 3 0.640 (0.485–0.845) 0.623 (0.070)
β-carotene 7 0.817 (0.709–0.942) 0 (0.574)
lutein and zeaxanthin 3 0.719 (0.474–1.090) 0 (0.434)
β-cryptoxanthin 3 0.408 (0.338–0.493) 0 (0.604)
lycopene 3 0.674 (0.534–0.851) 0 (0.452)

Gynecologic/skin/blood
cancer

total carotenoids 3 0.540 (0.433–0.672) 0 (0.700)

α-carotene 1 0.870 (0.780–0.970) NA (NA)
β-carotene 8 0.912 (0.842–0.987) 0.655 (0.005)
lutein and zeaxanthin 1 0.820 (0.690–0.970) NA (NA)
β-cryptoxanthin 1 0.870 (0.750–1.010) NA (NA)
lycopene 4 0.905 (0.773–1.058) 0.758 (0.006)

gynecologic cancer total carotenoids 7 0.683 (0.564–0.827) 0.819 (<0.001)
skin cancer total carotenoids 5 0.991 (0.950–1.035) 0 (0.956)
blood cancer total carotenoids 6 0.859 (0.832–0.962) 0.379 (0.154)

CI, confidence interval; OR, odds ratio; NA, not available.

3.4. Lung Cancer Outcomes

Sixteen meta-analyses of the association of carotenoids and lung cancer were identified.
The present umbrella meta-analysis demonstrated that carotenoids could significantly
reduce the risk of lung cancer (OR = 0.896; 95% CI: 0.805–0.997; p = 0.04, Figure 2) with a
high heterogeneity (I2 = 0.864, p < 0.001). Further subgroup analysis showed a significant
effect of total carotenoids on the risk of lung cancer (OR: 0.774; 95% CI: 0.700–0.855) (Table 2).
Nevertheless, four studies showed that β-carotene intake significantly increased the lung
cancer risk (OR = 1.21; 95% CI: 1.09–1.34; OR = 1.13; 95% CI: 1.04–1.23; OR = 1.16; 95%
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CI: 1.06–1.26; OR = 1.14; 95% CI: 1.02–1.27) [27,30,68,69]. The assessment of publication
bias of the funnel plot by Begg regression test showed no publication bias in the present
umbrella meta-analysis (p = 0.34). Seven imputed studies subjected to trim and fill analysis
suggested that there was no statistically significant association between carotenoids and
lung cancer risk (OR = 1.033; 95% CI: 0.929–1.147).
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3.5. Digestive System Cancer Outcomes

Among 62 meta-analyses, 18 showed a statistically significant result for reduction of
digestive system cancer risk with carotenoids. As shown in Figure 3, higher consump-
tion/blood level of carotenoids resulted in a significant decrease in digestive system cancer
(OR = 0.820; 95% CI: 0.780–0.861; p < 0.001), which is concluded from a random-effect
model since there was a moderate heterogeneity (I2 = 0.675, p < 0.001). Further subgroup
analysis showed a significant effect of total carotenoids (OR: 0.811; 95% CI: 0.674–0.975),
α-carotene (OR: 0.792; 95% CI: 0.707–0.887), β-carotene (OR: 0.799; 95% CI: 0.717–0.890),
lutein and zeaxanthin (OR: 0.856; 95% CI: 0.794–0.923), β-cryptoxanthin (OR: 0.790; 95%
CI: 0.698–0.894), and lycopene (OR: 0.873; 95% CI: 0.825–0.924) on the risk of digestive
system cancer (Table 2). We also synthetically analyzed the role of carotenoids in different
types of digestive cancers. Our study found a significantly protective effect of carotenoids
on the risk of gastric cancer (OR: 0.749; 95% CI: 0.668–0.841), colorectal cancer (OR: 0.932;
95% CI: 0.887–0.979), esophageal cancer (OR: 0.752; 95% CI: 0.671–0.844), and pancreatic
cancer (OR: 0.812; 95% CI: 0.765–0.861) (Table 2). The results showed that the assessment of
publication bias of the funnel plot by Egger’s regression test showed no publication bias in
the umbrella meta-analysis (p = 0.77).
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3.6. Prostate Cancer Outcomes

