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Abstract: Cancer is a crucial global health problem, and prevention is an important strategy to reduce
the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing
body of evidence suggests that specific nutrients in foods may have a preventive effect against
cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer
intervention. It discusses the potential mechanisms of action of various dietary components, including
phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on
their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as
carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties.
The effects of steady-state delivery and chemical modification of these food’s bioactive components
on anticancer and intervention are summarized. Future research should focus on identifying the
specific bioactive compounds in foods responsible for their intervention effects and exploring the
potential synergistic effects of combining different nutrients in foods. Dietary interventions that
incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and
improving overall health.
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1. Introduction

Cancer is currently the second leading cause of death worldwide, after cardiovascular
diseases such as ischemic heart disease. Based on the International Agency for Research on
Cancer (IARC), there were probably 20.0 million new cases of cancer and 9.7 million deaths
from cancer worldwide in 2022 [1]. Lung cancer is the most common cause of cancer death
in the world, representing 18.7% of the total cancer mortality rate, followed by colorectal
(9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers (Figure 1a–c) [1].
While genetic defects can play a role in developing some types of cancer, they are estimated
to cause only 5–10% of all cancer cases (Figure 1d) [2]. Most cancers are believed to
be caused by a combination of environmental and lifestyle factors, such as exposure to
tobacco smoke, air pollution, UV radiation, an unhealthy diet, lack of physical activity, and
infectious agents such as viruses and bacteria [2,3]. Epidemiological studies have suggested
that changes in nutritional factors and dietary patterns could potentially prevent up to
35% of cancer cases. However, the actual percentage may vary depending on the specific
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dietary composition and the type of cancer [2] (Figure 1e,f). While cancer prevention and
intervention strategies continue to evolve, current evidence suggests that adopting healthier
habits can be important in reducing the risk of developing cancer and improving outcomes
for those with cancer. These habits include avoiding excessive exposure to ultraviolet
radiation and other carcinogens, such as tobacco smoke and environmental pollutants,
reducing alcohol intake, maintaining a healthy diet, and engaging in regular physical
activity [4–6].
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Carcinogenesis is a multistep process that involves the transformation of the normal
cell into the tumorigenic neoplastic cell. The pathogenic mechanisms involved in tumor
initiation, promotion, and progression are diverse and complex [7]. There has been signifi-
cant interest in the role of foods and nutrition in developing and managing cancer since the
publication of studies in the early 1980s [8]. Over four decades, numerous observational
research studies have investigated the relationship between nutrient intake and cancer
risk. In general, these analyses have found that consumers who eat a diet rich in fruits,
vegetables, whole grains, and other nutrient-dense foods are at lower risk of developing
certain types of cancer compared to those who consume a diet high in processed foods, red
and processed meats, and unhealthy fats [9–11]. Human cancer development is a compli-
cated process that can take years or even decades. It is recommended that healthy diet and
nutrition interventions for cancer prevention and management should start early in life and
be sustained over time. Furthermore, nutritional supplementation can significantly impact
the response to cancer treatment and the overall outcomes of cancer patients. Nutritional
supplementation can help balance energy expenditure and nutrition intake, which is vital
for maintaining body weight and preventing malnutrition during cancer treatment [12–14].
Nutritional supplementation can be an essential component of systematic therapy in can-
cer patients, as it can help to improve clinical symptom management and quality of life
(Figure 2) [15,16].
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Figure 2. Summary of essential nutrients and their state delivery and chemical modification in
cancer intervention.

The focus of nutrient- and food-driven chemoprevention has been on identifying
specific types of foods and nutrients that can potentially reduce the risk of cancer. This
includes foods rich in protein, vitamins, minerals, and fiber. A healthy diet can contribute
to the maintenance of a standard body weight, the enhancement of general health, and the
reduction of the rate of chronic diseases such as cancer (Figure 3).

Foods 2024, 13, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 2. Summary of essential nutrients and their state delivery and chemical modification in can-
cer intervention. 

The focus of nutrient- and food-driven chemoprevention has been on identifying spe-
cific types of foods and nutrients that can potentially reduce the risk of cancer. This in-
cludes foods rich in protein, vitamins, minerals, and fiber. A healthy diet can contribute 
to the maintenance of a standard body weight, the enhancement of general health, and the 
reduction of the rate of chronic diseases such as cancer (Figure 3). 

 
Figure 3. Summary of protein/peptides, lipids, carbohydrates, micronutrients, and flavonoids from 
foods with anti-cancer properties. 

  

Figure 3. Summary of protein/peptides, lipids, carbohydrates, micronutrients, and flavonoids from
foods with anti-cancer properties.



Foods 2024, 13, 1363 4 of 26

2. Nutrients in Food for Cancer Prevention
2.1. Protein/Peptides

Protein is a macronutrient that is important for the body to function properly. It is a
source of essential amino acids and can be used as an energy source when carbohydrates
and fats are unavailable. In addition to essential nutrition, some food-derived proteins
contain bioactive peptides, short chains of amino acids that can have health benefits beyond
their nutritional value [17]. The well-accepted mechanisms that can be used to fight cancer
include inducing programmed cell death (apoptosis), antiangiogenesis, antimetastasis,
function blocking, and immunomodulation. As the saying goes, “prevention is better than
cure”. Food-derived antiproliferative proteins/peptides have shown promising potential
in preventing cancer development. By inhibiting the growth of cancer cells, they can act as
adjuvant chemoprevention compounds and reduce the risk of cancer [18] (Figure 4a).

Whey protein is a protein found in milk and is a byproduct of cheese-making. It is
often used as a dietary supplement in oncology to help manage malnutrition and improve
muscle mass in cancer patients undergoing treatment [19]. Cytokines are a diverse group
of small proteins produced by various types of cells, including immune cells, and act as
signaling molecules to regulate the immune response. Several cytokines play a part in
regulating the inflammatory tumor microenvironment. Proinflammatory cytokines have
been deemed to take effect in breast cancer [20]. The research report may be the basis for
proposing innovative therapeutic approaches for breast cancer. Pupae protein, obtained
from Bombyx mori or Samia ricini, might have anticancer potential by downregulating the
expression of proinflammatory cytokines such as IL-6, IL-1β, and TNF-α [21]. Metastasis is
a significant factor in cancer progression and is often associated with a poorer prognosis.
Over the years, a wide range of natural and synthetic compounds have been identified
as potential anti-metastatic agents that can help to prevent cancer cells from invading
surrounding tissues and spreading to other parts of the body. In this context, Li et al. [22].
carried out research to investigate the potential anticancer effects of sweet potato protein
against colorectal cancer cells. The researchers found that sweet potato protein was able to
inhibit the growth and multiplication of human colonic cancer cells (SW480) in vitro and
reduce the size of tumors in mice implanted with SW480 cells in vivo. The antiproliferative
effects of sweet potato protein were mediated, at least in part, by the induction of apoptosis
of malignant cells and inhibition of the uPA signaling pathway. These research results also
provided the basis for the antitumor potential of food-derived protein extracts.

Food-derived bioactive peptides are typically produced through enzymatic hydrolysis
of their parent protein, gastrointestinal digestion, and microbial fermentation [23]. Peptides
are generally considered to have several advantages over larger proteins, including their
low molecular weight, high affinity, strong specificity for the target, low toxicity, and good
tissue penetration [24]. Peptides generally exhibit better bioavailability than their parent
proteins due to their smaller size and increased solubility.

Existing research has investigated the mechanisms of anticancer peptides, which in-
clude a range of effects on tumor cells and their microenvironment, such as distortion
of crucial proteins related to the proliferation of tumor cells, intervention of enzymatic
activities related to tumor growth, immunity enhancement against tumor cells, suppres-
sion of the angiogenesis process of tumor cells, and initiation of necrosis or apoptosis.
Bioactive peptides from food sources have been systematically proven to be suitable sub-
stitutes for tumor management [25]. Additionally, peptides from different food sources
have demonstrated potential promising effects against tumors [26]. Lunasin was initially
discovered in soybeans and other seeds and is a polypeptide consisting of 43 amino
acids. Hsieh et al. [27] assessed the antitumor effects of lunasin on 7,12-dimethylbenz(a)
anthracene and 3-methylcholanthrene-treated fibroblast cells (NIH/3T3). Lunasin signif-
icantly suppressed cell proliferation and reduced cancerous foci formation in these cells
treated with two chemical carcinogens. Hsu et al. [28] found that the peptides LPHVLT-
PEAGAT and PTAEGGVYMVT, extracted by enzymatic hydrolysis of tuna dark muscle,
had the effect of inhibiting the proliferation of MCF-7 breast cancer cells in vitro. This study
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suggested that these peptides could be used as natural anticancer agents or functional
food ingredients. Furthermore, the decapeptide RQSHFANAQP has been proven to have
strong antiproliferative properties on human breast cancer cells (MCF-7 and MDA-MB-231).
The peptide was extracted from chickpea protein through enzymatic hydrolysis, and it is
considered a promising natural compound for breast cancer prevention and treatment [29].

2.2. Lipids

Fatty acids play important roles in both biological and nutritional contexts. Fatty
acids have received increasing attention from a clinical perspective for their involvement in
the onset and progression of diseases, including cancer. Dietary lipids have already been
proven to assume a pivotal role in the etiology of cancer, and different kinds of lipids can
have other effects on cancer regulation [30]. Fatty acids are a type of lipid typically derived
from fats and oils in natural sources such as triacylglycerols or phospholipids. They can be
either saturated (SFAs) or unsaturated (UFAs) [31]. They have received increasing attention
because of their involvement in the generation and progression of tumors [32].

2.2.1. Saturated Fatty Acids

There is some evidence to suggest that lauric acid, a saturated medium-chain fatty
acid from coconut oil, may exhibit antitumor activity mediated through oxidative stress-
induced apoptosis [33]. Lappano et al. [34] demonstrated that lauric acid could promote
the production of reactive oxygen species, activate the transduction pathways, and change
genetic expression. Some evidence suggests that lauric acid may have antiproliferative and
proapoptotic abilities in breast cancer and endometrial cancer cells. Thus, lauric acid has
been related to some health-promoting advantages of coconut oil intake, such as improved
life satisfaction in breast cancer patients during sickness [35].

2.2.2. Monounsaturated Fatty Acids

Oleic acid is a common fatty acid found in the biosphere. It is a monounsaturated
fatty acid that has 18 carbon atoms in its fatty acid chain. It is found in a variety of foods,
including olive oil, avocado oil, and nuts. Furthermore, there is some evidence to suggest
that oleic acid may inhibit the overexpression of HER2, a well-defined oncogene that
plays a decisive part in the etiology, invasiveness, progression, and metastasis of human
cancers [36]. Notably, the effects of oleic acid on cell growth and proliferation may vary
depending on the type of cell and the context. While some studies have suggested that
oleic acid may have antiproliferative effects on certain tumor cell lines, other studies have
reported conflicting results [36]. Some studies have suggested that both oleic acid and
α-linolenic acid may have inhibitory effects on colorectal cancer cells. The Mediterranean
diet [37], which is characterized by high consumption of olive oil, has been connected with
lower morbidity of multiple kinds of cancer [38]. Oleic acid is a main ingredient of olive
oil, and it has been suggested that its chemopreventive properties may contribute to the
protective effects of the Mediterranean diet.