The pooled effect of carotenoids on prostate cancer was concluded from 19 meta-
analyses in 11 studies, which indicated a significant decrease in prostate cancer risk
(OR = 0.916; 95% CI: 0.893–0.939; p < 0.001, Figure 4), and found insignificant between-study
heterogeneity (I2 = 0, p = 0.514). The subgroup analysis showed that the significant effect of
α-carotene (OR: 0.880; 95% CI: 0.784–0.987) and lycopene (OR: 0.899; 95% CI: 0.872–0.927)
on the risk of prostate cancer (Table 2). The Egger’s regression test showed no publication
bias in the umbrella meta-analysis (p = 0.06). While further trim and fill analysis with
5 imputed studies suggested that the impacts of carotenoids on prostate cancer were still
significant (OR = 0.923; 95% CI: 0.899–0.949).
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3.7. Breast Cancer Outcomes

The result of 20 meta-analyses of the association of carotenoids and breast cancer
showed total carotenoids could significantly decrease the risk of breast cancer (OR = 0.899;
95% CI: 0.860–0.940; p < 0.001, Figure 5) with a significantly moderate heterogeneity
(I2 = 0.613, p < 0.001). Further subgroup analysis showed a significant effect of α-carotene
(OR: 0.900; 95% CI: 0.857–0.945), and β-carotene (OR: 0.896; 95% CI: 0.833–0.964) on the
risk of breast cancer (Table 2). The assessment of publication bias of the funnel plot by
Egger’s regression test showed insignificant publication bias in the umbrella meta-analysis
(p = 0.053). Six imputed studies subjected to trim and fill analysis suggested that carotenoids
were protective against breast cancer (OR = 0.930; 95% CI: 0.888–0.974).
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3.8. Bladder Cancer Outcomes

The pooled effect of carotenoids on prostate cancer was concluded from 15 meta-
analyses in 3 studies, which indicated a significant decrease in prostate cancer risk
(OR = 0.850; 95% CI: 0.778–0.929; p = 0.001, Figure 6), and found low between-study hetero-
geneity (I2 = 0.489, p = 0.017). Further subgroup analysis showed a significant effect of total
carotenoids (OR: 0.631; 95% CI: 0.469–0.849) on the risk of bladder cancer (Table 2). The
assessment of publication bias of funnel plot by Egger’s regression test showed insignificant
publication bias in the umbrella meta-analysis (p = 0.108). Five imputed studies subjected
to trim and fill analysis suggested that carotenoids were protective against bladder cancer
(OR = 0.882; 95% CI: 0.801–0.971).
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3.9. Head and Neck Cancer Outcomes

High-serum or high intake or high-supplement concentration of carotenoids were
associated with significant reductions in the risk of head and neck cancer (OR = 0.635; 95%
CI: 0.534–0.757; p < 0.001, Figure 7) with a moderate heterogeneity (I2 = 0.567, p < 0.001). In
terms of carotenoids, significant decreases were observed in subgroups of patients with
head and neck cancer. Subgroup analysis was employed to explore the potential sources of
heterogeneity. The result of subgroup analysis showed that total carotenoids (OR: 0.428;
95% CI: 0.239–0.767), α-carotene (OR: 0.640; 95% CI: 0.485–0.845), β-carotene (OR: 0.817;
95% CI: 0.709–0.942), β-cryptoxanthin (OR: 0.408; 95% CI: 0.338–0.493), and lycopene
(OR: 0.674; 95% CI: 0.534–0.851) significantly decreased the risk of head and neck cancer
(Table 2). The assessment of publication bias of the funnel plot by Egger’s regression test
showed no publication bias in the umbrella meta-analysis (p = 0.83). Six imputed studies
subjected to trim and fill analysis suggested that carotenoids were protective against breast
cancer (OR = 0.923; 95% CI: 0.883–0.965).
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3.10. Gynecologic/Skin/Blood Cancer Outcomes

We conducted a comprehensive assessment of the limited number of meta-analyses
pertaining to gynecologic/skin/blood cancers collectively, aiming to derive overall findings.
The present umbrella analysis presented 18 meta-analyses of gynecologic, skin, and blood
cancer studies significantly associated with carotenoids (OR = 0.928; 95% CI: 0.900–0.957;
p < 0.001, Figure 8) with a moderate heterogeneity (I2 = 0.732, p < 0.001). Despite the paucity
of available meta-analyses, we conducted separate analyses for each of the three cancers
regarding total carotenoids. Further subgroup analysis showed a significant effect of total
carotenoids (OR: 0.540; 95% CI: 0.433–0.672) and β-carotene (OR: 0.912; 95% CI: 0.842–0.987)
on the risk of gynecologic/skin/blood cancer (Table 2). Seven meta-analyses found a
significantly reduced risk of gynecologic cancer (OR: 0.683; 95% CI: 0.564–0.827). Five meta-
analyses revealed insignificant reduced risk of skin cancer with carotenoids (OR: 0.991; 95%
CI: 0.950–1.035). Six meta-analyses also found a significantly reduced risk of blood cancer
(OR: 0.895; 95% CI: 0.832–0.962). The assessment of publication bias of the funnel plot by
Egger’s regression test showed publication bias in the umbrella meta-analysis (p < 0.001).
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3.11. Subgroup Analysis of Source of Carotenoids on Various Cancers