2.2.3. Polyunsaturated Fatty Acids

Naturally occurring polyunsaturated fatty acids (PUFAs) cannot be synthesized by
the body and are only obtained from dietary sources. For this reason, PUFAs are also
often referred to as “essential fatty acids”. PUFAs are classified into two main categories
determined by the position of the first double bond from the methyl end of the carbon
chain: omega-6 PUFAs and omega-3 PUFAs [39]. Omega-3 PUFAs, also known as O3FAs,
are found primarily in natural ocean sources such as fatty fish, algae, and krill. The
two most well-known omega-3 PUFAs are eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA).

O3FAs have well-established anti-inflammatory properties, which are relevant to
cancer prevention and treatment. Additionally, O3FAs have been shown to have a variety
of anticancer effects through different mechanisms [40], such as binding to specific proteins
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and altering the phospholipid fatty acid composition of cell membranes. PUFA supple-
ments, particularly those containing EPA and DHA, are often used by cancer patients as a
complementary or alternative therapy. Studies have shown that O3FAs, particularly EPA
and DHA, have anticancer effects against colorectal cancer. A study by Volpato et al. [41]
reported that a better intake of EPA and DHA was related to a lower rate of developing
colorectal cancer. This is believed to be due to the ability of EPA and DHA to restrict the
growth and proliferation of colorectal cancer cells. In addition, the anti-inflammatory and
anticancer properties of O3FAs suggest that they may have potential as an adjunct therapy
in combination with traditional cancer treatments such as chemotherapy and radiation [41].

2.3. Polysaccharides

Polysaccharides are one of the four basic substances for life, diffusely distributed
in microbes, plants, and animals. Medicinal polysaccharides derived from plants have
been investigated for their potential as adjuvant therapies in cancer treatment. Preclinical
and clinical studies have shown promising results. These polysaccharides are often com-
bined with radiotherapy and chemotherapy to enhance their efficacy and reduce toxicity.
Plant polysaccharides with noticeable antitumor effects have been shown to come into
play in tumorigenesis in different cell lines primarily by restraining tumor growth, induc-
ing apoptosis, increasing immunity, and cooperating with iatrochemistry drugs [42,43]
(Figure 4b,c).

Polysaccharides has an innate antitumor effect on tumor cells. The polysaccharide
from Laminaria japonica Aresch could significantly inhibit the multiplication of nasopharyn-
geal carcinoma cells, and the suppression rate was enhanced with increasing polysaccharide
concentration [44]. Apoptosis is a type of gene-mediated programmed apoptosis and a
critical phenomenon that drugs may induce in anticancer therapy. The five new polysac-
charides SLNT-5 were extracted from the fruiting body of Lentinus edodes. SLNT1 and
JLNT1 could improve the suppression rates of H22-bearing mice by increasing serum IL-2
and TNF-α production and inducing cancer cell death [45]. Tumor immunotherapy is also
classified as a tumor therapy strategy [46]. Some polysaccharides do not directly inhibit
tumor cells but exhibit anticancer activity by increasing the body's immune functions.
The immunomodulatory ability of polysaccharides is classified as the foremost mecha-
nism of the anticancer effect. Xue et al. [47] proved that fucoidan can inhibit mammary
carcinogenesis in rats through the PD1/PDL-1 signaling pathway. Polysaccharides are
immune enhancers that activate the activity of immune cells, such as T cells, B cells, MT
cells, NK cells, CTL cells, and LAK cells [48] (Figure 4d). Polysaccharides can stimulate
macrophages to release TNF-α and NO. Furthermore, they also have antitumor effects
and immunomodulatory effects on tumor-bearing hosts. Bamodu et al. [49] demonstrated
that astragalus polysaccharides could enhance the M1 polarization of macrophages, the
function of dendritic cells, and T-cell-mediated antitumor immune reactions in patients
with lung cancer [49]. Therefore, the antitumor mechanisms of polysaccharides are not
self-governed but are correlated with each other.
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2.4. Vitamins

Nutritional supplements are considered to be a needed element for people with an
unbalanced daily diet. Vitamins are organic compounds that are essential for maintaining
health, and their corresponding supplements are the most commonly used dietary supple-
ments, capable of promoting health and/or preventing and mitigating disease. In addition,
vitamin A was the most popular complementary and alternative medicine preparation
used [50], and vitamin supplementation may provide a relatively effortless method for
tumor prevention in human populations. Vitamins A, C, and E have been most associated
with cancer [51].

Vitamin A is the nutritional term for a kind of lipid-soluble unsaturated hydrocar-
bon, which can be obtained from the daily diet either as preformed vitamin A (primarily
retinyl esters, retinol, and a minor amount of retinoic acid) or in the form of provitamin A
carotenoids. Vitamin A and its derivatives mainly affect the differentiation of epithelia and
other tissues and inhibit the proliferation of preneoplastic and neoplastic cells [52]. Both
innate and adaptive immunity require vitamin A [53]. It not only influences the activation
of neutrophils and macrophages but also manages the differentiation of T-helper cells and
B cells [54], which may be used to slow down the carcinogenic process. In a promising
analysis with 20 years of follow-up, Li et al. [55] found that women who consumed a
high intake of carotenoids had a lower chance of developing breast cancer, meaning that
carotenoids proved a more significant inverse association with the risk of breast cancer.
Antioxidants such as vitamin A and carotenoids have cytotoxic effects on tumor cells and
do not affect normal cells, thus minimizing the side effects of chemotherapy drugs.
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Vitamin C, alternately named ascorbic acid or ascorbate, is a necessary water-soluble
vitamin that plays an essential role in the life activities of the human body. It cannot be
synthesized by the human body and therefore needs to be ingested as food [56]. Cancer
can induce oxidative stress and ROS formation. Vitamin C is a major antioxidant, and the
generation of free radicals from advanced cancer likely results in increased consumption of
vitamin C, which results in dramatically lower plasma vitamin C levels in cancer patients
than in ordinary people [57]. Restoring vitamin C levels to reasonable ranges in cancer
patients may be a simple treatment method. Furthermore, vitamin C also has pro-oxidative
effects that may cause damage to ROS, protein glycation, and DNA. At high concentrations,
vitamin C exhibits the killing of multifarious types of tumor cells in in vitro and in vivo
experiments via a noteworthy generation of ROS [58]. Schoenfeld et al. [59] testified that
ascorbate could selectively sensitize non-small-cell lung cancer and glioblastoma cells, and
preclinical studies and clinical tests also proved the possible efficacy of pharmacological
ascorbate in these two species of tumor treatment.

Vitamin E, a lipid-soluble vitamin, was found in wheat germ oil in 1922, comprising
eight natural isoforms, i.e., four isoforms of tocopherol and four isoforms of tocotrienol [60].
In all the inartificial isomeric forms of vitamin E, alpha-tocopherol is the predominant
form in plasma and tissues, which is generally considered “the VE” in nutrition. Moreover,
they must be absorbed from food sources, and tocopherols are abundant in vegetable oils,
such as oils from soybeans, corn, sesame, cottonseeds, and nuts. Research has shown
that low vitamin E levels are related to an increased risk of tumors [61]. The antitumor
effects of tocopherols have been mainly ascribed to their antioxidant, anti-inflammatory,
antiproliferative, antiangiogenic, and immune-modulatory mechanisms. Ju et al. [62]
showed that dietary γ-TmT dramatically reduced colon carcinogenesis in AOM/DSS-
group mice. They further suggest that c-TmT inhibited the increase in oxidative stress
during colon tumorigenesis. Tocopherols could play an antiproliferative role by inducing
cell apoptosis.

2.5. Minerals

A mineral is an essential micronutrient for the human body, which not only forms hu-
man tissues but also sustains fundamental physiological functions of the human body [63].
Numerous population studies have shown that dietary intake of different minerals could
interfere with the development of various cancers [64]. Cancer may impede the regular
intake of micronutrients. Additionally, the inflammatory activity of cancer and the catabolic
effects of gastrointestinal symptoms or antitumor therapy may lead to malnutrition, reduc-
ing micronutrient intake [65]. The American Cancer Society Guide for Informed Choices
states that taking standard mineral supplements during and after cancer treatment may
have health benefits for patients [14].

Calcium is essential for healthy bones and teeth and for all living cells to maintain
structure and function. Calcium signaling is also critical for cell cycle regulation in cancer
cells because it participates in the regulation of cell growth, differentiation, and apop-
tosis [66]. The function of calcium is to regulate cell death pathways and restrain cell
proliferation in breast cancer cell lines [67]. Calcium is necessary for the optimum activity
of vitamin D, and there is evidence that the anticancer effects of calcium are partly mediated
by vitamin D. Mathiasen et al. [68] showed that calcium is a crucial mediator of vitamin
D compound-induced apoptosis-like death of breast cancer cells. Furthermore, vitamin
D and calcium have a chemopreventive effect against breast cancer [69]. The prospective
observational study from Keum et al. [70] showed that calcium supplements could serve as
additional targets for colorectal cancer prevention.

Selenium is an essential trace element with remarkable chemical properties, including
antioxidative, antimutagenic, antiviral, and anticarcinogenic properties. In 1957, selenium
was recognized as an essential element for human health [71]. By 1969, Shamberger and
Frost demonstrated that selenium was not a carcinogen but a cancer-preventing agent [72].
Selenium consumption at a dose of more than 64.4 µg/L has a positive effect on breast



Foods 2024, 13, 1363 9 of 26

cancer survival among female patients undergoing surgery [73]. Higher levels of serum
selenium are observably associated with a lower probability of colon cancer in women,
indicating that selenium intake is a crucial factor in influencing cancer risk in a population
of marginally low-selenium individuals [74]. The implicit role of selenium compounds in
cancer therapy is centered around their ability to increase cellular oxidative stress. Research
has shown that normal cells can cope with the increase in oxidant fluxes, while cancer
cells have reached the limits of their ability to control oxidative stress. Taking advantage
of these differences, generating more ROS through selenium compounds could provide a
therapeutic advantage [75].

Iron is a necessary nutrient that plays a crucial part in hemoglobin synthesis, DNA
synthesis, and energy metabolism in all mammals. In addition, it is an indispensable trace
element for life support. Recent studies have also shown that cancer patients commonly suf-
fer from anemia, regardless of whether they receive any treatment [76]. Many studies have
shown that abnormal iron homeostasis is a marker of cancer [77]. Ferumoxytol, also known
as Feraheme, is an FDA-approved nanometer material for iron deficiency treatment. Feru-
moxytol treatment significantly reduced disease burden in a mouse leukemia model and in
patient-derived xenografts bearing leukemia cells with low ferroportin expression [78].