Further evaluations were conducted to detect the effects of carotenoids from different
sources on various cancers. The results showed that the OR value swere not significantly
changed by most of the dietary, blood, and supplement of carotenoid subgroups (Table 3).
However, carotenoid supplementation significantly increased in the risk of total cancer
(OR: 1.021; 95% CI: 1.000–1.043), lung cancer (OR: 1.141; 95% CI: 1.084–1.200), and bladder
cancer (OR: 1.440; 95% CI: 1.000–2.090) (Table 3).

Table 3. Subgroup analysis of source of carotenoids on various cancers.

Type of Cancer Source of Carotenoids No. of Meta-Analyses OR (95% CI) I2 (p Value)

Total cancer Carotenoids intake 118 0.823 (0.797–0.849) 0.740 (<0.001)
Carotenoids serum 32 0.807 (0.765–0.851) 0.278 (0.075)
Carotenoids
supplement

32 1.021 (1.000–1.043) 0.227 (0.126)

Lung cancer Carotenoids intake 4 0.908 (0.739–1.116) 0.929 (<0.001)
Carotenoids serum 8 0.744 (0.670–0.826) 0 (0.810)
Carotenoids
supplement

4 1.141 (1.084–1.200) 0 (0.959)

Digestive system
cancer

Carotenoids intake 48 0.798 (0.754–0.844) 0.683 (<0.001)

Carotenoids serum 6 0.864 (0.773–0.967) 0 (0.705)
Carotenoids
supplement

8 0.960 (0.902–1.021) 0 (0.990)

Prostate cancer Carotenoids intake 8 0.900 (0.871–0.930) 0 (0.990)
Carotenoids serum 6 0.892 (0.827–0.962) 0.337 (0.183)
Carotenoids
supplement

4 0.974 (0.923–1.028) 0 (0.629)

Breast cancer Carotenoids intake 9 0.906 (0.860–0.954) 0.734 (<0.001)
Carotenoids serum 4 0.826 (0.749–0.910) 0 (0.649)
Carotenoids
supplement

2 1.019 (0.908–1.143) 0.453 (0.176)

Head and neck cancer Carotenoids intake 20 0.634 (0.530–0.758) 0.617 (<0.001)
Carotenoids serum 1 0.710 (0.240–2.090) NA (NA)
Carotenoids
supplement

NA NA NA (NA)

Bladder cancer Carotenoids intake 8 0.854 (0.789–0.923) 0.460 (0.073)
Carotenoids serum 6 0.451 (0.274–0.741) 0 (0.993)
Carotenoids
supplement

1 1.440 (1.000–2.090) NA (NA)

Gynecologic/skin/blood
cancer

Carotenoids intake 13 0.829 (0.762–0.902) 0.688 (<0.001)

Carotenoids serum 1 0.480 (0.300–0.770) NA (NA)
Carotenoids
supplement

4 0.994 (0.952–1.038) 0 (0.997)

CI, confidence interval; OR, odds ratio; NA, not available.