2.6. Polyphenols

Polyphenols are a varied group of naturally occurring compounds found in varieties
of plant-based foods, such as fruits, vegetables, whole grains, tea, coffee, and cocoa. There
are over 8000 known polyphenols and their structure can vary widely, although they
are typically categorized according to the amount of phenol rings they hold and their
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Green tea is the second most widespread drink expended in the world after water.
It has been studied for its potential health benefits, particularly in reducing the risk of
cancer. Green tea is abundant in polyphenolic compounds known as catechins, specifically
epigallocatechin-3-gallate (EGCG). EGCG has been shown to have a range of potential anti-
cancer effects in several forms of cancer, including breast cancer, lung cancer, prostate cancer,
and colon cancer [93,94]. In addition, EGCG has been shown to have anti-inflammatory
activities by suppressing the generation of inflammatory cytokines, and it can also act as an
antioxidant by scavenging free radicals and reducing oxidative stress [95]. The structure of
EGCG determines its strong antioxidant ability, and it may slow the spread of cancer [96].
Lee et al. demonstrated that EGCG can modulate the antioxidant pathways to enable the
selective death of cancer cells [97,98]. In addition, expression of PD-L1 in cancer cells has a
significant effect on tumor immune escape and cancer progression. Rawangkan et al. [99]
indicated that EGCG can inhibit both IFN-γ– and EGF-induced PD-L1 expression through
regulating two signaling pathways, JAK2/STAT1 and EGFR/Akt, in A549 and H1299 cells.
Therefore, EGCG has been shown to target various components of the tumor microenviron-
ment, including cancer stem cells, cancer-associated fibroblasts, and immune cells, to exert
its antitumor effects.

2.7. Recommended Daily Diet

Interest in the potential of daily dietary guidelines in helping to lower the risk for
diverse kinds of cancer dates back several decades [100]. Good nutrition can play a crucial
role in maintaining health. Therefore, the authors have summarized a recommended daily
intake of nutrient elements that can provide dietary recommendations for people (Table 2).

Table 2. The recommended daily intake of nutrient elements.

Nutrient Elements Recommended Daily Dietary Ref.

Protein Adult: 0.8 g/(kg·d);
Older persons: 1.2 g/(kg·d), Supplement: leucine. [101]

Fat 30 to 35% of total energy intake, replacement of SFA with
PUFA and MUFA, and avoidance of industrial TFA. [102]

Carbohydrates 50% energy from carbohydrates being derived from food. [103]

V
it

am
in

s Vitamin A Adult men: 800 µg/day; Adult women 700 µg/day.
Take less than 3000 µg/day to avoid damaging the liver [104]

Vitamin C Adult: 80 mg/day [105]

Vitamin E Adult: 5–15 mg/day [106]

M
in

er
al

s Calcium Adult: 800 mg/day [107]

Selenium Adult: 55–60 µg/day [108]

Iron Adult: 16 mg/day [109]

3. Nutrients-Based Materials from Food as Delivery Systems for Cancer Intervention

The effectiveness of nutrients in the prevention of cancer is dependent on the main-
tenance of the bioavailability of the active ingredients. After oral administration, just
a fraction of the molecule remains effective. Due to insufficient gastric residence time,
poor intestinal permeability and/or solubility, and unstable food handling or gastroin-
testinal conditions, these factors limit the nutraceutical molecules' activity and potential
health benefits.
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3.1. Protein Nanoparticles

Biopolymers, especially dietary proteins, are commonly found in formulated foods
due to their great nutritive value and general safety. Bovine serum albumin (BSA) is a
spheroidal protein made of 583 amino acid residues with a molecular weight of probably
66,000 Daltons. An innovative in vitro study by Laursen et al. [110] indicated that BSA may
suppress the proliferation of human breast cancer cells (MCF-7) by modulating the activities
of autocrine growth regulatory factors. One of the critical properties of BSA is its ability to
bind to a wide variety of small molecules, including drugs, fatty acids, and other ligands.
Self-assembling nanoparticles composed of bovine serum albumin and paclitaxel have
been developed and investigated as a possible drug delivery system for cancer cures. The
BSA component of the nanoparticles provides a hydrophilic surface that can enhance drug
solubility and prolong drug circulation time in the bloodstream. The resulting nanoparticles
have been shown to have a particle size of 50–150 nm, which is within the range considered
optimal for efficient tumor targeting [111]. Thus, Liu et al. [112] synthesized a novel
ternary antitumor drug complex composed of hydroxyapatite (HA), BSA, and paclitaxel
for the in situ therapy of osteosarcoma following surgery. The diameter of the drug
complex nanoparticles was about 55 nm, and the drug delivery rate was 32.17 wt%. The
nanoparticles also displayed the slow-release characteristics of paclitaxel and calcium
ions and showed high biocompatibility with human fetal osteoblasts (hFOB1.19). In situ,
osteosarcoma model research has shown that drug complex nanoparticles can exhibit
remarkable antitumor effects and inhibit cancer metastasis (Figure 5a). Sun et al. [113]
demonstrated that peptide/protein nanoparticles had great affinity. Fluorinated EGCG
and Melittin were used to construct a composite nanoparticle through self-assembly, which
had a synergistic antitumor effect. In addition, the nanoparticle can regulate PD-L1 and
apoptosis signaling, thereby inhibiting tumor growth.

3.2. Polysaccharide Nanoparticles

The structures of polysaccharides could offer versatility in synthesizing multifunc-
tional nanocomposites, and the polysaccharides extracted from natural herbs could be
embedded into nanoparticles with immunoregulatory characteristics for increased efficacy
in tumor treatment [114]. The nanocomposites were synthesized with Ganoderma lucidum
polysaccharide and gold nanoparticles, which could more efficiently induce dendritic cell
activation and robust T-cell responses than free polysaccharides. Nanocomposites also
showed practical inhibitory effects on breast cancer tumor growth and lung metastasis
when synergistic with doxorubicin [115] (Figure 5b). Chitosan has been widely used in
various biomedical applications as a cationic polysaccharide. Tan et al. [116] designed a
core-shell nanosphere, Ag2S(DOX)@CS, which contains chitosan (CS)-encapsulating silver
sulfide quantum dots (Ag2S QDs) with entrapped doxorubicin (DOX). The nanospheres
could be imaged and tracked for drug delivery, release DOX at a given pH in cancer cells,
and have great anticancer ability. Fucoxanthin, a carotenoid-derived artificial compound
conjugated with chitosan and glycolipid nanogels, significantly increased the cellular
uptake and anticancer efficacy of fucoxanthin in human colon cells [117] (Figure 5c).
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Figure 5. Nutrient-based delivery systems for cancer therapy. (a) The preparation procedure of the
HA−BSA−PTX nanoparticles for enhanced tumor therapy [112] (reproduced with permission from
publisher John Wiley and Sons). (b) Immunotherapy effect of polysaccharide gold nanocomposites
in cancer [115] (reproduced with permission from publisher Elsevier). (c) The preparation proce-
dure of the Ag2S(DOX)@CS nanospheres and mechanisms of pH-triggered DOX release and NIR
imaging [116] (reproduced with permission from publisher Elsevier).
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3.3. Solid Lipid Nanoparticles

Liposomes and polymeric nanoparticles are two of the most extensively studied drug
delivery systems for cancer treatment, and they offer several advantages over traditional
drug delivery approaches [118]. Effective cancer therapy requires selective drug delivery
systems to overcome the limitations of traditional treatments. Moreover, they have been
shown to be advantageous in anticancer drug delivery. Liposomes can increase the bioavail-
ability of drugs and provide controlled release of the drug, enhancing its therapeutic effects
and reducing its toxicity. With outstanding biocompatibility, inherent cancer-targeting
abilities, and potential pharmacological properties, liposomes and polymeric nanoparticles
are perfect candidates for designing high-performance drug carriers for cancer therapy.

UFAs have a connatural tumor-targeting ability and can increase the tumor accumula-
tion of chemotherapy drugs through a prodrug strategy. In addition, the therapeutic action
of paclitaxel in brain cancers is relatively limited by the blood–brain barrier. Incorporating
UFAs into paclitaxel delivery systems could enhance the therapeutic potential of paclitaxel
for brain cancer therapy. UFAs can enhance the accumulation of drugs in the brain due to
their ability to pass through the blood–brain barrier [119]. The attachment of alkyl chains,
such as UFAs, to medicinal molecules can increase their lipophilicity, which can help them
penetrate the blood–brain barrier by promoting passive diffusion [120].

As shown in Figure 6a, conjugated linoleic acid was covalently related to paclitaxel.
Compared with free paclitaxel, the cytotoxicity of the conjugate was lower, and the cellular
uptake efficiency on glioma cells (C6) was higher. Additionally, unlike free paclitaxel, the
conjugate may spread in brain tissue and retain higher accumulation levels throughout
a period of 10 days. The anticancer ability of tumor-bearing rats after being adminis-
tered the compound was dramatically higher than that of those treated with paclitaxel
only [121]. Bradley et al. [122] indicated that covalent conjugation of paclitaxel with DHC
could prominently change the pharmacokinetics and elimination of the drug. Compared
with free paclitaxel, conjugated paclitaxel exhibited lower cytotoxicity and more signifi-
cant antitumor activity in vivo. Luo et al. [123] indicated that the drug delivery system
PEGylated-paclitaxel-oleic acid has a high drug-loading capability and can selectively
release the drug at the tumor site. Xu et al. [124] indicated that α-linolenic acid paclitaxel
conjugate nanoparticles enhance antitumor ability and have greater biocompatibility than
small molecules alone. Therefore, benefiting from outstanding biocompatibility, inher-
ent tumor-targeting abilities, and potential pharmacological action functions in cancer
treatment, UFA-modified drug delivery strategies have been diffusely studied for the
high-performance delivery of chemotherapeutics [125,126] (Figure 6b,c).
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Figure 6. Synergistic anticancer activity of fatty acids with paclitaxel and potential activity
of transporting chemotherapy drugs. (a) The therapeutic efficacy of conjugated Paclitaxel-
CLA/DHA/OA/ALA [121–124]. (b) Schematic description of the ADSC-mediated delivery of
SPNPs toward brain tumors for dual-modality treatment of orthotopic astrocytoma [125] (reproduced
with permission from publisher Elsevier). (c) Schematic description of the PA-modified HSA pacli-
taxel nanoparticles targeting tumor cells and macrophages against breast cancer [126] (reproduced
with permission from publisher Elsevier).

4. Food Nutrient Derivatives for Cancer Intervention

Chemical modification is a common means that is involved in the structural regulation
of polysaccharides by chemical methods to gain polysaccharide derivatives with more or
novel bioactivity. Chemical modification of polysaccharides could change their bioactivities
by adding substituent groups, thereby enhancing their inherent biological activities as well
as generating new biological functions [127].

Sulfation of polysaccharides is one of the most effective methods to change the an-
ticancer ability of natural polysaccharides [128] (Figure 7a). Wei et al. [129] extracted a
polysaccharide from Radix edysari and synthesized its sulfated derivatives. Compared with
polysaccharides alone, all derivatives showed visible antitumor ability on A549 cells and
gastric cancer cells (BGC-823). Sulfated modification can increase the antitumor ability
of polysaccharides.

Selenium (Se) is a necessary trace element that is important for developing and main-
taining physical health. Furthermore, Se can only be absorbed from food or other sources of
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supply [130]. Some studies have shown that selenium can dramatically increase immune-
enhancing activity [131] (Figure 7b). Feng et al. [132] demonstrated that selenizing Chuan-
minshen violaceum polysaccharides dramatically enhanced the propagation of lymphocytes
and promoted the generation of IFN and IL-4. Accordingly, selenylation modification
of Chuanminshen violaceum polysaccharides could facilitate immune-enhancing activity.
Wang et al. [133] reported that the selenized Artemisia sphaerocephala polysaccharide can
observably raise the antitumor abilities of polysaccharide derivatives in vitro, thus repre-
senting powerful evidence for the application of polysaccharides.