4. Discussion

Despite several reviews and meta-analyses evaluating the effects of carotenoids on
the risk of cancer, our study aimed to provide a comprehensive overview of the available
evidence. In the present umbrella meta-analysis, a total of 51 articles with 198 eligible
meta-analyses were included to assess the impact of carotenoids on the most-diagnosed
cancers. Total carotenoids were inversely associated with the risk of lung cancer, digestive
system cancer, prostate cancer, breast cancer, head and neck cancer, gynecologic cancer,
skin cancer, and blood cancer, indicating that they may have an important impact on cancer
prevention, despite the presence of moderate-to-high heterogeneity among the studies.
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There was sufficient evidence for a protective relationship between dietary carotenoids
or serum carotenoids and cancers in the present umbrella review. The health check-up
programs from 1988 to 1995 through 1998 among 3182 participants aged from 39–79 with
134 cancer deaths revealed that α-carotene, β-carotene, and lycopene reduced the risk of
cancer mortality [74]. Subsequent investigations conducted on the Cancer Prevention Study
II Nutrition Cohort demonstrated that serum carotenoids levels were linked to a decreased
risk of breast cancer (OR: 0.86; 95% CI: 0.56–1.33; p = 0.74), with serum α-carotene being
identified as having a significant effect on reducing the risk of breast cancer (OR: 0.50;
95% CI: 0.29–0.85; p = 0.041) [75]. Recently, a case-control study with 415 gastric cancer
cases and 830 controls investigated the effects of dietary carotenoids on the risk of gastric
cancer. The results showed that a higher intake of total dietary carotenoids and dietary
lycopene was inversely associated with GC risk in women (total dietary carotenoids:
OR: 0.56; 95% CI: 0.32–0.99; p = 0.039; dietary lycopene: OR: 0.54; 95% CI: 0.30–0.96,
p = 0.039) [76]. The result of 11,239 prostate cancer cases and 18,541 controls from a pooled
analysis of 15 studies showed lycopene significant associated with lower risk of aggressive
prostate cancer (OR: 0.65; 95% CI: 0.46–0.91; p = 0.032), while weak evidence presented
enhanced effects of α-carotene (OR: 1.06; 95% CI: 0.0.96–1.18), β-carotene (OR: 1.07; 95%
CI: 0.98–1.16), zeaxanthin (OR: 1.04; 95% CI: 0.90–1.21) on prostate cancer [77]. Michaud
et al. [78] found that α-carotene (OR: 0.75; 95% CI: 0.59–0.96) and lycopene (OR: 0.80; 95%
CI: 0.64–0.99) intakes were significantly associated with a lower risk of lung cancer in the
Nurses’ Health Study (NHS) and Health Professionals Follow-Up Study (HPFS) cohort,
while the association with β-carotene, lutein, and β-cryptoxanthin intakes was inverse and
non-significant. However, the conclusions of several meta-analyses are inconsistent with
our results, with some reporting a significant increase in the risk of lung cancer associated
with β-carotene supplementation [68,69], potentially due to cigarette smoking.

Carotenoids have been shown to possess anti-cancer properties through various mech-
anisms, such as inducing cell cycle arrest, promoting apoptosis, and inhibiting angiogenesis
and metastasis. However, the exact effects and underlying mechanisms may vary depend-
ing on the type and stage of cancer. Previous studies have reported that carotenoids were
associated with inflammation [79]. A meta-analysis study with 26 trials carried out by
Fatemeh et al. [80] found that carotenoids significantly decreased C-reactive protein (CRP)
(weighted mean difference (WMD): −0.54 mg/L, 95% CI: −0.71, −0.37, p < 0.001), and
interleukin-6 (IL-6) (WMD: −0.54 pg/mL, 95% CI: −1.01, −0.06, p = 0.025). Moreover,
lutein/zeaxanthin and β-cryptoxanthin also significantly decreased CRP level (WMD:
−0.30 mg/L, 95% CI: −0.45–−0.15, p < 0.001; WMD: −0.35 mg/L, 95% CI: −0.54–−0.15,
p < 0.001). In an in vitro study, Karin et al. suggested that carotenoid derivatives acted as
inhibitors of the NF-κB pathway, exerting anticancer effects by inhibiting IKK kinase activ-
ity and suppressing p65 binding and transcriptional activity [81]. Furthermore, lycopene
reduced the mRNA expression of inducible nitric oxide synthase and IL-6, inhibited IκB
phosphorylation and degradation and NF-κB translocation, and prevented the phosphory-
lation of ERK1/2 and p38 MAP kinase, thus achieving an anti-inflammatory effect [82,83].