Several investigations have indicated that the charged phosphate groups manufac-
tured by phosphorylation not only increase the solubility and influence the molecular
weight and chain structure of polysaccharides but also attach to receptors on the surface of
macrophages with close affinity, boosting the immune system efficaciously and thus gener-
ating antitumor activity [134,135] (Figure 7c). Qian et al. [136] prepared a novel derivative
of phosphorylated corn straw xylan, and compared with xylan alone, the phosphorylated
structure had better thermal stability and crystallinity. In addition, the antioxidant ability
and anticancer activity of the phosphorylated structure were more remarkable.

The stability of polyphenols relies on their management of modification and reac-
tion [137]. Chen et al. [138] assembled metal–phenolic network nanoparticles containing
poly (ethylene glycol) (PEG), ZrIV, and EGCG to deliver functional small molecules, which
have been proven to achieve higher-capacity loading of anticancer drugs. Zhang et al. [139]
proposed a FeOOH-assisted preparation strategy to construct metal–phenolic networks,
which include FeCl3·6H2O and polyphenols. In addition, the FeOOH@Fe-polyphenol NPs
can overcome the shortage of free polyphenols. When triggered by the tumor microen-
vironment, metal ions and polyphenols can be released in response, demonstrating their
ability in the area of anticancer treatment. Wang et al. [140] constructed a multifunctional
nanoparticle, Au@resveratrol, through the galvanic replacement reaction with HAuCl4
and resveratrol, which was confirmed to inhibit A375 cell division. Zhang et al. [141] con-
structed a drug delivery system of fluorinated EGCG, which can load small interfering RNA
anti-TOX. Fluorinated EGCG can reduce the expression of PD-L1, resulting in excellent
suppression of cancer growth as well as antimetastatic effects. Studies have demonstrated
that EGCG can work synergistically with other natural functional components, such as
curcumin or resveratrol, to enhance their anticancer effects. Additionally, EGCG has also
been tested in combination with commonly used chemotherapeutic drugs, such as cisplatin
and doxorubicin, to improve treatment outcomes and reduce side effects (Table 3). Further-
more, nanoparticles have been used as a drug delivery system for EGCG to enhance its
bioavailability and target specific cancer cells. The carboxymethyl chitosan-grafted EGCG
with AuNP nanocomposites developed by Yuan et al. [142] could potentially enhance the
anticancer action of EGCG in vivo. EGCG-conjugated poly(ethylene glycol) and chlorin
e6 of polyphenol nanoparticles were developed as a delivery system for EGCG in pho-
todynamic cancer therapy, and it was found to have improved antitumor efficacy [143].
In summary, reasonable modification of polyphenols could significantly increase their
anticancer ability.
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Table 3. The combined anticancer actions of EGCG.

Health-Related Properties Experimental Model Mechanism Ref.

Acts synergistically with
natural compounds Curcumin Mice model of

colorectal carcinoma.

Curcumin in combination with EGCG attenuates
the tumor CM-induced transition of NECs
toward TECs by inhibiting the JAK/STAT3
signaling pathway. Furthermore, combining
curcumin and EGCG reduces tumor growth and
angiogenesis in the colorectal carcinoma PDX
mouse model. The combined anti-angiogenic
effect is better than that of curcumin or
EGCG alone.

[144]

Combination with
chemotherapeutic drugs

Doxorubicin Mice model of osteosarcoma.

EGCG targeting LncRNA SOX2OT variant 7
produces synergistic effects with doxorubicin on
osteosarcoma cell growth inhibition. On the one
hand, EGCG could reduce doxorubicin-induced
pro-survival autophagy by decreasing SOX2OT
variant 7 to improve the growth inhibition of
doxorubicin. On the other hand, EGCG could
partially inactivate the Notch3/DLL3 signaling
cascade targeting SOX2OT variant 7 to reduce the
stemness and then abate the drug-resistance of
osteosarcoma cells.

[145]

Cisplatin

Bile duct carcinoma cell
lines—CCSW1, BDC, EGI1,
SkChA-, and TFK1.
Gallbladder cancer cell
lines—MzChA-, MzChA2,
and GBC.

EGCG reduces the mRNA levels of various cell
cycle-related genes, while increasing the
expression of the cell cycle inhibitor p21 and the
apoptosis-related death receptor 5. It also
displays a synergistic cytotoxic effect with
cisplatin in most tested BTC cell lines.

[146]

Sunitinib Mice model of breast cancer
and lung cancer.

EGCG enhances the anti-proliferation and VEGF
secretion-reducing effects of sunitinib in the three
tested cell lines. EGCG treatment downregulated
IRS-1 levels and suppressed mitogenic effects.
EGCG potentially synergizes with sunitinib due
to its ability to suppress the IRS/MAPK signaling
induced by sunitinib.

[147]

Peptides used for therapeutic needs have several advantages over larger biomolecules.
One of the major advantages is their ability to be easily synthesized and chemically modi-
fied. This allows for the development of a wide range of peptide-based drugs with different
structures and functions [25]. Liao et al. [148] designed a simple and convenient method
to obtain walnut peptide-functionalized SeNPs by anchoring peptides on the surface of
the SeNPs. Moreover, the antiproliferative ability of the composite structure was dramati-
cally increased compared with that of free peptides and SeNPs. The composite structure
shows selectivity between tumor and normal cells, with apoptosis-inducing activities on
MCF-7 cells (Figure 7d). Keykanlu et al. [149] synthesized perfluorooctyl bromide (PFOB)
nanoparticles for bee venom melittin and lactoferrin delivery in camel milk. The better ther-
apeutic effect of nanoparticles was demonstrated by in vitro experiments, which increased
MCF-7 cell death. Tyroserleutide is extracted from the pig spleen, which could observably
extend the lifespan of mice implanted with mouse hepatoma cells (H22). An in vitro study
demonstrated that the R6LRVG-functionalized tyroserleutide-PLGA nanoparticles had
enhanced cellular uptake compared to nonfunctionalized nanoparticles. Furthermore, the
functionalized nanoparticles showed improved permeability across an intestinal barrier
model, suggesting their potential for oral drug delivery. The compound can provide a
helpful oral delivery system for tyroserleutide and might represent a novel strategy for the
oral delivery of food-derived bioactive peptides for cancer interventions [150] (Figure 7e).
These results suggest that food protein-derived peptides may be promising for food and
pharmaceutical applications.
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Figure 7. The derivatization of food nutrients. (a) Sulfated modification increases the immunomodu-
latory effect of cyclocarya paliurus polysaccharide [128] (reproduced with permission from publisher
Elsevier). (b) Phosphorylated modification enhances the water solubility and anti−tumor activities of
dictyophora indusiate polysaccharide [131] (reproduced with permission from publisher American
Chemical Society). (c) Anti-proliferative activity of selenium−containing polysaccharides against
tumor cells [135] (reproduced with permission from publisher Elsevier). (d) The preparation of
WP1−SeNPs and possible signaling pathway to induce apoptosis in McF-7 cells [148] (reproduced
with permission from publisher Dove Medical Press). (e)The chemical structure of the peptide, the
preparation of YSL−PLGA/R6LRVG NPs, and the anticancer mechanism [150] (reproduced with
permission from publisher Dove Medical Press).

5. Conclusions and Challenges

A healthy diet can play a significant role in decreasing the incidence of chronic diseases
such as cancer. Dietary interventions can enhance the efficacy of chemotherapy and reduce
the toxicity of chemotherapy drugs. It is also a crucial assistive method for cancer therapies.
There is a large body of evidence supporting the potential of dietary modification and
nutrient supplementation for cancer prevention and intervention. Many prospective cohort
studies have shown that certain foods and nutrients (protein, fatty acids, polyphenols,
vitamins, minerals, fruits and vegetables, fish, white meat, and whole grains) can help
reduce the risk of cancer. Overall, nutritional interventions can be an effective and relatively
low-cost approach to improving patient outcomes and satisfaction with body weight
changes and quality of life. However, it must be noted that nutritional interventions should
be tailored to each patient's individual needs and preferences and should be implemented
in conjunction with other therapies and lifestyle changes as needed.

Primarily, it is crucial to correctly identify the subject of nutritional interventions
in cancer research. The populations in low-income nations, constrained by the level of
socio-economic development, find it challenging to ensure access to a wide variety of foods
and nutrients, notably fresh fruits and vegetables. The ubiquitous condition of nutritional
deficiency, or even its stark absence, necessitates targeted nutritional supplementation inter-
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ventions, thus rendering them appropriate and rational. Although residents of high-income
nations generally have a sufficient baseline nutritional supply, there exist segments suffering
from specific nutrient deficiencies. Secondarily, it is paramount that dietary and nutritional
interventions commence at the earliest opportunity and persist throughout the life course
with unwavering dedication for the outcomes to materialize. Lastly, it has been illustrated
that combined therapy for cancer is safer and more efficacious compared to monotherapy.
This concept is no exception when it comes to the nutritional chemoprevention of cancer
and anti-cancer foods. Bearing in mind that nutritional supplements and anti-cancer foods
are often consumed over an extended period by asymptomatic healthy individuals or those
at high risk, these formulations must demonstrate minimal toxic side effects or lack any
severe toxic ramifications. Cancer represents a category of profoundly intricate diseases
involving multifactorial influences, the participation of multiple genes, the emergence of
numerous lesions, and evolutionary stages, often necessitating a prolonged development
process spanning several years or even decades. It is difficult to envisage that short-term
supplementation of individual nutrients or anti-cancer foods could restrain, decelerate,
or reverse the carcinogenic effects. Furthermore, combined usage and formulations can
reduce toxic side effects, hence making compound usage undoubtedly desirable.

In summation, cancer is a manifestation of the combined effects of factors such as
biological inheritance and healthcare services. The dietary patterns and nutritional status
of the population play a central role in the incidence and progression of cancer. Prevention
or postponement of the onset and progression of cancer can be achieved by adopting a
balanced diet, ensuring nutritional equilibrium, engaging in active physical activities, and
maintaining a healthy weight.
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Abbreviations

Akt Protein kinase B
AOM/DSS Azoxymethane/Dextran Sulphate Sodium
PGE2 prostaglandin E2
Bax Bcl2 Associated X protein
Bcl-2 B-cell lymphoma 2
c-Jun JNK c-Jun N-terminal kinase
COX-2 Cyclooxygenase-2
HepG-2 Hepatocellular carcinoma cell lines
HER2 Human epidermal growth factor receptor 2
IL-1β Interleukin-1β
IL-2 Interleukin-2
IL-6 Interleukin-6
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Mcl1 Induced myeloid leukemia cell differentiation protein
mTOR Mammalian target of rapamycin protein
NF-κB Nuclear Factor kappa B
NIH/3T3 3-methylcholanthrene-treated fibroblast cells
NO Nitric Oxide
PARP Poly [ADP-ribose] polymerase 1
PGE2 prostaglandin E2
PI3K Phosphoinositide 3-kinase
ROS Reactive oxygen species
SGC-7901 Gastric adenocarcinoma cells
STAT3 Signal transducer and activator of transcription 3
TNF-α Tumor Necrosis Factor-α
uPA Urokinase-type plasminogen activator
VEGF Vascular endothelial growth factor
α-LA α-Lactalbumin
γ-TmT Gamma-tocopherol methyl-transferase
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