Existing evidence presented that carotenoids exhibited enhanced antioxidant prop-
erties, which is one of the potential mechanisms for preventing cancer [84]. Carotenoids
scavenged radicals by donating a hydrogen atom or electron to produce a stabilized radical
cation or anion that quenches reactive molecules [85]. Moreover, carotenoids can drastically
reduce the risk of malignant transformation by scavenging singlet oxygen or peroxyl radical
compounds, and reducing cellular damage caused by their reactions with lipids, proteins,
and DNA [86]. In addition, one of the antioxidant mechanisms of carotenoids was pro-
moting Nrf-2 localization to the nucleus, as well as promoting phase II enzyme activation
to reduce oxidative stress [87]. Following radical scavenging, carotenoids enhanced the
elimination of these stressed and damaged cells to prevent malignant transformation [88].
In vitro studies have demonstrated that carotenoids acted through the PI3K and MAPK
pathways and induced apoptosis through PPARγ, IFNs, Bcl-2, and caspase 3/9 [89,90].
In in vivo studies, the clearance of reactive oxygen species (ROS) and promotion of cell
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apoptosis by multiple types of carotenoids have been found to reduce damage to organs
including the liver, kidneys, and intestines [91–93]. However, in the Carotenoid and Retinol
Efficacy Trial (CARET) [94] and the Alpha-Tocopherol Beta-Carotene Cancer Prevention
Study (ATBC) [95], smokers were administered β-carotene supplements at 20 mg and 30 mg
per day, which was approximately 10–20 times higher than the typical intake of an adult.
The result suggested that β-carotene supplementation led to an increased mortality rate
from lung cancer. One hypothesis suggests that elevated doses of carotenoids, particularly
when given in isolation, may exhibit pro-oxidant activity within the lungs of smokers. A
prevalent consensus existed within the scientific community, positing that a diet abundant
in fruits and vegetables, distinguished by their high antioxidant content, possessed the po-
tential to mitigate the risk of cancer. This consensus was predominantly rooted in empirical
findings derived from observational studies.

However, recent fundamental research publications have introduced skepticism re-
garding the established notion of antioxidants’ anti-carcinogenic properties, and have
cautioned that, under certain circumstances, their impact may indeed manifest as carcino-
genic [96]. It was proven that high doses of a single antioxidant administered to individuals
at high risk of health issues, such as smokers, were demonstrated to lack significant benefits
and could potentially result in adverse effects [97]. In addition to insufficient micronutrient
intake from both food and supplement sources on a daily basis, surpassing the tolerable
upper intake levels is likely to present a risk of adverse health effects for nearly all individ-
uals in the general population [98]. Henceforth, the establishment of a secure carotenoid
intake necessitates the assessment of a dose–response relationship indicative of potential
adverse effects on the health of animals or humans. This is also a relevant field that we aim
to explore in our future research endeavors.

Our current investigation represents the initial umbrella meta-analysis to compre-
hensively collect and evaluate all previously published meta-analyses, culminating in a
comprehensive synthesis of the available evidence pertaining to the efficacy of carotenoids
in cancer prevention.

An umbrella review is the most comprehensive evaluation of previously published
meta-analyses or systematic reviews, representing one of the highest levels of evidence. It
also enhances the value of publications and decreases misleading outcomes, distortion, and
bias. However, our study does have several limitations that need to be further considered.
Firstly, we selected and included studies that were published in meta-analyses, which may
have lost some studies that were not identified. Secondly, the data on total carotenoids and
total cancer in the study could not be categorized. Thirdly, we only modified data that were
analyzed incorrectly in the CMA and did not re-analyze all the data. Fourthly, multiple
meta-analyses cited the same original observational study. Fifthly, although all studies
are crowd research, including cohort studies, case-control studies, and RCT, they have
different research methods and handling methods, which may affect our results. Sixthly,
it was not possible to make a detailed division of intake levels, so it was not possible to
verify the dose–response relationship in detail. Lastly, there is an insufficient amount of
research on specific types of carotenoids in relation to various cancers, which may affect
the final results. In future studies, further meta-analytical research articles are needed on
the levels or ratios of carotenoid components and their associations with cancer incidence
and mortality.

5. Conclusions

Although carotenoids are widely available in foods and commonly used as dietary
supplements, and carotenoid-related studies have been published, there is no conclusive
evidence regarding their protective effect on cancer risk. Our results have evaluated the
most comprehensive evaluation of the relationship between carotenoids and cancer risk and
found that multiple carotenoids were significantly associated with minimizing incidence
and mortality of cancer. Concurrently, the findings suggest that the efficacy of carotenoid
supplements in cancer prevention remains a subject of controversy, highlighting the need
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for cautious consideration when considering supplementation. Future study will eliminate
data bias and error by analyzing individual patient data and various subgroups to likely
yield more consistent results with a high level of evidence.

Supplementary Materials: The following supporting information can be downloaded at: https://
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